A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations
2.2. Swelling Behavior (q)
2.3. SEM Characterization
2.4. Determination of Drug Loading and Encapsulation Efficiency
2.5. In Vitro Release of HG5-UA and HG9-UA
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Extraction of Ursolic Acid
4.3. Synthesis of Hydrogels HGx-UA
4.4. Characterization
4.5. Swelling Behavior (q)
4.6. Drug Loading and Encapsulation Efficiency
4.7. In Vitro Drug Release Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habtemariam, S. Antioxidant and Anti-Inflammatory Mechanisms of Neuroprotection by Ursolic Acid: Addressing Brain Injury, Cerebral Ischemia, Cognition Deficit, Anxiety, and Depression. Oxidative Med. Cell. Longev. 2019, 2019, 8512048. [Google Scholar] [CrossRef] [PubMed]
- Jyoti, M.A.; Nam, K.W.; Jang, W.S.; Kim, Y.H.; Kim, S.K.; Lee, B.E.; Song, H.Y. Antimycobacterial Activity of Methanolic Plant Extract of Artemisia Capillaris Containing Ursolic Acid and Hydroquinone against Mycobacterium Tuberculosis. J. Infect. Chemother. 2016, 22, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Abbasi, B.A.; Ahmad, R.; Mahmood, T.; Kanwal, S.; Ali, B.; Khalil, A.T.; Shah, S.A.; Alam, M.M.; Badshah, H. Ursolic Acid a Promising Candidate in the Therapeutics of Breast Cancer: Current Status and Future Implications. Biomed. Pharmacother. 2018, 108, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Pironi, A.M.; de Araújo, P.R.; Fernandes, M.A.; Salgado, H.R.N.; Chorilli, M. Characteristics, Biological Properties and Analytical Methods of Ursolic Acid: A Review. Crit. Rev. Anal. Chem. 2018, 48, 86–93. [Google Scholar] [CrossRef]
- Ludeña Huaman, M.A.; Tupa Quispe, A.L.; Huamán Quispe, R.I.; Serrano Flores, C.A.; Robles Caycho, J. A Simple Method to Obtain Ursolic Acid. Results Chem. 2021, 3, 100144. [Google Scholar] [CrossRef]
- Jin, H.; Pi, J.; Yang, F.; Wu, C.; Cheng, X.; Bai, H.; Huang, D.; Jiang, J.; Cai, J.; Chen, Z.W. Ursolic Acid-Loaded Chitosan Nanoparticles Induce Potent Anti-Angiogenesis in Tumor. Appl. Microbiol. Biotechnol. 2016, 100, 6643–6652. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Liu, Y.; Fan, L.; Lin, L.; Xu, Y.; Chen, S.; Shao, J. PH-Sensitive Mesoporous Silica Nanoparticles Anticancer Prodrugs for Sustained Release of Ursolic Acid and the Enhanced Anti-Cancer Efficacy for Hepatocellular Carcinoma Cancer. Eur. J. Pharm. Sci. 2017, 96, 456–463. [Google Scholar] [CrossRef]
- Shao, J.; Fang, Y.; Zhao, R.; Chen, F.; Yang, M.; Jiang, J.; Chen, Z.; Yuan, X.; Jia, L. Evolution from Small Molecule to Nano-Drug Delivery Systems: An Emerging Approach for Cancer Therapy of Ursolic Acid. Asian J. Pharm. Sci. 2020, 15, 685–700. [Google Scholar] [CrossRef]
- Uman, S.; Dhand, A.; Burdick, J.A. Recent Advances in Shear-Thinning and Self-Healing Hydrogels for Biomedical Applications. J. Appl. Polym. Sci. 2020, 137, 48668. [Google Scholar] [CrossRef]
- Liu, B.; Chen, K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024, 10, 262. [Google Scholar] [CrossRef]
