Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN)
Abstract
:1. Introduction
2. Related Work
2.1. Accident Data Acquisition in Smart Environments
2.1.1. Smart Homes
2.1.2. Smart Vehicles
2.1.3. Smart Wearables
2.2. Emergency Communication Platforms
2.3. Data Linkage across Systems
2.3.1. Deterministic Linkage
2.3.2. Probabilistic Linkage
3. Requirement Analysis
3.1. System Architecture
3.2. Data Exchange
3.3. Safety and Security
4. System Specification
4.1. Architecture
4.1.1. ICT Systems
4.1.2. ISAN System Components
4.2. Interaction
4.2.1. System Registration
- To initiate the process, the alerting system sends a registration request.
- On a valid request, the ASM approves the registration by dedicating an ID and storing it.
- The alerting system prepares the required data, including the standards in use for ISAN generation, a list of alert types, and a unique identifier of the alerting system.
- The ASM receives the data, writes it into the database, and sends a confirmation message to the alerting system.
- The ASM regularly checks the state of the alerting system by sending a keep-alive message. If the alerting system does not respond several times, the ASM updates the alerting system status as inactive.
4.2.2. Alerting and M2M Communication
- In case of an accident, the alerting system generates the ISAN and sends it to the WFM.
- The WFM verifies the ISAN and forwards it to the ASM to further verify the alerting system, where the ASM will check the status stored in the supporting database. The ASM returns the ID of the alerting system to WFM.
- The WFM sends a query to the RSM to determine a suitable responding system. The RSM searches its supporting database and returns the ID to an appropriate responding system.
- The WFM forwards both IDs (alerting and responding system) to the ComM.
- The ComM informs the responding system, including the ISAN, that an accident occurred, and the alerting system needs to transfer accident data, i.e., the DAR.
- The responding system accepts the request.
- The ComM establishes the communication with the alerting and responding system.
- The alerting system transfers the DAR to the responding system via the ComM.
- The ComM terminates the communication with both systems.
4.3. Proof of Concept
4.3.1. ISAN System Component Implementation
4.3.2. Communication
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Accidents in Childhood: Facts as a Basis for Prevention, Report of an Advisory Group; World Health Organization: Geneva, Switzerland, 1957. [Google Scholar]
- Accident & Emergency Informatics—IMIA A&EI WG—IMIA. [Internet]. [cited 15 March 2021]. Available online: https://imia-medinfo.org/wp/accident-emergency-informatics-working-group/ (accessed on 15 March 2021).
- EWARS—Improving Early Detection and Prompt Response to Acute Public Health Events|WHO|Regional Office for Africa. [Internet]. [cited 19 April 2021]. Available online: https://www.afro.who.int/news/ewars-improving-early-detection-and-prompt-response-acute-public-health-events (accessed on 19 April 2021).
- Møller, T.P.; Ersbøll, A.K.; Tolstrup, J.S.; Østergaard, D.; Viereck, S.; Overton, J.; Folke, F.; Lippert, F. Why and when citizens call for emergency help: An observational study of 211,193 medical emergency calls. Scand. J. Trauma Resusc. Emerg. Med. 2015, 23, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ivers, R.; Brown, K.; Norton, R.; Stevenson, M. Road traffic injuries. In International Encyclopedia of Public Health; Academic Press: Cambridge, MA, USA, 2016; pp. 393–400. [Google Scholar]
- Falls [Internet]. [cited 24 March 2021]. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 24 March 2021).
