Media, Trust in Government, and Risk Perception of COVID-19 in the Early Stage of Epidemic: An Analysis Based on Moderating Effect
Abstract
:1. Introduction
1.1. Social Amplification of Risk Model
1.2. Media and Risk Perception
1.3. Trust in Government and Risk Perception
1.4. The New Framework of Risk Perception of COVID-19
2. Materials and Methods
2.1. Data
2.2. Measures
2.2.1. Dependent Variable
2.2.2. Independent Variable
2.2.3. Moderating Variable
2.2.4. Control Variable
2.3. Data Analysis Strategy
3. Results
3.1. Descriptive Statistics
3.2. Regression Results
3.3. Robustness Analysis
4. Discussion
5. Conclusions
6. Policy Implications
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ozili, P.K.; Arun, T. Spillover of COVID-19: Impact on the Global Economy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3562570 (accessed on 22 August 2021).
- Kumar, M.; Dwivedi, S. Impact of Coronavirus Imposed Lockdown on Indian Population and their Habits. Available online: https://www.researchgate.net/publication/345656308_Impact_of_Coronavirus_Imposed_Lockdown_on_Indian_Population_and_their_Habits (accessed on 1 May 2020).
- Karaman, Z.T. Food Safety and the Coronavirus Pandemic. Open J. Soc. Sci. 2020, 08, 334–357. [Google Scholar] [CrossRef]
- Kwok, K.O.; Wong, V.; Wei, V.W.I.; Wong, S.Y.S.; Tang, J.W.T. Novel coronavirus (2019-nCoV) cases in Hong Kong and implications for further spread. J. Infect. 2020, 80, 671–693. [Google Scholar] [CrossRef] [Green Version]
- St-Amant, P.-A.B.; Tadjiogue, Y.W.; Raymond-Brousseau, L.; Fortier-Martineau, C.; Tchokouagueu, F.-A.; Dumais, G.; Vallée, L. Impacts of COVID on University’s Finances. Int. Res. High. Educ. 2020, 5, 37. [Google Scholar] [CrossRef]
- van der Linden, S. The social-psychological determinants of climate change risk perceptions, attitudes, and behaviours: A national study. Environ. Educ. Res. 2016, 22, 434–435. [Google Scholar] [CrossRef]
- Han, Q.; Zheng, B.; Agostini, M.; Bélanger, J.J.; Gützkow, B.; Kreienkamp, J.; Reitsema, A.M.; van Breen, J.A.; Leander, N.P.; Abakoumkin, G.; et al. Associations of risk perception of COVID-19 with emotion and mental health during the pandemic. J. Affect. Disord. 2021, 284, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, A.; Gorwood, P. The consequences of the COVID-19 pandemic on mental health and implications for clinical practice. Eur. Psychiatry 2020, 63, e32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelrahman, M. Personality Traits, Risk Perception, and Protective Behaviors of Arab Residents of Qatar During the COVID-19 Pandemic. Int. J. Ment. Health Addict. 2020, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, F.; Zhu, C.; Wang, Z. Willingness to self-isolate when facing a pandemic risk: Model, empirical test, and policy recommendations. Int. J. Environ. Res. Public Health 2020, 17, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bish, A.; Michie, S. Demographic and attitudinal determinants of protective behaviours during a pandemic: A review. Br. J. Health Psychol. 2010, 15, 797–824. [Google Scholar] [CrossRef] [Green Version]
- Pask, E.B.; Rawlins, S.T. Men’s Intentions to Engage in Behaviors to Protect Against Human Papillomavirus (HPV): Testing the Risk Perception Attitude Framework. Health Commun. 2016, 31, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Stasson, M.; Fishbein, M. The Relation Between Perceived Risk and Preventive Action: A Within-Subject Analysis of Perceived Driving Risk and Intentions to Wear Seatbelts. J. Appl. Soc. Psychol. 1990, 20, 1541–1557. [Google Scholar] [CrossRef]
