Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South
Abstract
:1. Introduction
2. Material and Methods
3. Results
3.1. Clinical Public and Global Health
3.2. Healthcare Needs and Challenges
3.3. Artificial Intelligence and Big Data Analytics
3.4. Artificial Intelligence and Big Data Analytics in Clinical Public and Global Health
3.5. The Global South
3.6. Ethical and Regulatory Challenges of Artificial Intelligence and Big Data Analytics for Clinical Public and Global Health in the Global South
3.7. Experience with the ACADIC Project in the Global South
3.8. Specific Lessons Learned from the ACADIC Project in the Global South
3.8.1. A Need for Partnerships with Community-Led Organizations (CLOs) and Community Healthcare Workers
3.8.2. A Need for Buy-In from the Decision- and Policymakers
3.8.3. A Need for a Diverse Blend of Research and Implementation Experts
3.8.4. A Need for a Network to Create and Promote Mutual Support across the Network
3.8.5. A Need for Novel Data-Gathering Techniques, Including Citizen Science/Participatory Science and Simple, Anonymous Digital Platforms for Data Reporting
3.8.6. A Need for AI and Big Data Governance and Legislation for the Global South
3.8.7. A Need for Strengthening AI- and BDA-Related Funding in the Global South
3.8.8. A Need for Strengthening AI- and BDA-Based Modeling Capacity in the Global South
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lynch, M.; Yoo, J.; Mukami, D.; Arian, W.; Bashford, T.; Hobden, P.; Luthra, P.; Patel, M.; Ralph, N.; Winters, N.; et al. Principles to guide the effective use of technology to support capacity development in global health partnerships. BMJ Glob. Health 2022, 6, e006783. [Google Scholar] [CrossRef]
- Anderson, F.; Donkor, P.; de Vries, R.; Appiah-Denkyira, E.; Dakpallah, G.F.; Rominski, S.; Hassinger, J.; Lou, A.; Kwansah, J.; Moyer, C.; et al. Creating a charter of collaboration for international university partnerships: The Elmina Declaration for Human Resources for Health. Acad. Med. 2014, 89, 1125–1132. [Google Scholar] [CrossRef]
- Braun, V.; Clarke, V. Thematic analysis. In Handbook of Research Methods in Psychology; Cooper, H., Ed.; APA Books: Washington, DC, USA, 2012; Volume 2, pp. 57–71. [Google Scholar]
- Cloninger, C.R.; Salloum, I.M.; Mezzich, J.E. The dynamic origins of positive health and wellbeing. Int. J. Pers. Cent. Med. 2012, 2, 179–187. [Google Scholar] [CrossRef]
- Leonardi, F. The Definition of Health: Towards New Perspectives. Int. J. Health Serv. 2018, 48, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Oleribe, O.O.; Ukwedeh, O.; Burstow, N.J.; Gomaa, A.I.; Sonderup, M.W.; Cook, N.; Waked, I.; Spearman, W.; Taylor-Robinson, S.D. Health: Redefined. Pan. Afr. Med. J. 2018, 30, 292. [Google Scholar] [CrossRef] [PubMed]
- Dórea, F.C.; Revie, C.W. Data-Driven Surveillance: Effective Collection, Integration, and Interpretation of Data to Support Decision Making. Front. Vet. Sci. 2021, 8, 633977, Erratum in Front. Vet. Sci. 2021, 8, 789696. [Google Scholar] [CrossRef] [PubMed]
- Gamache, R.; Kharrazi, H.; Weiner, J.P. Public and Population Health Informatics: The Bridging of Big Data to Benefit Communities. Yearb. Med. Inform. 2018, 27, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Hogan, V.; Turner, M.C.; Zeman, P.L.; McDowell, I.; Edwards, N.; Losos, J. An Integrated Framework for Risk Management and Population Health. Hum. Ecol. Risk Assess. Int. J. 2007, 13, 1288–1312. [Google Scholar] [CrossRef]
- Schaaf, R.C. Creating Evidence for Practice Using Data-Driven Decision Making. Am. J. Occup. Ther. 2015, 69, p1–p6. [Google Scholar] [CrossRef]
- Choi, B.; Pakes, B.; Bilotta, R.; Graham, K.; Gupta, N.; King, A.S.; Dimaras, H.; Wei, X.; Gibson, B.; Reynolds, D.L.; et al. Defining Clinical Public Health. Clin. Investig. Med. 2021, 44, E71–E76. [Google Scholar] [CrossRef]