- Li, Y.; Nader, M.; Liu, J.Q. In-Vehicle system design for the European Union emergency call. In Proceedings of the IEEE International Conference on Electro Information Technology, Rochester, MI, USA, 3–5 May 2018; pp. 908–912. [Google Scholar]
- Leonhardt, S.; Leicht, L.; Teichmann, D. Unobtrusive vital sign monitoring in automotive environments: A review. Sensors 2018, 18, 3080. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Warnecke, J.M.; Haghi, M.; Deserno, T.M. Unobtrusive health monitoring in private spaces: The smart vehicle. Sensors 2020, 20, 2442. [Google Scholar] [CrossRef]
- Thilo, F.J.S.; Hahn, S.; Halfens, R.J.G.; Schols, J.M.G.A. Usability of a wearable fall detection prototype from the perspective of older people—A real field testing approach. J. Clin. Nurs. 2019, 28, 310–320. [Google Scholar] [CrossRef]
- Fajingbesi, F.E.; Olanrewaju, R.F.; Pampori, B.R.; Khan, S.; Yacoob, M. Real time telemedical health care systems with wearable sensors. Asian J. Pharm. Res. Health Care 2017, 9, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Silva de Lima, A.L.; Smits, T.; Darweesh, S.K.L.; Valenti, G.; Milosevic, M.; Pijl, M.; Baldus, H.; de Vries, N.M.; Meinders, M.J.; Bloem, B.R. Home-based monitoring of falls using wearable sensors in Parkinson’s disease. Mov. Disord. 2020, 35, 109–115. [Google Scholar] [CrossRef]
- Haghi, M.; Thurow, K.; Stoll, R. Wearable devices in medical internet of things: Scientific research and commercially available devices. Healthc. Inform. Res. 2017, 23, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Peltier, N.; Goldberg, C.; Sun, Y.; Nathan, A.; Hiremath, S.V.; Mankodiya, K. WearSense: Detecting Autism stereotypic behaviors through smartwatches. Healthcare 2017, 5, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spicher, N.; Barakat, R.; Wang, J.; Haghi, M.; Jagieniak, J.; Öktem, G.S.; Hackel, S.; Deserno, T.M. Proposing an International Standard Accident Number for interconnecting information and communication technology systems of the rescue chain. Methods Inf. Med. 2021, 60, e20–e31. [Google Scholar] [PubMed]
- SIP Protocol—VoIP-Info. [Internet]. [cited 8 June 2021]. Available online: https://www.voip-info.org/sip/ (accessed on 8 June 2021).
- Markakis, E.K.; Lykourgiotis, A.; Politis, I.; Dagiuklas, A.; Rebahi, Y.; Pallis, E. EMYNOS: Next generation emergency communication. IEEE Commun. Mag. 2017, 55, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Schultz, A.; Lamers, C.; Koch, R.; Lüke, R.; Sauerland, T. IRiS—Intelligente Rettung im SmartHome. VFDB Z. Forsch. Tech. Manag. Brand. 2020, 69, 180–182. [Google Scholar]
- Wang, J.; Spicher, N.; Warnecke, J.M.; Haghi, M.; Schwartze, J.; Deserno, T.M. Unobtrusive health monitoring in private spaces: The smart home. Sensors 2021, 21, 864. [Google Scholar] [CrossRef]
- Fogue, M.; Garrido, P.; Martinez, F.J.; Cano, J.C.; Calafate, C.T.; Manzoni, P. A system for automatic notification and severity estimation of automotive accidents. IEEE Trans. Mob. Comput. 2014, 13, 948–963. [Google Scholar] [CrossRef] [Green Version]
- González-Cañete, F.J.; Casilari, E. A feasibility study of the use of smartwatches in wearable fall detection systems. Sensors 2021, 21, 2254. [Google Scholar] [CrossRef] [PubMed]
- Use Fall Detection with Apple Watch—Apple Support. [Internet]. [cited 19 April 2021]. Available online: https://support.apple.com/en-gb/HT208944 (accessed on 19 April 2021).
- Maglogiannis, I.; Ioannou, C.; Spyroglou, G.; Tsanakas, P. Fall detection using commodity smart watch and smart phone. IFIP Adv. Inf. Commun. Technol. 2014, 436, 70–78. [Google Scholar]
- Rakhecha, S.; Hsu, K. Reliable and secure body fall detection algorithm in a wireless mesh network. In Proceedings of the BODYNETS 2013—8th International Conference on Body Area Networks, ICST, Boston, MA, USA, 30 September–2 October 2013; pp. 420–426. [Google Scholar]
- Patel, M.; Kumar, M.; Gupta, P.; Bhatnagar, J. Determination of PSAP and routing of emergency calls in IP multimedia subsystem. In Proceedings of the ANTS 2017—11th IEEE International Conference on Advanced Networks and Telecommunications Systems, Bhubaneswar, India, 17–20 December 2018; pp. 1–4. [Google Scholar]
- NG112 E. Next Generation 112 Long Term Definition Standard for Emergency Services Document (Version 1.1) [Internet]. [cited 7 June 2021]. Available online: https://eena.org/wp-content/uploads/Next-Generation-112-Long-Term-Definition-Standard-For-Emergency-Services.pdf (accessed on 7 June 2021).