- Cori, L.; Bianchi, F.; Cadum, E.; Anthonj, C. Risk perception and covid-19. Int. J. Environ. Res. Public Health 2020, 17, 3114. [Google Scholar] [CrossRef]
- Rohrmann, B. Risk Perception, Risk Attitude, Risk Communication, Risk Management: A Conceptual Appraisal. In Proceedings of the 15th Internaional Emergency Management Society (TIEMS) Annual Conference, San Antonio, TX, USA, 15–18 April 2008. [Google Scholar]
- Rohrmann, B.; Renn, O. Risk Perception Research: An introduction; Cross-Cultural Risk Perception. Technology, Risk, and Society (An International Series in Risk Analysis); Springer: Boston, MA, USA, 2000; Volume 13. [Google Scholar]
- Tyler, T.R.; Cook, F.L. The mass media and judgments of risk: Distinguishing impact on personal and societal level judgments. J. Pers. Soc. Psychol. 1984, 47, 693–708. [Google Scholar] [CrossRef]
- Cho, H.; Kuang, K. The Societal Risk Reduction Motivation Model. In The SAGE Handbook of Risk Communication; Sage: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Barber, S.J.; Kim, H. COVID-19 Worries and Behavior Changes in Older and Younger Men and Women. J. Gerontol. Ser. B 2021, 76, e17–e23. [Google Scholar] [CrossRef] [PubMed]
- Atchison, C.J.; Bowman, L.; Vrinten, C.; Redd, R.; Pristerà, P.; Eaton, J.W.; Ward, H. Perceptions and behavioural responses of the general public during the COVID-19 pandemic: A cross-sectional survey of UK Adults. BMJ Open. 2021, 11, e043577. [Google Scholar] [CrossRef]
- Irigoyen-Camacho, M.E.; Velazquez-Alva, M.C.; Zepeda-Zepeda, M.A.; Cabrer-Rosales, M.F.; Lazarevich, I.; Castaño-Seiquer, A. Effect of income level and perception of susceptibility and severity of covid-19 on stay-at-home preventive behavior in a group of older adults in Mexico City. Int. J. Environ. Res. Public Health 2020, 17, 7418. [Google Scholar] [CrossRef]
- Renn, O. Risk Perception and Risk Management: A Review; Pt. 1, Risk Perception. Risk Abstr.; Springer: Boston, MA, USA, 2000; pp. 11–53. [Google Scholar]
- Vasvári, T. Risk, Risk Perception, Risk Management—A Review of the Literature. Public Finan. Q. 2015, 60, 29–48. [Google Scholar]
- Slovic, P. Perception of Risk: Reflections on the Psychometric Paradigm; Krimsky, S., Golding, D., Eds.; Soc. Theor. Risk Praeger Publishing: Westport, CT, USA, 1992; pp. 117–152. [Google Scholar]
- Klausner, S.Z.; Gould, L.C.; Gardner, G.T.; DeLuca, D.R.; Tiemann, A.R.; Doob, L.W.; Stolwijk, J.A.J. Perceptions of Technological Risks and Benefits. Contemp. Sociol. 1990, 19, 87. [Google Scholar] [CrossRef]
- Short, J.F. The social fabric at risk: Toward the social transformation of risk analysis. Am. Sociol. Rev. 1984, 49, 711. [Google Scholar] [CrossRef]
- Ladd, A.E.; Clarke, L. Acceptable Risk? Making Decisions in a Toxic Environment. Soc. Forces 1990, 68, 977. [Google Scholar] [CrossRef]
- Kasperson, R.E.; Renn, O.; Slovic, P.; Brown, H.S.; Emel, J.; Goble, R.; Kasperson, J.X.; Ratick, S. The Social Amplification of Risk: A Conceptual Framework. Risk Anal. 1988, 8, 177–187. [Google Scholar] [CrossRef] [Green Version]
- Renn, O.; Burns, W.J.; Kasperson, J.X.; Kasperson, R.E.; Slovic, P. The Social Amplification of Risk: Theoretical Foundations and Empirical Applications. J. Soc. Issues 1992, 48, 137–160. [Google Scholar] [CrossRef]
- Lee, T.R. Effective communication of information about chemical hazards. Sci. Total Environ. 1986, 51, 149–183. [Google Scholar] [CrossRef]
- Machlis, G.E.; Rosa, E.A. Desired Risk: Broadening the Social Amplification of Risk Framework. Risk Anal. 1990, 10, 161–168. [Google Scholar] [CrossRef]
- Slovic, P. Informing and Educating the Public About Risk. Risk Anal. 1986, 6, 307–348. [Google Scholar] [CrossRef]