- Sell, K.; Hommes, F.; Fischer, F.; Arnold, L. Multi-, Inter-, and Transdisciplinarity within the Public Health Workforce: A Scoping Review to Assess Definitions and Applications of Concepts. Int. J. Environ. Res. Public Health 2022, 19, 10902. [Google Scholar] [CrossRef]
- Unger, J.P.; Morales, I.; De Paepe, P.; Roland, M. A plea to merge clinical and public health practices: Reasons and consequences. BMC Health Serv. Res. 2020, 20 (Suppl. S2), 1068. [Google Scholar] [CrossRef]
- Hofman, A.; Vandenbroucke, J.P. Geoffrey Rose’s big idea. BMJ. 1992, 305, 1519–1520. [Google Scholar] [CrossRef] [PubMed]
- Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 2001, 30, 427–432; discussion 433–434. [Google Scholar] [CrossRef]
- Evashwick, C.J. Creating a continuum. The goal is to provide an integrated system of care. Health Prog. 1989, 70, 36–56. [Google Scholar] [PubMed]
- Frange, A.; Duffy, S.; Al-Rousan, T.; Evensen, A.; Nelson, B.D. Trainee Perspectives Regarding Advanced Clinical Global Health Fellowships in North America. Am. J. Trop. Med. Hyg. 2021, 104, 2286–2292. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.D.; Saltzman, A.; Lee, P.T. Bridging the global health training gap: Design and evaluation of a new clinical global health course at Harvard Medical School. Med. Teachnol. 2012, 34, 45–51. [Google Scholar] [CrossRef]
- Dawson, L.; Klingman, K.L.; Marrazzo, J. Addressing standards of care in resource-limited settings. J. Acquir. Immune Defic. Syndr. 2014, 65 (Suppl. S1), S10–S14. [Google Scholar] [CrossRef]
- Tinto, H.; Noor, R.A.; Wanga, C.L.; Valea, I.; Mbaye, M.N.; D’Alessandro, U.; Ravinetto, R.M. Good clinical practice in resource-limited settings: Translating theory into practice. Am. J. Trop. Med. Hyg. 2013, 88, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Merson, M.H.; Black, R.E.; Mills, A.J. International Public Health: Diseases, Programs, Systems, and Policies, 2nd ed.; Jones and Bartlett: Sudbury, MA, Canada, 2006. [Google Scholar]
- Koplan, J.P.; Bond, T.C.; Merson, M.H.; Reddy, S.; Rodriguez, M.H.; Sewankambo, N.; Wasserheit, J.; Consortium of Universities for Global Health Executive Board. Towards a common definition of global health. Lancet 2009, 373, 1993–1995. [Google Scholar] [CrossRef]
- Arcaya, M.C.; Arcaya, A.L.; Subramanian, S.V. Desigualdades en salud: Definiciones, conceptos y teorías [Inequalities in health: Definitions, concepts, and theories]. Rev. Panam. Salud Publica Pan Am. J. Public Health 2015, 38, 261–271. [Google Scholar]
- Shahzad, M.; Upshur, R.; Donnelly, P.; Bharmal, A.; Wei, X.; Feng, P.; Brown, A.D. A population-based approach to integrated healthcare delivery: A scoping review of clinical care and public health collaboration. BMC Public Health 2019, 19, 708. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, D. Global health: Current issues, future trends and foreign policy. Clin. Med. 2009, 9, 247–253. [Google Scholar] [CrossRef]
- Boutayeb, A. The Burden of Communicable and Non-Communicable Diseases in Developing Countries. Handb. Dis. Burd. Qual. Life Meas. 2010, 531–546. [Google Scholar] [CrossRef]
- Pescaroli, G.; Alexander, D. Understanding Compound, Interconnected, Interacting, and Cascading Risks: A Holistic Framework. Risk Anal. 2018, 38, 2245–2257. [Google Scholar] [CrossRef]
- Frankel, S.; Ebrahim, S.; Davey Smith, G. The limits to demand for health care. BMJ (Clin. Res. Ed.) 2000, 321, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Hui, D. Emerging and Reemerging Infectious Diseases: Global Overview. Infect. Dis. Clin. N. Am. 2019, 33, xiii–xix. [Google Scholar] [CrossRef] [PubMed]
- Augustynowicz, A.; Opolski, J.; Waszkiewicz, M. Resilient Health and the Healthcare System. A Few Introductory Remarks in Times of the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 3603. [Google Scholar] [CrossRef]
