Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter?
Abstract
:1. Introduction
2. Materials and Methods
- Only English-written manuscripts that included title, abstract, and MeSH terms were selected;
- Manuscripts expressing the usage of concrete AI algorithms (or families of algorithms) to address specific problems related to RDs were included;
- Orphanet classification was adopted and only RDs with Orpha codes were included;
- Reviews were excluded from the results, although we have included some for contextualization purposes. References from the included reviews were screened to guarantee that no relevant manuscripts were missed.
3. RDs’ Prediction: Diagnosis and Prognosis
3.1. Mutation Detection and/or Prediction
3.1.1. Single Nucleotide Variants
3.1.2. Slicing and Multigenic Mutations
3.1.3. Copy Number Variation Analysis
3.1.4. Genotype–Phenotype Integration
3.2. Phenotype and Biochemical Fingerprinting-Driven Diagnosis
3.2.1. Phenotype-Driven Diagnosis
3.2.2. Imaging-Based DDSS
3.2.3. Biochemical Fingerprinting
3.3. Prognostic Markers
4. Disease Classification and Characterization
4.1. Disease Mechanisms
4.2. Disease Categorization and Characterization
5. Therapeutic Approaches
5.1. Drug Repositioning
5.2. Clinical Trials
5.2.1. Patient Recruitment and Identification
5.2.2. Biomarkers
6. Patient Health Registries and Medical Records
7. AI for CDG
7.1. AI for CDG Disease Mechanisms Elucidation
7.1.1. Prediction of Glycosylation Sites
7.1.2. Identification of Golgi Proteins
7.2. AI for CDG Diagnosis, Classification, and Characterization
7.3. AI for Therapy Discovery in CDG
8. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
ALS | Amyotrophic lateral sclerosis |
API | Application programming interface |
CDG | Congenital disorders of glycosylation |
CDWs | Clinical data warehouses |
CFML | Characteristic feature mining algorithm |
CNVs | Copy number variants |
COG | Conserved oligomeric Golgi |
CSAX | characterizing systematic anomalies in expression data |
CTs | Clinical trials |
CVID | Common variable immunodeficiency |
DABLC | Dic-Att-BiLSTM-CRF |
DeepPVP | Deep phenomeNET variant predictor |
(D)DSS | (Diagnosis) decision support systems |
eDIVA | Exome disease variant analysis |
HER | Electronic health records |
GA | Golgi apparatus |
GPP | Glycosylation prediction program |
HANRD | Heterogeneous association network for rare diseases |
HHT | Hereditary hemorrhagic telangiectasia |
IBM | Inclusion body myositis |
IR | Infrared |
isGPT | identification of sub-Golgi protein types |
LSDs | Lysossomal storage diseases |
ML | Machine learning |
MPS II | Mucopolysaccharidosis type II |
NER | Named entities recognition |
NGS | Next generation sequencing |
NLP | Natural language processing |
NN | Neural network |
PCA | Principal component analysis |
PH | Pulmonary hypertension |
QMR | Quick Medical Reference |
RDAD | Rare disease auxiliary diagnosis system |
RDs | Rare diseases |
R&D | Research and development |
RF | Random forest |
SilVA | Silent variant analyzer |
SLE | Stroke-like episodes |
SNPs | Single nucleotide polymorphisms |
SNVs | Single nucleotide variants |
SS | Synovial sarcoma |
SVM | Support vector machine |
URSAHD | Unveiling RNA sample annotation for human diseases |
VarCoPP | Variant combinations pathogenicity predictor |
VEST | Variant effect scoring tool |
WES | Whole-exome sequencing |
WGS | Whole genome sequencing |
References
- Sernadela, P.; González-Castro, L.; Carta, C.; van der Horst, E.; Lopes, P.; Kaliyaperumal, R.; Thompson, M.; Thompson, R.; Queralt-Rosinach, N.; Lopez, E.; et al. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer. BioMed Res. Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Ekins, S. Industrializing rare disease therapy discovery and development. Nat. Biotechnol. 2017, 35, 117–118. [Google Scholar] [CrossRef] [PubMed]
- About Rare Diseases. Available online: https://www.eurordis.org/about-rare-diseases (accessed on 18 September 2019).