- Thang, N.H.; Chien, T.B.; Cuong, D.X. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; McClements, D.J.; Li, C.; Sang, S.; Chen, L.; Long, J.; Qiu, C.; Jin, Z. Targeted Delivery of Hydrogels in Human Gastrointestinal Tract: A Review. Food Hydrocoll. 2023, 134, 108013. [Google Scholar] [CrossRef]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. PH Sensitive Hydrogels in Drug Delivery: Brief History, Properties, Swelling, and Release Mechanism, Material Selection and Applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Bigham, A.; Zare, M.; Luo, H.; Rezvani Ghomi, E.; Ramakrishna, S. PHEMA: An Overview for Biomedical Applications. Int. J. Mol. Sci. 2021, 22, 6376. [Google Scholar] [CrossRef] [PubMed]
- Huaman, M.A.L.; Vega-Chacón, J.; Quispe, R.I.H.; Negrón, A.C.V. Synthesis and Swelling Behaviors of Poly(2-Hydroxyethyl Methacrylate-Co-Itaconic Acid) and Poly(2-Hydroxyethyl Methacrylate-Co-Sodium Itaconate) Hydrogels as Potential Drug Carriers. Results Chem. 2023, 5, 100917. [Google Scholar] [CrossRef]
- Teleky, B.E.; Vodnar, D.C. Recent Advances in Biotechnological Itaconic Acid Production, and Application for a Sustainable Approach. Polymers 2021, 13, 3574. [Google Scholar] [CrossRef]
- Sano, K.; Umemoto, K.; Miura, H.; Ohno, S.; Iwata, K.; Kawakami, R.; Munekane, M.; Yamasaki, T.; Citterio, D.; Hiruta, Y.; et al. Feasibility of Using Poly[Oligo(Ethylene Glycol) Methyl Ether Methacrylate] as Tumor-Targeted Carriers of Diagnostic Drugs. ACS Appl. Polym. Mater. 2022, 4, 4734–4740. [Google Scholar] [CrossRef]
- Suljovrujic, E.; Rogic Miladinovic, Z.; Krstic, M. Swelling Properties and Drug Release of New Biocompatible POEGOPGMA Hydrogels with VPTT near to the Human Body Temperature. Polym. Bull. 2021, 78, 2405–2425. [Google Scholar] [CrossRef]
- Farrag, Y.; Ait Eldjoudi, D.; Farrag, M.; González-Rodríguez, M.; Ruiz-Fernández, C.; Cordero, A.; Varela-García, M.; Torrijos Pulpón, C.; Bouza, R.; Lago, F.; et al. Poly(Ethylene Glycol) Methyl Ether Methacrylate-Based Injectable Hydrogels: Swelling, Rheological, and In Vitro Biocompatibility Properties with ATDC5 Chondrogenic Lineage. Polymers 2023, 15, 4635. [Google Scholar] [CrossRef]
- Madduma-Bandarage, U.S.K.; Madihally, S.V. Synthetic Hydrogels: Synthesis, Novel Trends, and Applications. J. Appl. Polym. Sci. 2021, 138, 50376. [Google Scholar] [CrossRef]
- Oyarce, E.; Pizarro, G.D.C.; Oyarzún, D.P.; Zúñiga, C.; Sánchez, J.; Oyarce, E.; Pizarro, G.D.C.; Oyarzún, D.P.; Zúñiga, C.; Sánchez, J. Hydrogels based on 2-hydroxyethyl methacrylate: Synthesis, characterization and hydration capacity. J. Chil. Chem. Soc. 2020, 65, 4682–4685. [Google Scholar] [CrossRef]
- Hsueh, Y.H.; Liaw, W.C.; Kuo, J.M.; Deng, C.S.; Wu, C.H. Hydrogel Film-Immobilized Lactobacillus Brevis RK03 for γ-Aminobutyric Acid Production. Int. J. Mol. Sci. 2017, 18, 2324. [Google Scholar] [CrossRef] [PubMed]
- Tomić, S.L.; Babić, M.M.; Antić, K.M.; Jovašević Vuković, J.S.; Malešić, N.B.; Filipović, J.M. PH-Sensitive Hydrogels Based on (Meth)Acrylates and Itaconic Acid. Macromol. Res. 2014, 22, 1203–1213. [Google Scholar] [CrossRef]
- Alejo, T.; Prieto, M.; García-Juan, H.; Andreu, V.; Mendoza, G.; Sebastián, V.; Arruebo, M. A Facile Method for the Controlled Polymerization of Biocompatible and Thermoresponsive Oligo(Ethylene Glycol) Methyl Ether Methacrylate Copolymers. Polym. J. 2018, 50, 203–211. [Google Scholar] [CrossRef]