- Hanefeld, J.; Mayhew, S.; Legido-Quigley, H.; Martineau, F.; Karanikolos, M.; Blanchet, K.; Liverani, M.; Yei Mokuwa, E.; McKay, G.; Balabanova, D. Towards an understanding of resilience: Responding to health systems shocks. Health Policy Plan. 2018, 33, 355–367. [Google Scholar] [CrossRef]
- Duggal, M.; Dahiya, N.; Kankaria, A.; Chaudhary, M.; Bachani, D. Restructuring the Healthcare System to Protect Healthcare Personnel Amidst the COVID-19 Pandemic. Front. Public Health 2020, 8, 588203. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Ekpenyong, A.; Ntacyabukura, B.; Lowe, M.; Jimoh, N.D.; Abdulkareem, T.O.; Lucero-Prisno, D.E. COVID-19 Highlights the Need for Inclusive Responses to Public Health Emergencies in Africa. Am. J. Trop. Med. Hyg. 2020, 104, 449–452. [Google Scholar] [CrossRef]
- Greenhalgh, S.; Provencher, A. Inclusive health: Modeling COVID-19 in correctional facilities and communities. BMC Public Health 2022, 22, 982. [Google Scholar] [CrossRef] [PubMed]
- Olstad, D.L.; McIntyre, L. Reconceptualising precision public health. BMJ Open 2019, 9, e030279. [Google Scholar] [CrossRef]
- Thaler, D.S.; Head, M.G.; Horsley, A. Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health. BMC Infect. Dis. 2019, 19, 120. [Google Scholar] [CrossRef] [PubMed]
- Waldman, S.A.; Terzic, A. Health Care Evolves From Reactive to Proactive. Clin. Pharmacol. Ther. 2019, 105, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Pascarella, G.; Rossi, M.; Montella, E.; Capasso, A.; De Feo, G.; Botti, G.; Nardone, A.; Montuori, P.; Triassi, M.; D’Auria, S.; et al. Risk Analysis in Healthcare Organizations: Methodological Framework and Critical Variables. Risk Manag. Healthc. Policy 2021, 14, 2897–2911. [Google Scholar] [CrossRef]
- Gholami, M.; Fawad, I.; Shadan, S.; Rowaiee, R.; Ghanem, H.; Hassan Khamis, A.; Ho, S.B. COVID-19 and healthcare workers: A systematic review and meta-analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2021, 104, 335–346. [Google Scholar] [CrossRef]
- Helbing, D. Globally networked risks and how to respond. Nature 2013, 497, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Maher, D.; Ford, N.; Gilmore, I. Practical steps in promoting synergies between clinical medicine and public health. Clin. Med. 2017, 17, 100–102. [Google Scholar] [CrossRef]
- Wang, C.; Xu, H.; Lin, A. Informal settlements in the context of COVID-19: Pandemic restrictions and the building of community resilience. Indoor Built Environ. 2022, 1420326X221097821. [Google Scholar] [CrossRef]
- Patel, J.A.; Nielsen, F.; Badiani, A.A.; Assi, S.; Unadkat, V.A.; Patel, B.; Ravindrane, R.; Wardle, H. Poverty, inequality and COVID-19: The forgotten vulnerable. Public Health 2020, 183, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Wachtler, B.; Michalski, N.; Nowossadeck, E.; Diercke, M.; Wahrendorf, M.; Santos-Hövener, C.; Lampert, T.; Hoebel, J. Socioeconomic inequalities and COVID-19—A review of the current international literature. J. Health Monit. 2020, 5 (Suppl. S7), 3–17. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Karabanow, J.; Hoddinott, T. Building Emergency Response Capacity: Multi-Career-Stage Social Workers’ Engagement with Homeless Sector during the First Two Waves of COVID-19 in Halifax, Nova Scotia, Canada. Int. J. Environ. Res. Public Health 2022, 19, 12713. [Google Scholar] [CrossRef]
- Currie, C.L.; Higa, E.K. The Impact of Racial and Non-racial Discrimination on Health Behavior Change Among Visible Minority Adults During the COVID-19 Pandemic. J. Racial Ethn. Health Disparities 2022, 9, 2551–2559. [Google Scholar] [CrossRef]