- Ronicke, S.; Hirsch, M.C.; Turk, E.; Larionov, K.; Tientcheu, D.; Wagner, A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet J. Rare Dis. 2019, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Nestler-Parr, S.; Korchagina, D.; Toumi, M.; Pashos, C.L.; Blanchette, C.; Molsen, E.; Morel, T.; Simoens, S.; Kaló, Z.; Gatermann, R.; et al. Challenges in Research and Health Technology Assessment of Rare Disease Technologies: Report of the ISPOR Rare Disease Special Interest Group. Value Health 2018, 21, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Stoller, J.K. The Challenge of Rare Diseases. Chest 2018, 153, 1309–1314. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Okour, M.; Brundage, R.; Kartha, R.V. Orphan drug development: The increasing role of clinical pharmacology. J. Pharmacokinet. Pharmacodyn. 2019, 46, 395–409. [Google Scholar] [CrossRef]
- Kaufmann, P.; Pariser, A.R.; Austin, C. From scientific discovery to treatments for rare diseases—The view from the National Center for Advancing Translational Sciences—Office of Rare Diseases Research. Orphanet J. Rare Dis. 2018, 13, 196. [Google Scholar] [CrossRef]
- Schee genannt Halfmann, S.; Mählmann, L.; Leyens, L.; Reumann, M.; Brand, A. Personalized Medicine: What’s in it for Rare Diseases? In Rare Diseases Epidemiology: Update and Overview; Posada de la Paz, M., Taruscio, D., Groft, S.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 1031, pp. 387–404. ISBN 978-3-319-67142-0. [Google Scholar]
- Toh, T.S.; Dondelinger, F.; Wang, D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine 2019, 47, 607–615. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Information Science and Statistics; Springer: New York, NY, USA, 2006; ISBN 978-0-387-31073-2. [Google Scholar]
- Pasa, F.; Golkov, V.; Pfeiffer, F.; Cremers, D.; Pfeiffer, D. Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization. Sci. Rep. 2019, 9, 6268. [Google Scholar] [CrossRef]
- Portnoi, T.; Yala, A.; Schuster, T.; Barzilay, R.; Dontchos, B.; Lamb, L.; Lehman, C. Deep Learning Model to Assess Cancer Risk on the Basis of a Breast MR Image Alone. Am. J. Roentgenol. 2019, 213, 227–233. [Google Scholar] [CrossRef]
- Alashwal, H.; El Halaby, M.; Crouse, J.J.; Abdalla, A.; Moustafa, A.A. The Application of Unsupervised Clustering Methods to Alzheimer’s Disease. Front. Comput. Neurosci. 2019, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.-H.; Yang, F.-Y.; Oyang, Y.-J. Application of density estimation algorithms in analyzing co-morbidities of migraine. Netw. Model. Anal. Health Inform. Bioinform. 2013, 2, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Lunceford, J.K.; Davidian, M.; Tsiatis, A.A. Estimation of Survival Distributions of Treatment Policies in Two-Stage Randomization Designs in Clinical Trials. Biometrics 2002, 58, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Panuccio, G.; Guez, A.; Vincent, R.; Avoli, M.; Pineau, J. Adaptive control of epileptiform excitability in an in vitro model of limbic seizures. Exp. Neurol. 2013, 241, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- Sayers, E. A General Introduction to the E-utilities; National Center for Biotechnology Information (US): Bethesda, MD, USA, 2010. [Google Scholar]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef]
- Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying Mendelian disease genes with the Variant Effect Scoring Tool. BMC Genom. 2013, 14, S3. [Google Scholar] [CrossRef]
- Alirezaie, N.; Kernohan, K.D.; Hartley, T.; Majewski, J.; Hocking, T.D. ClinPred: Prediction Tool to Identify Disease-Relevant Nonsynonymous Single-Nucleotide Variants. Am. J. Hum. Genet. 2018, 103, 474–483. [Google Scholar] [CrossRef]
- Bosio, M.; Drechsel, O.; Rahman, R.; Muyas, F.; Rabionet, R.; Bezdan, D.; Domenech Salgado, L.; Hor, H.; Schott, J.; Munell, F.; et al. eDiVA—Classification and prioritization of pathogenic variants for clinical diagnostics. Hum. Mutat. 2019, 40, 865–878. [Google Scholar] [CrossRef]
- Sundaram, L.; Gao, H.; Padigepati, S.R.; McRae, J.F.; Li, Y.; Kosmicki, J.A.; Fritzilas, N.; Hakenberg, J.; Dutta, A.; Shon, J.; et al. Predicting the clinical impact of human mutation with deep neural networks. Nat. Genet. 2018, 50, 1161–1170. [Google Scholar] [CrossRef]
- Dehiya, V.; Thomas, J.; Sael, L. Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease. PLoS ONE 2018, 13, e0204101. [Google Scholar] [CrossRef] [PubMed]