- Sedlar, U.; Winterbottom, J.; Tavcar, B.; Sterle, J.; Cijan, J.; Volk, M. Next generation emergency services based on the Pan-European Mobile Emergency Application (PEMEA) protocol: Leveraging mobile positioning and context information. Wirel. Commun. Mob. Comput. 2019, 2019, 1408784. [Google Scholar] [CrossRef]
- NENA. NENA Functional and Interface Standards for Next Generation 9-1-1 Version 1.0 (i3) [Internet]. [cited 7 June 2021]. Available online: https://www.nena.org/page/FuncIntrface_NG911 (accessed on 7 June 2021).
- NEXt Generation Emergency Services|NEXES Project|H2020|CORDIS|European Commission [Internet]. [cited 25 March 2021]. Available online: https://cordis.europa.eu/project/id/653337 (accessed on 25 March 2021).
- EENA. EENA NG112 Project [Internet]. [cited 15 March 2021]. Available online: https://eena.org/eena-ng112-project (accessed on 15 March 2021).
- Liberal, F.; Fajardo, J.O.; Lumbreras, C.; Kampichler, W. European NG112 Crossroads: Toward a new emergency communications framework. IEEE Commun. Mag. 2017, 55, 132–138. [Google Scholar] [CrossRef]
- Šterk, M.; Praprotnik, M. Improving emergency response logistics through advanced GIS. Open Geospat. Data Softw. Stand. 2017, 2, 1. [Google Scholar] [CrossRef]
- Osebor, I.; Misra, S.; Omoregbe, N.; Adewumi, A.; Fernandez-Sanz, L. Experimental simulation-based performance evaluation of an SMS-based emergency geolocation notification system. J. Healthc. Eng. 2017, 2017, 7695045. [Google Scholar] [CrossRef] [Green Version]
- EMYNOS. nExt generation eMergencY commuNicatiOnS H2020 project [Internet]. [cited 25 March 2021]. Available online: https://www.emynos.eu (accessed on 25 March 2021).
- Rescuetrack. Advances Mobile Location [Internet]. [cited 28 April 2021]. Available online: http://www.rescuetrack.de/de-de/products/aml/ (accessed on 28 April 2021).
- EENA. Advanced Mobile Location [Internet]. [cited 28 April 2021]. Available online: https://eena.org/our-work/eena-special-focus/advanced-mobile-location/ (accessed on 28 April 2021).
- Chikani, V.; Blust, R.; Vossbrink, A.; Wightman, P.; Bissell, S.; Graw, J.; Martinez, R.; Fisher, B. Improving the continuum of care by bridging the gap between prehospital and hospital discharge data through stepwise deterministic linkage. Prehospital Emerg. Care. 2020, 24, 1–7. [Google Scholar] [CrossRef]
- Hagger-Johnson, G.; Harron, K.; Goldstein, H.; Aldridge, R.; Gilbert, R. Probabilistic linkage to enhance deterministic algorithms and reduce data linkage errors in hospital administrative data. J. Innov. Health Inform. 2017, 24, 891. [Google Scholar] [CrossRef] [Green Version]
- Oostema, J.A.; Nickles, A.; Reeves, M.J. A comparison of probabilistic and deterministic match strategies for linking prehospital and in-hospital stroke registry data. J. Stroke Cerebrovasc. Dis. 2020, 29, 105151. [Google Scholar] [CrossRef]
- Hughes-Gooding, T.; Dickson, J.M.; O’Keeffe, C.; Mason, S.M. A data linkage study of suspected seizures in the urgent and emergency care system in the UK. Emerg. Med. J. 2020, 37, 605–610. [Google Scholar] [CrossRef]
- Govindarajan, P.; Cook, L.; Ghilarducci, D.; Johnston, C. Probabilistic matching of computerized emergency medical services records and emergency department and patient discharge data: A novel approach to evaluation of prehospital stroke care. Acad. Emerg. Med. 2012, 19, S315. [Google Scholar]
- Deserno, T.M.; Jakob, R. Accident emergency informatics: Terminologies and standards are needed for digital health in the early rescue chain. In Proceedings of the 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT), Tashkent, Uzbekistan, 7–9 October 2020; pp. 1–5. [Google Scholar]
- Cui, J.; Shao, L.; Zhong, H.; Xu, Y.; Liu, L. Data aggregation with end-to-end confidentiality and integrity for large-scale wireless sensor networks. Peer-To-Peer Netw. Appl. 2018, 11, 1022–1037. [Google Scholar] [CrossRef] [Green Version]
- SOG-IS Crypto Working Group. Cryptographic Mechanisms [Internet]. [cited 5 May 2021]. Available online: https://www.sogis.eu/documents/cc/crypto/obsolete/SOGIS-Agreed-Cryptographic-Mechanisms-1.1.pdf (accessed on 5 May 2021).