- Mathur, R.; Rentsch, C.T.; Morton, C.E.; Hulme, W.J.; Schultze, A.; MacKenna, B.; Eggo, R.M.; Bhaskaran, K.; Wong, A.; Williamson, E.J.; et al. OpenSAFELY Collaborative. Ethnic differences in SARS-CoV-2 infection and COVID-19-related hospitalisation, intensive care unit admission, and death in 17 million adults in England: An observational cohort study using the OpenSAFELY platform. Lancet 2021, 397, 1711–1724. [Google Scholar] [CrossRef]
- Flor, L.S.; Friedman, J.; Spencer, C.N.; Cagney, J.; Arrieta, A.; Herbert, M.E.; Stein, C.; Mullany, E.C.; Hon, J.; Patwardhan, V.; et al. Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: A comprehensive review of data from March, 2020, to September, 2021. Lancet 2022, 399, 2381–2397. [Google Scholar] [CrossRef]
- Amore, S.; Puppo, E.; Melara, J.; Terracciano, E.; Gentili, S.; Liotta, G. Impact of COVID-19 on older adults and role of long-term care facilities during early stages of epidemic in Italy. Sci. Rep. 2021, 11, 12530. [Google Scholar] [CrossRef]
- Hlongwane, N.; Ned, L.; McKinney, E.; McKinney, V.; Swartz, L. Experiences of Organisations of (or That Serve) Persons with Disabilities during the COVID-19 Pandemic and National Lockdown Period in South Africa. Int. J. Environ. Res. Public Health 2022, 19, 12641. [Google Scholar] [CrossRef] [PubMed]
- Huyser, K.R.; Yellow Horse, A.J.; Collins, K.A.; Fischer, J.; Jessome, M.G.; Ronayne, E.T.; Lin, J.C.; Derkson, J.; Johnson-Jennings, M. Understanding the Associations among Social Vulnerabilities, Indigenous Peoples, and COVID-19 Cases within Canadian Health Regions. Int. J. Environ. Res. Public Health 2022, 19, 12409. [Google Scholar] [CrossRef]
- Ogando, A.C.; Rogan, M.; Moussié, R. Impacts of the COVID-19 pandemic and unpaid care work on informal workers’ livelihoods. Int. Labour Rev. 2022, 161, 171–194. [Google Scholar] [CrossRef]
- Balakrishnan, V.S. Impact of COVID-19 on migrants and refugees. Lancet. Infect. Dis. 2021, 21, 1076–1077. [Google Scholar] [CrossRef] [PubMed]
- Douglas, J.A.; Bostean, G.; Miles Nash, A.; John, E.B.; Brown, L.M.; Subica, A.M. Citizenship Matters: Non-Citizen COVID-19 Mortality Disparities in New York and Los Angeles. Int. J. Environ. Res. Public Health 2022, 19, 5066. [Google Scholar] [CrossRef] [PubMed]
- Helbling, M.; Maxwell, R.; Munzert, S.; Traunmüller, R. The importance of citizenship for deserving COVID-19 treatment. Humanit. Soc. Sci. Commun. 2022, 9, 302. [Google Scholar] [CrossRef]
- Braga, L.P.; Szwarcwald, C.L.; Damacena, G.N.; de Souza-Júnior, P.; Dourado, I.; de Brito, A.M.; Grangeiro, A.; Crosland Guimarães, M.D.; Brazilian FSW Group. Health vulnerabilities in female sex workers in Brazil, 2016. Medicine 2022, 101, e30185. [Google Scholar] [CrossRef]
- Platt, L.; Bowen, R.; Grenfell, P.; Stuart, R.; Sarker, M.D.; Hill, K.; Walker, J.; Javarez, X.; Henham, C.; Mtetwa, S.; et al. The Effect of Systemic Racism and Homophobia on Police Enforcement and Sexual and Emotional Violence among Sex Workers in East London: Findings from a Cohort Study. J. Urban Health Bull. N. Y. Acad. Med. 2022; advance online publication. [Google Scholar] [CrossRef]
- Singer, R.B.; Johnson, A.K.; Zemlak, J.L.; Shensa, A.; Singer, R.M.; Costales, C.; Chiu, K.; Stamps, J. Monkeypox Prevention and Protecting Sex Workers: A Call to Action. Arch. Sex. Behav. 2022; advance online publication. [Google Scholar] [CrossRef]
- Bragazzi, N.L. The COVID-19 Pandemic Seen from a Syndemic Perspective: The LGBTQIA2SP+ Community. Infect. Dis. Rep. 2021, 13, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Quinn, S.C.; Kumar, S. Health inequalities and infectious disease epidemics: A challenge for global health security. Biosecurity Bioterrorism Biodefense Strategy Pract. Sci. 2014, 12, 263–273. [Google Scholar] [CrossRef]