- Buske, O.J.; Manickaraj, A.; Mital, S.; Ray, P.N.; Brudno, M. Identification of deleterious synonymous variants in human genomes. Bioinformatics 2013, 29, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- Browne, C.; Timson, D.J. In Silico Prediction of the Effects of Mutations in the Human Mevalonate Kinase Gene: Towards a Predictive Framework for Mevalonate Kinase Deficiency: Effects of Mutations in Human MVK. Ann. Hum. Genet. 2015, 79, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Orange, J.S.; Glessner, J.T.; Resnick, E.; Sullivan, K.E.; Lucas, M.; Ferry, B.; Kim, C.E.; Hou, C.; Wang, F.; Chiavacci, R.; et al. Genome-wide association identifies diverse causes of common variable immunodeficiency. J. Allergy Clin. Immunol. 2011, 127, 1360–1367.e6. [Google Scholar] [CrossRef] [PubMed]
- Jaganathan, K.; Kyriazopoulou Panagiotopoulou, S.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548.e24. [Google Scholar] [CrossRef]
- Papadimitriou, S.; Gazzo, A.; Versbraegen, N.; Nachtegael, C.; Aerts, J.; Moreau, Y.; Van Dooren, S.; Nowé, A.; Smits, G.; Lenaerts, T. Predicting disease-causing variant combinations. Proc. Natl. Acad. Sci. USA 2019, 116, 11878–11887. [Google Scholar] [CrossRef]
- Yang, X.; Song, Z.; Wu, C.; Wang, W.; Li, G.; Zhang, W.; Wu, L.; Lu, K. Constructing a database for the relations between CNV and human genetic diseases via systematic text mining. BMC Bioinform. 2018, 19, 528. [Google Scholar] [CrossRef]
- Boudellioua, I.; Kulmanov, M.; Schofield, P.N.; Gkoutos, G.V.; Hoehndorf, R. DeepPVP: Phenotype-based prioritization of causative variants using deep learning. BMC Bioinform. 2018, 20, 65. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, K.; Bustamante, C.D.; Ma, X.; Wong, W.H. Xrare: A machine learning method jointly modeling phenotypes and genetic evidence for rare disease diagnosis. Genet. Med. 2019, 21, 2126–2134. [Google Scholar] [CrossRef]
- Rao, A.; Vg, S.; Joseph, T.; Kotte, S.; Sivadasan, N.; Srinivasan, R. Phenotype-driven gene prioritization for rare diseases using graph convolution on heterogeneous networks. BMC Med. Genom. 2018, 11, 57. [Google Scholar] [CrossRef]
- Paul, R.; Groza, T.; Hunter, J.; Zankl, A. Inferring characteristic phenotypes via class association rule mining in the bone dysplasia domain. J. Biomed. Inform. 2014, 48, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehsani-Moghaddam, B.; Queenan, J.A.; MacKenzie, J.; Birtwhistle, R.V. Mucopolysaccharidosis type II detection by Naïve Bayes Classifier: An example of patient classification for a rare disease using electronic medical records from the Canadian Primary Care Sentinel Surveillance Network. PLoS ONE 2018, 13, e0209018. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Liu, S.; Wang, Y.; Wen, A.; Wang, L.; Liu, H. Utilization of Electronic Medical Records and Biomedical Literature to Support the Diagnosis of Rare Diseases Using Data Fusion and Collaborative Filtering Approaches. JMIR Med. Inform. 2018, 6, e11301. [Google Scholar] [CrossRef]
- Shen, F.; Zhao, Y.; Wang, L.; Mojarad, M.R.; Wang, Y.; Liu, S.; Liu, H. Rare disease knowledge enrichment through a data-driven approach. BMC Med Inform. Decis. Mak. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Javed, A.; Agrawal, S.; Ng, P.C. Phen-Gen: Combining phenotype and genotype to analyze rare disorders. Nat. Methods 2014, 11, 935–937. [Google Scholar] [CrossRef] [Green Version]
- Garcelon, N.; Neuraz, A.; Salomon, R.; Faour, H.; Benoit, V.; Delapalme, A.; Munnich, A.; Burgun, A.; Rance, B. A clinician friendly data warehouse oriented toward narrative reports: Dr. Warehouse. J. Biomed. Inform. 2018, 80, 52–63. [Google Scholar] [CrossRef]
- Garcelon, N.; Neuraz, A.; Benoit, V.; Salomon, R.; Kracker, S.; Suarez, F.; Bahi-Buisson, N.; Hadj-Rabia, S.; Fischer, A.; Munnich, A.; et al. Finding patients using similarity measures in a rare diseases-oriented clinical data warehouse: Dr. Warehouse and the needle in the needle stack. J. Biomed. Inform. 2017, 73, 51–61. [Google Scholar] [CrossRef]
- Smpokou, P.; Lanpher, B.C.; Rosenbaum, K.N. Important Considerations in the Initial Clinical Evaluation of the Dysmorphic Neonate. Adv. Neonatal Care 2015, 15, 248–252. [Google Scholar] [CrossRef]
- Smith, K.; Piccinini, F.; Balassa, T.; Koos, K.; Danka, T.; Azizpour, H.; Horvath, P. Phenotypic Image Analysis Software Tools for Exploring and Understanding Big Image Data from Cell-Based Assays. Cell Syst. 2018, 6, 636–653. [Google Scholar] [CrossRef]