- Informationstechnik. Bundesamt für Sicherheit in der.BSI TR-03116-1 [Internet]. [cited 5 May 2021]. Available online: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR03116/BSI-TR-03116.pdf?__blob=publicationFile&v=3 (accessed on 5 May 2021).
- Haghi, M.; Danyali, S.; Ayasseh, S.; Wang, J.; Aazami, R.; Deserno, T.M. Wearable devices in health monitoring from the environmental towards multiple domains: A survey. Sensors 2021, 21, 2130. [Google Scholar] [CrossRef]
- Langley, A.; Hamburg, M.; Turner, S. Elliptic curves for security. RFC 2016, 7748, 1–22. [Google Scholar]
- Tan, K.K.; Goh, H.L. Session Initiation Protocol. In Proceedings of the IEEE International Conference on Industrial Technology, Bangkok, Thailand, 11–14 December 2002; pp. 1310–1314. [Google Scholar]
- Li, N. Research on Diffie-Hellman key exchange protocol. In Proceedings of the ICCET 2010—2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010. [Google Scholar]
- Niasar, M.B.; El Khatib, R.; Azarderakhsh, R.; Mozaffari-Kermani, M. Fast, small, and area-time efficient architectures for key-exchange on Curve25519. In Proceedings of the 27th Symposium on Computer Arithmetic, Portland, OR, USA, 7–10 June 2020; pp. 72–79. [Google Scholar]
- Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. Cryptographic accelerators for digital signature based on Ed25519. IEEE Trans. Very Large Scale Integr. Syst. 2021, 29, 1297–1305. [Google Scholar] [CrossRef]
- EENA Project. NG112 and the New Emergency Services Networks Landscape Challenges and Opportunities [Internet]. [cited 7 June 2021]. Available online: https://eena.org/document/ng112-and-the-new-emergency-services-networks-landscape/ (accessed on 7 June 2021).
- Barakat, R.; Deserno, T.M. Automatic alerting of accidents and emergencies: The international standard accident number and vital sign data embedded in future PACS. In Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications; Deserno, T.M., Chen, P.-H., Eds.; SPIE: Bellingham, WA, USA, 2020; p. 49. [Google Scholar]
Defaults | Alerting System | Responding System | Curing System |
---|---|---|---|
Dataset |
|
|
|
Keep-alive frequency | 24 h | 10 min | 10 min |
Allowed times being unresponsive | 100 | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haghi, M.; Barakat, R.; Spicher, N.; Heinrich, C.; Jageniak, J.; Öktem, G.S.; Krips, M.; Wang, J.; Hackel, S.; Deserno, T.M. Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN). Healthcare 2021, 9, 996. https://doi.org/10.3390/healthcare9080996
Haghi M, Barakat R, Spicher N, Heinrich C, Jageniak J, Öktem GS, Krips M, Wang J, Hackel S, Deserno TM. Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN). Healthcare. 2021; 9(8):996. https://doi.org/10.3390/healthcare9080996
Chicago/Turabian StyleHaghi, Mostafa, Ramon Barakat, Nicolai Spicher, Christian Heinrich, Justin Jageniak, Gamze Söylev Öktem, Maike Krips, Ju Wang, Siegfried Hackel, and Thomas M. Deserno. 2021. "Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN)" Healthcare 9, no. 8: 996. https://doi.org/10.3390/healthcare9080996
APA StyleHaghi, M., Barakat, R., Spicher, N., Heinrich, C., Jageniak, J., Öktem, G. S., Krips, M., Wang, J., Hackel, S., & Deserno, T. M. (2021). Automatic Information Exchange in the Early Rescue Chain Using the International Standard Accident Number (ISAN). Healthcare, 9(8), 996. https://doi.org/10.3390/healthcare9080996