- Katikireddi, S.V.; Lal, S.; Carrol, E.D.; Niedzwiedz, C.L.; Khunti, K.; Dundas, R.; Diderichsen, F.; Barr, B. Unequal impact of the COVID-19 crisis on minority ethnic groups: A framework for understanding and addressing inequalities. J. Epidemiol. Community Health 2021, 75, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Quiñones, A.R.; Botoseneanu, A.; Markwardt, S.; Nagel, C.L.; Newsom, J.T.; Dorr, D.A.; Allore, H.G. Racial/ethnic differences in multimorbidity development and chronic disease accumulation for middle-aged adults. PloS ONE 2019, 14, e0218462. [Google Scholar] [CrossRef]
- Talic, S.; Shah, S.; Wild, H.; Gasevic, D.; Maharaj, A.; Ademi, Z.; Li, X.; Xu, W.; Mesa-Eguiagaray, I.; Rostron, J.; et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: Systematic review and meta-analysis. BMJ (Clin. Res. Ed.) 2021, 375, e068302. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, J.; Wu, J.T.; Cao, Z.; Dajun Zeng, D. Data science approaches to confronting the COVID-19 pandemic: A narrative review. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2022, 380, 20210127. [Google Scholar] [CrossRef]
- Gyles, C. One Medicine, One Health, One World. Can. Vet. J. Rev. Vet. Can. 2016, 57, 345–346. [Google Scholar]
- Brousselle, A.; Butzbach, C. Redesigning public health for planetary health. Lancet. Planet. Health 2018, 2, e188–e189. [Google Scholar] [CrossRef] [PubMed]
- Osofsky, S.A.; Pongsiri, M.J. Operationalising planetary health as a game-changing paradigm: Health impact assessments are key. Lancet. Planet. Health 2018, 2, e54–e55. [Google Scholar] [CrossRef] [PubMed]
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Cediel Becerra, N.; Charron, D.F.; Chaudhary, A.; et al. One Health: A new definition for a sustainable and healthy future. PLoS Pathog. 2022, 18, e1010537. [Google Scholar] [CrossRef]
- Travis, D.A.; Sriramarao, P.; Cardona, C.; Steer, C.J.; Kennedy, S.; Sreevatsan, S.; Murtaugh, M.P. One Medicine One Science: A framework for exploring challenges at the intersection of animals, humans, and the environment. Ann. N. Y. Acad. Sci. 2014, 1334, 26–44. [Google Scholar] [CrossRef]
- Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. Sn Comput. Sci. 2022, 3, 158. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef]
- Carroll, D.; Morzaria, S.; Briand, S.; Johnson, C.K.; Morens, D.; Sumption, K.; Tomori, O.; Wacharphaueasadee, S. Preventing the next pandemic: The power of a global viral surveillance network. BMJ (Clin. Res. Ed.) 2021, 372, n485. [Google Scholar] [CrossRef]
- Scoones, I.; Jones, K.; Lo Iacono, G.; Redding, D.W.; Wilkinson, A.; Wood, J.L.N. Integrative modelling for One Health: Pattern, process and participation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160164. [Google Scholar] [CrossRef]
- Adib, K.; Hancock, P.A.; Rahimli, A.; Mugisa, B.; Abdulrazeq, F.; Aguas, R.; White, L.J.; Hajjeh, R.; Al Ariqi, L.; Nabeth, P. A participatory modelling approach for investigating the spread of COVID-19 in countries of the Eastern Mediterranean Region to support public health decision-making. BMJ Glob. Health 2021, 6, e005207. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Dai, H.; Damiani, G.; Behzadifar, M.; Martini, M.; Wu, J. How Big Data and Artificial Intelligence Can Help Better Manage the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 3176. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.; West, J.J.; Lamarque, J.F.; Shindell, D.T.; Collins, W.J.; Faluvegi, G.; Folberth, G.A.; Horowitz, L.W.; Nagashima, T.; Naik, V.; et al. Future global mortality from changes in air pollution attributable to climate change. Nat. Clim. Chang. 2017, 7, 647–651. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; McGough, S.F.; Fisman, D.; Santillana, M.; Brownstein, J.S. Antibiotic Resistance Increases with Local Temperature. Nat. Clim. Chang. 2018, 8, 510–514. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; et al. Over half of known human pathogenic diseases can be aggravated by climate change. Nat. Clim. Chang. 2022, 12, 869–875. [Google Scholar] [CrossRef]