- Gurovich, Y.; Hanani, Y.; Bar, O.; Nadav, G.; Fleischer, N.; Gelbman, D.; Basel-Salmon, L.; Krawitz, P.M.; Kamphausen, S.B.; Zenker, M.; et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat. Med. 2019, 25, 60–64. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Zarate, Y.A.; Smith-Hicks, C.L.; Greene, C.; Abbott, M.-A.; Siu, V.M.; Calhoun, A.R.U.L.; Pandya, A.; Li, C.; Sellars, E.A.; Kaylor, J.; et al. Natural history and genotype-phenotype correlations in 72 individuals with SATB2 -associated syndrome. Am. J. Med. Genet. 2018, 176, 925–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basel-Vanagaite, L.; Wolf, L.; Orin, M.; Larizza, L.; Gervasini, C.; Krantz, I.D.; Deardoff, M.A. Recognition of the Cornelia de Lange syndrome phenotype with facial dysmorphology novel analysis: Recognition of the CdLS Phenotype with FDNA. Clin. Genet. 2016, 89, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T.; Acquarola, N.; Pyle, K.; St-Pierre, S.; Rinholm, M.; Bar, O.; Wilhelm, K.; Schreyer, I. Next generation phenotyping in Emanuel and Pallister-Killian syndrome using computer-aided facial dysmorphology analysis of 2D photos: LIEHR et al. Clin. Genet. 2018, 93, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Marbach, F.; Rustad, C.F.; Riess, A.; Đukić, D.; Hsieh, T.-C.; Jobani, I.; Prescott, T.; Bevot, A.; Erger, F.; Houge, G.; et al. The Discovery of a LEMD2-Associated Nuclear Envelopathy with Early Progeroid Appearance Suggests Advanced Applications for AI-Driven Facial Phenotyping. Am. J. Hum. Genet. 2019, 104, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Learned-Miller, E.; Lu, Q.; Paisley, A.; Trainer, P.; Blanz, V.; Dedden, K.; Miller, R. Detecting Acromegaly: Screening for Disease with a Morphable Model. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2006; Larsen, R., Nielsen, M., Sporring, J., Eds.; Springer: Heidelberg, Germany, 2006; Volume 4191, pp. 495–503. ISBN 978-3-540-44727-6. [Google Scholar]
- Spinelli, E.G.; Mandelli, M.L.; Miller, Z.A.; Santos-Santos, M.A.; Wilson, S.M.; Agosta, F.; Grinberg, L.T.; Huang, E.J.; Trojanowski, J.Q.; Meyer, M.; et al. Typical and atypical pathology in primary progressive aphasia variants: Pathology in PPA Variants. Ann Neurol. 2017, 81, 430–443. [Google Scholar] [CrossRef]
- Hsieh, T.-C.; Mensah, M.A.; Pantel, J.T.; Aguilar, D.; Bar, O.; Bayat, A.; Becerra-Solano, L.; Bentzen, H.B.; Biskup, S.; Borisov, O.; et al. PEDIA: Prioritization of exome data by image analysis. Genet. Med. 2019. [Google Scholar] [CrossRef] [Green Version]
- Lux, A.; Müller, R.; Tulk, M.; Olivieri, C.; Zarrabeita, R.; Salonikios, T.; Wirnitzer, B. HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis. Orphanet J. Rare Dis. 2013, 8, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, I.; Kim, J.H.; Park, H.; Kim, H.-S.; Seo, S.W. Deep learning approach for survival prediction for patients with synovial sarcoma. Tumour Biol. 2018, 40, 101042831879926. [Google Scholar] [CrossRef] [Green Version]
- Van IJzendoorn, D.G.P.; Szuhai, K.; Briaire-de Bruijn, I.H.; Kostine, M.; Kuijjer, M.L.; Bovée, J.V.M.G. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol. 2019, 15, e1006826. [Google Scholar] [CrossRef]
- Noto, K.; Majidi, S.; Edlow, A.G.; Wick, H.C.; Bianchi, D.W.; Slonim, D.K. CSAX: Characterizing Systematic Anomalies in eXpression Data. J. Comput. Biol. 2015, 22, 402–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taroni, J.N.; Grayson, P.C.; Hu, Q.; Eddy, S.; Kretzler, M.; Merkel, P.A.; Greene, C.S. MultiPLIER: A Transfer Learning Framework for Transcriptomics Reveals Systemic Features of Rare Disease. Cell Syst. 2019, 8, 380–394.e4. [Google Scholar] [CrossRef] [PubMed]
- DeAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Design of Biomedical Robots for Phenotype Prediction Problems. J. Comput. Biol. 2016, 23, 678–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Sonis, S.T. Sensitivity analysis of gene ranking methods in phenotype prediction. J. Biomed. Inform. 2016, 64, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Romero, R.; Ramanathan, A.; Yuen, T.; Bhowmik, D.; Mathew, M.; Munshi, L.B.; Javaid, S.; Bloch, M.; Lizneva, D.; Rahimova, A.; et al. Mechanism of glucocerebrosidase activation and dysfunction in Gaucher disease unraveled by molecular dynamics and deep learning. Proc. Natl. Acad. Sci. USA 2019, 116, 5086–5095. [Google Scholar] [CrossRef] [Green Version]