- Miloudi, L.; Bonnier, F.; Bertrand, D.; Byrne, H.J.; Perse, X.; Chourpa, I.; Munnier, E. Quantitative Analysis of Curcumin-Loaded Alginate Nanocarriers in Hydrogels Using Raman and Attenuated Total Reflection Infrared Spectroscopy. Anal. Bioanal. Chem. 2017, 409, 4593–4605. [Google Scholar] [CrossRef]
- Antônio, E.; Antunes, O.d.R.; de Araújo, I.S.; Khalil, N.M.; Mainardes, R.M. Poly(Lactic Acid) Nanoparticles Loaded with Ursolic Acid: Characterization and in Vitro Evaluation of Radical Scavenging Activity and Cytotoxicity. Mater. Sci. Eng. C 2017, 71, 156–166. [Google Scholar] [CrossRef]
- Qiu, L.; Zhao, X.; Zu, Y.; Zhang, Y.; Liu, Y.; Wu, W.; Li, Y. Ursolic Acid Nanoparticles for Oral Delivery Prepared by Emulsion Solvent Evaporation Method: Characterization, In Vitro Evaluation of Radical Scavenging Activity and Bioavailability. Artif. Cells Nanomed. Biotechnol. 2019, 47, 610–621. [Google Scholar] [CrossRef]
- Huaman, M.A.L.; Manco, A.E.Q.; de Liss Meza López, F.; Carrasco, R.L.A.; Chacón, A.M.L.; Khan, S. Removal of Methylene Blue Dye from Water with Fe3O4/Poly(HEMA-Co-AMPS) Magnetic Hydrogels. Results Chem. 2024, 7, 101454. [Google Scholar] [CrossRef]
- Chai, Q.; Jiao, Y.; Yu, X. Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels 2017, 3, 6. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Saggu, S.S. Water Uptake Behavior of Poly(Methacrylamide-co-N-vinyl-2-pyrrolidone-co-itaconic Acid) as PH-Sensitive Hydrogels: Part I. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 1135–1150. [Google Scholar] [CrossRef]
- Dobić, S.N.; Filipović, J.M.; Tomić, S.L. Synthesis and Characterization of Poly(2-Hydroxyethyl Methacrylate/Itaconic Acid/Poly(Ethylene Glycol) Dimethacrylate) Hydrogels. Chem. Eng. J. 2012, 179, 372–380. [Google Scholar] [CrossRef]
- Tomić, S.L.; Suljovrujić, E.H.; Filipović, J.M. Biocompatible and Bioadhesive Hydrogels Based on 2-Hydroxyethyl Methacrylate, Monofunctional Poly(Alkylene Glycol)s and Itaconic Acid. Polym. Bull. 2006, 57, 691–702. [Google Scholar] [CrossRef]
- Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. [Google Scholar] [CrossRef]
- Rogic Miladinovic, Z.; Micic, M.; Mrakovic, A.; Suljovrujic, E. Smart Hydrogels with Ethylene Glycol Propylene Glycol Pendant Chains. J. Polym. Res. 2018, 25, 1. [Google Scholar] [CrossRef]
- Das, S.; Ghosh, S.; De, A.K.; Bera, T. Oral Delivery of Ursolic Acid-Loaded Nanostructured Lipid Carrier Coated with Chitosan Oligosaccharides: Development, Characterization, in Vitro and in Vivo Assessment for the Therapy of Leishmaniasis. Int. J. Biol. Macromol. 2017, 102, 996–1008. [Google Scholar] [CrossRef]
- Antonio, E.; dos Reis Antunes Junior, O.; Marcano, R.G.D.J.V.; Diedrich, C.; da Silva Santos, J.; Machado, C.S.; Khalil, N.M.; Mainardes, R.M. Chitosan Modified Poly (Lactic Acid) Nanoparticles Increased the Ursolic Acid Oral Bioavailability. Int. J. Biol. Macromol. 2021, 172, 133–142. [Google Scholar] [CrossRef]
- Payomhom, P.; Panyain, N.; Sakonsinsiri, C.; Wongtrakoongate, P.; Lertsuwan, K.; Pissuwan, D.; Katewongsa, K.P. Chitosan-Coated Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Ursolic Acid for Breast Cancer Therapy. ACS Appl. Nano Mater. 2024, 7, 5383–5395. [Google Scholar] [CrossRef]
- Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics 2020, 12, 1188. [Google Scholar] [CrossRef]