- Sharpe, I.; Davison, C.M. Climate change, climate-related disasters and mental disorder in low- and middle-income countries: A scoping review. BMJ Open 2021, 11, e051908. [Google Scholar] [CrossRef] [PubMed]
- Lysaniuk, B.; Tabeaud, M. Les santés vulnérables des Suds. L’Espace Géographique 2015, 44, 229–244. [Google Scholar] [CrossRef]
- Foffano, F.; Scantamburlo, T.; Cortés, A. Investing in AI for social good: An analysis of European national strategies. AI Soc. 2022; 1–22, advance online publication. [Google Scholar] [CrossRef]
- Kong, J.D.; Fevrier, K.; Effoduh, J.O.; Bragazzi, N.L. Artificial Intelligence, Law, and Vulnerabilities. In AI and Society; Chapman and Hall: Boca Raton, FL, USA; CRC: Boca Raton, FL, USA, 2022; pp. 179–196. [Google Scholar]
- Kim, J.U.; Oleribe, O.; Njie, R.; Taylor-Robinson, S.D. A time for new north-south relationships in global health. Int. J. Gen. Med. 2017, 10, 401–408. [Google Scholar] [CrossRef]
- Monasterio Astobiza, A.; Ausín, T.; Liedo, B.; Toboso, M.; Aparicio, M.; López, D. Ethical Governance of AI in the Global South: A Human Rights Approach to Responsible Use of AI. Proceedings 2022, 81, 136. [Google Scholar] [CrossRef]
- Alavinejad, M.; Mellado, B.; Asgary, A.; Mbada, M.; Mathaha, T.; Lieberman, B.; Stevenson, F.; Tripathi, N.; Swain, A.K.; Orbinski, J.; et al. Management of hospital beds and ventilators in the Gauteng province, South Africa, during the COVID19 pandemic. PLOS Glob. Public Health 2022, 2, e0001113. [Google Scholar] [CrossRef]
- Bouba, Y.; Tsinda, E.K.; Fonkou, M.; Mmbando, G.S.; Bragazzi, N.L.; Kong, J.D. The Determinants of the Low COVID-19 Transmission and Mortality Rates in Africa: A Cross-Country Analysis. Front. Public Health 2021, 9, 751197. [Google Scholar] [CrossRef]
- Mellado, B.; Wu, J.; Kong, J.D.; Bragazzi, N.L.; Asgary, A.; Kawonga, M.; Choma, N.; Hayasi, K.; Lieberman, B.; Mathaha, T.; et al. Leveraging Artificial Intelligence and Big Data to Optimize COVID-19 Clinical Public Health and Vaccination Roll-Out Strategies in Africa. Int. J. Environ. Res. Public Health 2021, 18, 7890. [Google Scholar] [CrossRef]
- Tao, S.; Bragazzi, N.L.; Wu, J.; Mellado, B.; Kong, J.D. Harnessing Artificial Intelligence to assess the impact of nonpharmaceutical interventions on the second wave of the Coronavirus Disease 2019 pandemic across the world. Sci. Rep. 2022, 12, 944. [Google Scholar] [CrossRef] [PubMed]
- Nia, Z.M.; Ahmadi, A.; Bragazzi, N.L.; Woldegerima, W.A.; Mellado, B.; Wu, J.; Orbinski, J.; Asgary, A.; Kong, J.D. A cross-country analysis of macroeconomic responses to COVID-19 pandemic using Twitter sentiments. PloS ONE 2022, 17, e0272208. [Google Scholar] [CrossRef]
- Kazemi, M.; Bragazzi, N.L.; Kong, J.D. Assessing Inequities in COVID-19 Vaccine Roll-Out Strategy Programs: A Cross-Country Study Using a Machine Learning Approach. Vaccines 2022, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Ogbuokiri, B.; Ahmadi, A.; Bragazzi, N.L.; Movahedi Nia, Z.; Mellado, B.; Wu, J.; Orbinski, J.; Asgary, A.; Kong, J. Public sentiments toward COVID-19 vaccines in South African cities: An analysis of Twitter posts. Front. Public Health 2022, 10, 987376. [Google Scholar] [CrossRef]
- Stevenson, F.; Hayasi, K.; Bragazzi, N.L.; Kong, J.D.; Asgary, A.; Lieberman, B.; Ruan, X.; Mathaha, T.; Dahbi, S.-E.; Choma, J.; et al. Development of an early alert system for an additional wave of covid-19 cases using a recurrent neural network with long short-term memory. Int. J. Environ. Res. Public Health 2021, 18, 7376. [Google Scholar] [CrossRef] [PubMed]