- Danter, W.R. DeepNEU: Cellular reprogramming comes of age – a machine learning platform with application to rare diseases research. Orphanet J. Rare Dis. 2019, 14, 13. [Google Scholar] [CrossRef]
- Hoehndorf, R.; Schofield, P.N.; Gkoutos, G.V. Analysis of the human diseasome using phenotype similarity between common, genetic and infectious diseases. Sci. Rep. 2015, 5, 10888. [Google Scholar] [CrossRef]
- Lee, Y.; Krishnan, A.; Oughtred, R.; Rust, J.; Chang, C.S.; Ryu, J.; Kristensen, V.N.; Dolinski, K.; Theesfeld, C.L.; Troyanskaya, O.G. A Computational Framework for Genome-wide Characterization of the Human Disease Landscape. Cell Syst. 2019, 8, 152–162. [Google Scholar] [CrossRef] [Green Version]
- Crow, R.A.; Hart, K.A.; McDermott, M.P.; Tawil, R.; Martens, W.B.; Herr, B.E.; McColl, E.; Wilkinson, J.; Kirschner, J.; King, W.M.; et al. A checklist for clinical trials in rare disease: Obstacles and anticipatory actions—lessons learned from the FOR-DMD trial. Trials 2018, 19, 291. [Google Scholar] [CrossRef] [Green Version]
- Day, S.; Jonker, A.H.; Lau, L.P.L.; Hilgers, R.-D.; Irony, I.; Larsson, K.; Roes, K.C.; Stallard, N. Recommendations for the design of small population clinical trials. Orphanet J. Rare Dis. 2018, 13, 195. [Google Scholar] [CrossRef]
- Logviss, K.; Krievins, D.; Purvina, S. Characteristics of clinical trials in rare vs. common diseases: A register-based Latvian study. PLoS ONE 2018, 13, e0194494. [Google Scholar] [CrossRef] [PubMed]
- Geva, A.; Gronsbell, J.L.; Cai, T.; Cai, T.; Murphy, S.N.; Lyons, J.C.; Heinz, M.M.; Natter, M.D.; Patibandla, N.; Bickel, J.; et al. A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry. J. Pediatrics 2017, 188, 224–231.e5. [Google Scholar] [CrossRef] [PubMed]
- Lochmüller, H.; Torrent i Farnell, J.; Le Cam, Y.; Jonker, A.H.; Lau, L.P.; Baynam, G.; Kaufmann, P.; Dawkins, H.J.; Lasko, P.; Austin, C.P.; et al. The International Rare Diseases Research Consortium: Policies and Guidelines to maximize impact. Eur. J. Hum. Genet. 2017, 25, 1293–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganesalingam, J.; Bowser, R. The application of biomarkers in clinical trials for motor neuron disease. Biomark. Med. 2010, 4, 281–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasco, H.; Patin, F.; Descat, A.; Garçon, G.; Corcia, P.; Gelé, P.; Lenglet, T.; Bede, P.; Meininger, V.; Devos, D.; et al. A pharmaco-metabolomics approach in a clinical trial of ALS: Identification of predictive markers of progression. PLoS ONE 2018, 13, e0198116. [Google Scholar] [CrossRef] [PubMed]
- Lagrue, E.; Madji Hounoum, B.; Rullier, C.R.; Andres, C.; Emond, P.; Bocca, C.; Castelnau, P.; Blasco, H. Cerebrospinal fluid metabolomics in West Syndrome: Central role of the serine metabolic pathway. J. Transl. Sci. 2018, 4, e101. [Google Scholar] [CrossRef]
- Carlier, A.; Vasilevich, A.; Marechal, M.; de Boer, J.; Geris, L. In silico clinical trials for pediatric orphan diseases. Sci. Rep. 2018, 8, 2465. [Google Scholar] [CrossRef]
- Catling, F.; Spithourakis, G.P.; Riedel, S. Towards automated clinical coding. Int. J. Med Inform. 2018, 120, 50–61. [Google Scholar] [CrossRef]
- Bhasuran, B.; Murugesan, G.; Abdulkadhar, S.; Natarajan, J. Stacked ensemble combined with fuzzy matching for biomedical named entity recognition of diseases. J. Biomed. Inform. 2016, 64, 1–9. [Google Scholar] [CrossRef]
- Xu, K.; Yang, Z.; Kang, P.; Wang, Q.; Liu, W. Document-level attention-based BiLSTM-CRF incorporating disease dictionary for disease named entity recognition. Comput. Biol. Med. 2019, 108, 122–132. [Google Scholar] [CrossRef]
- Santoro, M.; Coi, A.; Lipucci Di Paola, M.; Bianucci, A.M.; Gainotti, S.; Mollo, E.; Taruscio, D.; Vittozzi, L.; Bianchi, F. Rare Disease Registries Classification and Characterization: A Data Mining Approach. Public Health Genom. 2015, 18, 113–122. [Google Scholar] [CrossRef]
- Péanne, R.; de Lonlay, P.; Foulquier, F.; Kornak, U.; Lefeber, D.J.; Morava, E.; Pérez, B.; Seta, N.; Thiel, C.; Van Schaftingen, E.; et al. Congenital disorders of glycosylation (CDG): Quo vadis? Eur. J. Med. Genet. 2018, 61, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Jaeken, J.; Péanne, R. What is new in CDG? J. Inherit. Metab. Dis. 2017, 40, 569–586. [Google Scholar] [CrossRef]