- Altun, E.; Yuca, E.; Ekren, N.; Kalaskar, D.M.; Ficai, D.; Dolete, G.; Ficai, A.; Gunduz, O. Kinetic Release Studies of Antibiotic Patches for Local Transdermal Delivery. Pharmaceutics 2021, 13, 613. [Google Scholar] [CrossRef]
- Alinavaz, S.; Mahdavinia, G.R.; Jafari, H.; Hazrati, M.; Akbari, A. Hydroxyapatite (HA)-Based Hybrid Bionanocomposite Hydrogels: Ciprofloxacin Delivery, Release Kinetics and Antibacterial Activity. J. Mol. Struct. 2021, 1225, 129095. [Google Scholar] [CrossRef]
- Ludeña Huaman, M.A. Método Preparativo Para La Obtención de Ácido Ursólico a Partir de Clinopodium Revolutum. Rev. Colomb. Química 2018, 47, 10–15. [Google Scholar] [CrossRef]
- Gallardo, A.; Lujan, N.; Reinecke, H.; García, C.; del Campo, A.; Rodriguez-Hernandez, J. Chemical and Topographical Modification of Polycarbonate Surfaces through Diffusion/Photocuring Processes of Hydrogel Precursors Based on Vinylpyrrolidone. Langmuir 2017, 33, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Tran Vo, T.M.; Piroonpan, T.; Preuksarattanawut, C.; Kobayashi, T.; Potiyaraj, P. Characterization of PH-Responsive High Molecular-Weight Chitosan/Poly (Vinyl Alcohol) Hydrogel Prepared by Gamma Irradiation for Localizing Drug Release. Bioresour. Bioprocess. 2022, 9, 89. [Google Scholar] [CrossRef] [PubMed]
Hydrogel | Initial UA (mg) | After Purification UA (mg) | Mass HGx (g) | DLC (%) | EE (%) |
---|---|---|---|---|---|
HG5-UA | 35.00 | 30.34 | 0.947 | 3.20 | 86.69 |
HG9-UA | 35.00 | 30.05 | 1.119 | 2.69 | 85.86 |
HG5-UA | |||||
Model | Co | k | SSR | AIC | R2 |
zero-order | 36.446 | 0.253 | 1490.330 | 69.348 | 0.454 |
first-order | 6.018 | 0.002 | 0.079 | −68.548 | 0.520 |
Hixson–Crowell | - | 0.006 | 0.709 | −37.755 | 0.499 |
Higuchi | - | 3.569 | 1089.188 | 64.958 | 0.618 |
Korsmeyer–Peppas | - | 22.340 | 0.582 | −40.527 | 0.754 |
HG9-UA | |||||
Model | Co | k | SSR | AIC | R2 |
zero-order | 30.946 | 0.252 | 1226.977 | 66.626 | 0.509 |
first-order | 6.263 | 0.002 | 0.050 | −74.927 | 0.584 |
Hixson–Crowell | - | 0.006 | 0.487 | −43.018 | 0.559 |
Higuchi | - | 3.475 | 833.657 | 61.215 | 0.667 |
Korsmeyer–Peppas | - | 18.359 | 0.578 | −40.619 | 0.783 |
Hydrogel | HEMA g (mol %) | PEG5MEM g (mol %) | PEG9MEM g (mol %) | IA g (mol %) | UA g | MBA g | HCPK g |
---|---|---|---|---|---|---|---|
HG5-UA | 0.800 (80%) | 0.230 (10%) | - | 0.100 (10%) | 0.035 | 0.023 | 0.0156 |
HG9-UA | 0.800 (80%) | - | 0.384 (10%) | 0.100 (10%) | 0.035 | 0.023 | 0.0156 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, C.D.; Aranzábal, R.L.; Lechuga, A.M.; Serrano, C.A.; Meza, F.; Elvira, C.; Gallardo, A.; Ludeña, M.A. A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical. Gels 2024, 10, 602. https://doi.org/10.3390/gels10090602
Gutierrez CD, Aranzábal RL, Lechuga AM, Serrano CA, Meza F, Elvira C, Gallardo A, Ludeña MA. A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical. Gels. 2024; 10(9):602. https://doi.org/10.3390/gels10090602
Chicago/Turabian StyleGutierrez, Carlos D., Rosana L. Aranzábal, Ana M. Lechuga, Carlos A. Serrano, Flor Meza, Carlos Elvira, Alberto Gallardo, and Michael A. Ludeña. 2024. "A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical" Gels 10, no. 9: 602. https://doi.org/10.3390/gels10090602