- Lodi, E.; Scavone, A.; Reggianini, L.; Modena, M.G. COVID-19: Un’infezione gender-related? Possibili interpretazioni e limiti delle conoscenze [COVID-19: A gendered disease? Possible interpretations and knowledge limitations]. G. Ital. Di Cardiol. 2020, 21, 570–574. [Google Scholar] [CrossRef]
- Pal, M.; Parija, S.; Mohapatra, R.K.; Mishra, S.; Rabaan, A.A.; Al Mutair, A.; Alhumaid, S.; Al-Tawfiq, J.A.; Dhama, K. Symptom-Based COVID-19 Prognosis through AI-Based IoT: A Bioinformatics Approach. Biomed. Res. Int. 2022, 2022, 3113119. [Google Scholar] [CrossRef]
- Pal, M.; Tiwari, R.; Dhama, K.; Parija, S.; Jena, O.P.; Mohapatra, R.K. Machine Learning Algorithms and COVID-19. A Step for Predicting Future Pandemics with a Systematic Overview. In Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Pal, M.; Parija, S.; Panda, G.; Dhama, K.; Mohapatra, R.K. Risk prediction of cardiovascular disease using machine learning classifiers. Open Med. (Wars) 2022, 17, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Cené, C.W.; Haymore, L.B.; Enga, Z.; Sallah, S.H.; Ritchwood, T.; Wynn, M.; Ellis, D.; Corbie-Smith, G. Data Collection and Management in Community Engaged Research: Lessons Learned From Two Community-Based Participatory Research Partnerships. Prog. Community Health Partnersh. Res. Educ. Action 2015, 9, 413–422. [Google Scholar] [CrossRef]
- Cath, C. Governing artificial intelligence: Ethical, legal and technical opportunities and challenges. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 2018, 376, 20180080. [Google Scholar] [CrossRef] [PubMed]
- Sitthi-Amorn, C.; Somrongthong, R. Strengthening health research capacity in developing countries: A critical element for achieving health equity. BMJ 2000, 321, 813–817. [Google Scholar] [CrossRef] [PubMed]
- Church, D.L. Major factors affecting the emergence and re-emergence of infectious diseases. Clin. Lab. Med. 2004, 24, 559–586. [Google Scholar] [CrossRef] [PubMed]
- Kudesia, P.; Salimarouny, B.; Stanley, M.; Fortin, M.; Stewart, M.; Terry, A.; Ryan, B.L. The incidence of multimorbidity and patterns in accumulation of chronic conditions: A systematic review. J. Multimorb. Comorb. 2021, 11, 26335565211032880. [Google Scholar] [CrossRef] [PubMed]
- Bowsher, G.; Papamichail, A.; El Achi, N.; Ekzayez, A.; Roberts, B.; Sullivan, R.; Patel, P. A narrative review of health research capacity strengthening in low and middle-income countries: Lessons for conflict-affected areas. Glob. Health 2019, 15, 23. [Google Scholar] [CrossRef]
- Liverpool, L. Researchers from global south under-represented in development research. Nature, 2021; ahead of print. [Google Scholar] [CrossRef]
- Smith, E.; Hunt, M.; Master, Z. Authorship ethics in global health research partnerships between researchers from low or middle income countries and high income countries. BMC Med. Ethics 2014, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Abimbola, S.; Aloudat, T.; Capobianco, E.; Hawkes, S.; Rahman-Shepherd, A. Decolonising global health in 2021: A roadmap to move from rhetoric to reform. BMJ Glob. Health 2021, 6, e005604. [Google Scholar] [CrossRef]
- Finkel, M.L.; Temmermann, M.; Suleman, F.; Barry, M.; Salm, M.; Bingawaho, A.; Kilmarx, P.H. What Do Global Health Practitioners Think about Decolonizing Global Health? Ann. Glob. Health 2022, 88, 61. [Google Scholar] [CrossRef]
- Eichbaum, Q.G.; Adams, L.V.; Evert, J.; Ho, M.J.; Semali, I.A.; van Schalkwyk, S.C. Decolonizing Global Health Education: Rethinking Institutional Partnerships and Approaches. Acad. Med. 2021, 96, 329–335. [Google Scholar] [CrossRef]
- Kulesa, J.; Brantuo, N.A. Barriers to decolonising educational partnerships in global health. BMJ Glob. Health 2021, 6, e006964. [Google Scholar] [CrossRef]