- Francisco, R.; Marques-da-Silva, D.; Brasil, S.; Pascoal, C.; dos Reis Ferreira, V.; Morava, E.; Jaeken, J. The challenge of CDG diagnosis. Mol. Genet. Metab. 2019, 126, 1–5. [Google Scholar] [CrossRef]
- Pascoal, C.; Francisco, R.; Ferro, T.; dos Reis Ferreira, V.; Jaeken, J.; Videira, P.A. CDG and immune response: From bedside to bench and back. J. Inherit. Metab. Dis. 2019. [Google Scholar] [CrossRef]
- Citro, V.; Cimmaruta, C.; Monticelli, M.; Riccio, G.; Hay Mele, B.; Cubellis, M.; Andreotti, G. The Analysis of Variants in the General Population Reveals That PMM2 Is Extremely Tolerant to Missense Mutations and That Diagnosis of PMM2-CDG Can Benefit from the Identification of Modifiers. Int. J. Mol. Sci. 2018, 19, 2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caragea, C.; Sinapov, J.; Silvescu, A.; Dobbs, D.; Honavar, V. Glycosylation site prediction using ensembles of Support Vector Machine classifiers. BMC Bioinform. 2007, 8, 438. [Google Scholar] [CrossRef] [Green Version]
- Hamby, S.E.; Hirst, J.D. Prediction of glycosylation sites using random forests. BMC Bioinform. 2008, 9, 500. [Google Scholar] [CrossRef] [Green Version]
- Brasil, S.; Pascoal, C.; Francisco, R.; Marques-da-Silva, D.; Andreotti, G.; Videira, P.; Morava, E.; Jaeken, J.; dos Reis Ferreira, V. CDG Therapies: From Bench to Bedside. Int. J. Mol. Sci. 2018, 19, 1304. [Google Scholar] [CrossRef] [Green Version]
- Ng, B.G.; Freeze, H.H. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018, 34, 466–476. [Google Scholar] [CrossRef]
- Blackburn, J.B.; D’Souza, Z.; Lupashin, V.V. Maintaining order: COG complex controls Golgi trafficking, processing, and sorting. FEBS Lett. 2019, 593, 2466–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marquardt, T.; Freeze, H. Congenital Disorders of Glycosylation: Glycosylation Defects in Man and Biological Models for Their Study. Biol. Chem. 2001, 382, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, J.B.; Kudlyk, T.; Pokrovskaya, I.; Lupashin, V.V. More than just sugars: Conserved oligomeric Golgi complex deficiency causes glycosylation-independent cellular defects. Traffic 2018, 19, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Rahman, M.K.; Kaykobad, M.; Rahman, M.S. isGPT: An optimized model to identify sub-Golgi protein types using SVM and Random Forest based feature selection. Artif. Intell. Med. 2018, 84, 90–100. [Google Scholar] [CrossRef]
- Martinez-Monseny, A.; Cuadras, D.; Bolasell, M.; Muchart, J.; Arjona, C.; Borregan, M.; Algrabli, A.; Montero, R.; Artuch, R.; Velázquez-Fragua, R.; et al. From gestalt to gene: Early predictive dysmorphic features of PMM2-CDG. J. Med. Genet. 2019, 56, 236–245. [Google Scholar] [CrossRef]
- Jia, J.; Wang, R.; An, Z.; Guo, Y.; Ni, X.; Shi, T. RDAD: A Machine Learning System to Support Phenotype-Based Rare Disease Diagnosis. Front. Genet. 2018, 9, 587. [Google Scholar] [CrossRef]
- Mordenti, M.; Ferrari, E.; Pedrini, E.; Fabbri, N.; Campanacci, L.; Muselli, M.; Sangiorgi, L. Validation of a new multiple osteochondromas classification through Switching Neural Networks. Am. J. Med. Genet. 2013, 161, 556–560. [Google Scholar] [CrossRef]
- Freeze, H.H.; Eklund, E.A.; Ng, B.G.; Patterson, M.C. Neurology of inherited glycosylation disorders. Lancet Neurol. 2012, 11, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Serra, M.; Martínez-Monseny, A.; López, L.; Carrillo-García, J.; Edo, A.; Ortigoza-Escobar, J.; García, Ó.; Cancho-Candela, R.; Carrasco-Marina, M.; Gutiérrez-Solana, L. Stroke-Like Episodes and Cerebellar Syndrome in Phosphomannomutase Deficiency (PMM2-CDG): Evidence for Hypoglycosylation-Driven Channelopathy. Int. J. Mol. Sci. 2018, 19, 619. [Google Scholar] [CrossRef] [Green Version]
- Hung, C.-Y.; Lin, C.-H.; Lee, C.-C. Improving Young Stroke Prediction by Learning with Active Data Augmenter in a Large-Scale Electronic Medical Claims Database. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 5362–5365. [Google Scholar]
- Mears, A.J.; Schock, S.C.; Hadwen, J.; Putos, S.; Dyment, D.; Boycott, K.M.; MacKenzie, A. Mining the transcriptome for rare disease therapies: A comparison of the efficiencies of two data mining approaches and a targeted cell-based drug screen. npj Genom. Med. 2017, 2, 14. [Google Scholar] [CrossRef]
- Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inf. 2019, 28, 016–026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conejar, R.J.; Kim, H.-K. A Medical Decision Support System (DSS) for Ubiquitous Healthcare Diagnosis System. Int. J. Softw. Eng. Its Appl. 2014, 8, 8. [Google Scholar]