- Kwete, X.; Tang, K.; Chen, L.; Ren, R.; Chen, Q.; Wu, Z.; Cai, Y.; Li, H. Decolonizing global health: What should be the target of this movement and where does it lead us? Glob. Health Res. Policy 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Gautier, L.; Karambé, Y.; Dossou, J.P.; Samb, O.M. Rethinking development interventions through the lens of decoloniality in sub-Saharan Africa: The case of global health. Glob. Public Health 2022, 17, 180–193. [Google Scholar] [CrossRef] [PubMed]
Component | Definition |
---|---|
Prevention | Disease and disease outbreak monitoring/surveillance and early warning systems |
Identification | Clinical, public, and global health laboratory innovation |
Risk management | Disease and disease outbreak risk reduction and mitigation |
Decision-making processes | Evidence-informed and data-driven |
Discipline/Specialization | Definition | References |
---|---|---|
Clinical medicine | Aimed at treating “sick individuals” | [4,5] |
Public health | Aimed at treating “sick populations” by preventing communicable and noncommunicable diseases, counteracting/mitigating against their burden, prolonging life, preserving the quality of life, and promoting health and well-being | [14,15] |
Clinical public health | Combining clinical medicine and public health, integrating primary care, clinical practice, disease management and treatment, and prevention | [11] |
Global health | Practicing public health with a focus on resource-limited settings and contexts, by improving health and well-being and achieving health equity for all populations worldwide | [21,22] |
Clinical global health | Practicing clinical public health with a special focus on health issue management in resource-limited settings and contexts | [17,18] |
Component | Definition |
---|---|
Responsible | Accountable, auditable, compliant, ethical, respectful, safe, secure |
Explainable | Equitable, fair, impactful, interpretable, meaningful, reliable, reproducible, transparent, trustworthy, unbiased |
Local | Autonomous, caring, connecting, decolonized, human- and community-centered, inclusive, intentional, intersectional, just, participatory, practical, protecting, process-based, sustainable |
Lesson | Definition |
---|---|
Lesson n. 1 | A need for partnerships with community-led organizations (CLOs) and community healthcare workers |
Lesson n. 2 | A need for buy-in from the decision- and policymakers |
Lesson n. 3 | A need for a diverse blend of research and implementation experts |
Lesson n. 4 | A need for a network to create and promote mutual support across the network |
Lesson n. 5 | A need for novel data-gathering techniques, including citizen science/participatory science and simple, anonymous digital platforms for data reporting |
Lesson n. 6 | A need for AI and Big Data Governance and Legislation for the Global South |
Lesson n. 7 | A need for strengthening AI- and BDA-related funding in the Global South |
Lesson n. 8 | A need for strengthening AI- and BDA-based modeling capacity in the Global South |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, J.D.; Akpudo, U.E.; Effoduh, J.O.; Bragazzi, N.L. Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South. Healthcare 2023, 11, 457. https://doi.org/10.3390/healthcare11040457
Kong JD, Akpudo UE, Effoduh JO, Bragazzi NL. Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South. Healthcare. 2023; 11(4):457. https://doi.org/10.3390/healthcare11040457
Chicago/Turabian StyleKong, Jude Dzevela, Ugochukwu Ejike Akpudo, Jake Okechukwu Effoduh, and Nicola Luigi Bragazzi. 2023. "Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South" Healthcare 11, no. 4: 457. https://doi.org/10.3390/healthcare11040457
APA StyleKong, J. D., Akpudo, U. E., Effoduh, J. O., & Bragazzi, N. L. (2023). Leveraging Responsible, Explainable, and Local Artificial Intelligence Solutions for Clinical Public Health in the Global South. Healthcare, 11(4), 457. https://doi.org/10.3390/healthcare11040457