- Jurmeister, P.; Schöler, A.; Arnold, A.; Klauschen, F.; Lenze, D.; Hummel, M.; Schweizer, L.; Bläker, H.; Pfitzner, B.M.; Mamlouk, S.; et al. DNA methylation profiling reliably distinguishes pulmonary enteric adenocarcinoma from metastatic colorectal cancer. Mod. Pathol. 2019, 32, 855–865. [Google Scholar] [CrossRef]
- Mücke, U.; Klemann, C.; Baumann, U.; Meyer-Bahlburg, A.; Kortum, X.; Klawonn, F.; Lechner, W.M.; Grigull, L. Patient’s Experience in Pediatric Primary Immunodeficiency Disorders: Computerized Classification of Questionnaires. Front. Immunol. 2017, 8, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mavris, M.; Le Cam, Y. Involvement of Patient Organisations in Research and Development of Orphan Drugs for Rare Diseases in Europe. Mol. Syndr. 2012, 3, 237–243. [Google Scholar] [CrossRef]
- Subirats, L.; Reguera, N.; Bañón, A.; Gómez-Zúñiga, B.; Minguillón, J.; Armayones, M. Mining Facebook Data of People with Rare Diseases: A Content-Based and Temporal Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1877. [Google Scholar] [CrossRef] [Green Version]
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Mutation Detection and Prediction | Predicts the pathogenicity/disease relevance of genetic variants | Alirezaie et al. | CADD https://cadd.gs.washington.edu/ | SVM | Several RDs |
ClinPred https://sites.google.com/site/clinpred/ | Ensemble classifier (RF and gradient boosting models) | ||||
Yan et al. | CNVdigest https://github.com/yangxi1016/CNVdigest) | DNorm (conditional random fields, stochastic gradient descent, pairwise learning to rank) | Digeorge syndrome | ||
Alirezaie et al. | Fathmm-MKL http://fathmm.biocompute.org.uk/fathmmMKL.htm | SVM based on multiple kernel learning | Several RDs | ||
GenoCanyon http://genocanyon.med.yale.edu/ | Unsupervised statistical learning | ||||
M-CAP http://bejerano.stanford.edu/mcap/ | Gradient boosting trees | ||||
MetaLR | Ensemble classifier | ||||
Meta-SVM | Meta-analytic SVM | ||||
Browne et al. | Meta-SNP http://snps.biofold.org/meta-snp/ | RF | Mevalonic kinase deficiency | ||
nsSNP Analyzer http://snpanalyzer.uthsc.edu/ | RF | ||||
PhD-SNP http://snps.biofold.org/phd-snp/phd-snp.html | SVM | ||||
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Mutation Detection and Prediction | Predicts the pathogenicity/disease relevance of genetic variants | Browne et al. | PredictSNP http://loschmidt.chemi.muni.cz/predictsnp/ | Consensus classifier using the Naïve Bayes classifier, the multinomial logistic regression model, NN, SVM, K-nearest neighbor classifier, and RF | Mevalonic kinase deficiency |
Alirezaie et al. | REVEL https://sites.google.com/site/revelgenomics/ | RF | Several RDs | ||
Buske et al. | SilVA http://compbio.cs.toronto.edu/silva/ | RF | Meckel syndrome and other RDs | ||
Browne et al. | SNAP https://rostlab.org/services/snap2web/ | Neural network | Mevalonic kinase deficiency | ||
Jaganathan et al. | SpliceAI https://github.com/Illumina/SpliceAI | Deep residual NN | RDs with intellectual disability and autism spectrum disorders | ||
Alirezaie et al. | VAAST Variant Prioritizer (VVP) http://www.yandell-lab.org/software/vaast.html | Probabilistic search ML tool using the CLRT | Several RDs | ||
Papadimitriou et al. | VarCoPP https://varcopp.ibsquare.be/ | RF | Several RDs (including MODY, Kallman syndrome, familial hemophagocytic lymphohistiocytosis, and nontype I cystinuria) | ||
Carter et al. | VEST https://karchinlab.org/apps/appVest.html | RF | Miller and Freeman Sheldon syndrome | ||
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Mutation Detection and Prediction | Predicts the impact of SNVs on protein stability, affinity and functionality | Alirezaie et al. | Eigen http://eigen.tuxfamily.org/ | Unsupervised spectral approach | Several RDs |
Browne et al. | I-Mutant http://folding.biofold.org/i-mutant/i-mutant2.0.html | SVM | Mevalonic kinase deficiency | ||
iStable http://predictor.nchu.edu.tw/istable/ | SVM | ||||
mCSM http://biosig.unimelb.edu.au/mcsm/ | Gaussian process regression model | ||||
MUpro http://mupro.proteomics.ics.uci.edu/ | SVM and neural NN | ||||
Carter et al., Alirezaie et al., Browne et al. | PolyPhen2 http://genetics.bwh.harvard.edu/pph2/ | Naïve Bayes classifier | Several RDs’ Mevalonic kinase deficiency | ||
Browne et al. | PoPMuSiC-2.1/DEZYME http://dezyme.com/ | Simple NN | Mevalonic kinase deficiency | ||
Predicts gene/variant pathogenicity and clinical relevance while integrating phenotypic data | Boudellioua et al. | DeepPVP https://github.com/bio-ontology-research-group/phenomenet-vp | Deep NN | Several RDs | |
Bosio et al. | eDiVA http://www.ediva.crg.eu | RF | CF, PKU, and other RDs | ||
Li et al. | Exomiser https://github.com/exomiser/Exomiser | RF | Several RDs | ||
Li et al. | Xrare https://web.stanford.edu/~xm24/Xrare/ | Gradient boosting decision tree | Several RDs | ||
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Decision Support Systems | DDSS based on phenotype | Ronickle et al. | AdaDX https://ada.com/app/ | Augmented QMR Bayesian network | Several RDs |
(Basel-Vanegaite et al., Liehr et al., Zarate et al., Marbach et al., Martinez-Monseny et al., Hsieh et al. | Face2Gene https://www.face2gene.com | Deep NN | RDs including Cornelia de Lange syndrome, Emanuel syndrome and Pallister–Killan syndrome, SATB2-associated syndrome | ||
Rao et al. | HANRD https://web.rniapps.net/gcas/gcas.tar.gz. | Graph convolution-based association scoring | Several RDs | ||
Jayed et al. | Phen–Gen http://phen-gen.org/ | Bayesian network | Several RDs | ||
Jia et al. | RDAD http://119.3.41.228:8080/RDAD/faq_help.php | Logistic regression, K-nearest neighbor, RF, extra trees, Naïve Bayes, deep NN, and Bayesian averaging algorithm | Several RDs | ||
Garcelon et al., Garcelon et al. | Dr. Warehouse http://www.drwarehouse.org/ | Vector space model | Lowe syndrome, dystrophic epidermolysis bullosa, activated PI3K delta syndrome, Rett syndrome, and Dowling Meara | ||
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Disease Classification and Mechanisms’ Elucidation | Data mining for discovery of molecular patterns | Blasco et al., Lagrue et al. | Biosigner https://bioconductor.org/packages/release/bioc/html/biosigner.html | Partial least square discriminant analysis (PLS-DA), RF, and SVM | ALS |
N-, O-, and C-glycosylation sites prediction | Caragea et al. | EnsembleGly https://omictools.com/ensemblegly-tool | Ensembles of SVM | Possible application in human disorders of glycosylation | |
Hamby et al. | GPP http://comp.chem.nottingham.ac.uk/glyco/ | RF | |||
Sub-Golgi proteins identification | Rahman et al. | isGPT http://77.68.43.135:8080/isGPT/ | RF and SVM | Possible application in human disorders of glycosylation | |
Data clustering | Hoehndorf et al. | FLAME https://github.com/zjroth/flame-clustering/ | Fuzzy clustering | Several RDs, including LSDs and Charcot–Marie–Tooth disease 4J | |
Disease pathways prediction | Taroni et al. | MultiPLIER https://hub.docker.com/r/jtaroni/multi-plier/ (tag 0.2.0). | Transfer learning | Systemic lupus erythematous, microscopic polyangiitis, and (eosinophilic) granulomatosis with polyangiitis | |
General Function | Specific Function | Reference | Software/Platform/Algorithm | AI/ML Method | Disease(s) |
Disease Classification and Mechanisms’ Elucidation | Prediction models based on gene expression data and anatomical relationships hierarchy | Lee et al. | URSAHD http://ursahd.princeton.edu./jobs/create/ | Bayesian network | Refractory anemia with excessive blasts and sideroblastic anemia |
Data mining, clustering, and visualization tools | Dehiya et al. | Weka https://www.cs.waikato.ac.nz/ml/weka/ | Collection of ML algorithms | Several RDs (they exemplify for CF and Rett syndrome) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brasil, S.; Pascoal, C.; Francisco, R.; dos Reis Ferreira, V.; A. Videira, P.; Valadão, G. Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes 2019, 10, 978. https://doi.org/10.3390/genes10120978
Brasil S, Pascoal C, Francisco R, dos Reis Ferreira V, A. Videira P, Valadão G. Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes. 2019; 10(12):978. https://doi.org/10.3390/genes10120978
Chicago/Turabian StyleBrasil, Sandra, Carlota Pascoal, Rita Francisco, Vanessa dos Reis Ferreira, Paula A. Videira, and Gonçalo Valadão. 2019. "Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter?" Genes 10, no. 12: 978. https://doi.org/10.3390/genes10120978
APA StyleBrasil, S., Pascoal, C., Francisco, R., dos Reis Ferreira, V., A. Videira, P., & Valadão, G. (2019). Artificial Intelligence (AI) in Rare Diseases: Is the Future Brighter? Genes, 10(12), 978. https://doi.org/10.3390/genes10120978