- Soumerai, S.B.; Ross-Degnan, D.; Kahn, J.S. Effects of Professional and Media Warnings about the Association between Aspirin Use in Children and Reye’s Syndrome. Milbank Q. 1992, 70, 155. [Google Scholar] [CrossRef]
- Bandura, A.; Walters, R.H. Social Learning Theory; Englewood Cliffs Prentice Hall: New York, NY, USA, 1977. [Google Scholar]
- Wahlberg, A.A.; Lennart, S. Risk perception and the media. J. Risk Res. 2000, 3, 31–50. [Google Scholar] [CrossRef]
- Tyler, T.R. Impact of directly and indirectly experienced events: The origin of crime-related judgments and behaviors. J. Pers. Soc. Psychol. 1980, 39, 13–28. [Google Scholar] [CrossRef]
- Gerbner, G.; Gross, L. Living with Television: The Violence Profile. J. Commun. 1976, 26, 172–199. [Google Scholar] [CrossRef]
- Gerbner, G.; Gross, L.; Morgan, M.; Signorielli, N. Living with Television: The Dynamics of the CuItivation Process. Available online: http://commres.net/wiki/_media/livingwithtelevision_thedynamicsofthecultivationprocess.pdf (accessed on 20 November 2021).
- Hirsch, P.M. Distinguishing Good Speculation from Bad Theory. Commun. Res. 1981, 8, 73–95. [Google Scholar] [CrossRef]
- Hirsch, P.M. On not Learning from One’s Own Mistakes: A Reanalysis of Gerbner et Ally’s Findings on Cultivation Analysis Part II. Commun. Res. 1981, 8, 3–37. [Google Scholar] [CrossRef]
- Brown, L.K.; Diclemente, R.J.; Park, T. Predictors of condom use in sexually active adolescents. J. Adolesc. Health 1992, 13, 651–657. [Google Scholar] [CrossRef]
- Smith, E.K.; Mayer, A. A social trap for the climate? Collective action, trust and climate change risk perception in 35 countries. Glob. Environ. Chang. 2018, 49, 140–153. [Google Scholar] [CrossRef]
- Siegrist, M. Trust and Risk Perception: A Critical Review of the Literature. Risk Anal. 2021, 41, 480–490. [Google Scholar] [CrossRef] [PubMed]
- Putnam, R.D. Bowling Alone: America’s Declining Social Capital. J. Democr. 1995, 6, 65–78. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, N.D.; Inglehart, R. Modernization and Postmodernization: Cultural, Economic and Political Change in 43 Societies. Br. J. Sociol. 1998, 49, 674. [Google Scholar] [CrossRef]
- Siegrist, M.; Cvetkovich, G.; Roth, C. Salient value similarity, social trust, and risk/benefit perception. Risk Anal. 2000, 20, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Earle, T.C. Trust in risk management: A model-based review of empirical research. Risk Anal. 2010, 30, 541–574. [Google Scholar] [CrossRef]
- Earle, T.; Siegrist, M. Trust, Confidence and Cooperation Model: A Framework for Understanding the Relation between Trust and Risk Perception. Int. J. Glob. Environ. Issues 2008, 8, 8. [Google Scholar] [CrossRef]
- Ma, L.; Christensen, T. Government Trust, Social Trust, and Citizens’ Risk Concerns: Evidence from Crisis Management in China. Public Perform. Manag. Rev. 2019, 42, 383–404. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Sattar, U. Conceptualizing covid-19 and public panic with the moderating role of media use and uncertainty in china: An empirical framework. Healthcare 2020, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Browne, K. Snowball sampling: Using social networks to research non-heterosexual women. Int. J. Soc. Res. Methodol. 2005, 8, 47–60. [Google Scholar] [CrossRef]
- Leiserowitz, A. Climate change risk perception and policy preferences: The role of affect, imagery, and values. Clim. Chang. 2006, 77, 45–72. [Google Scholar] [CrossRef] [Green Version]
- van der Linden, S. The social-psychological determinants of climate change risk perceptions: Towards a comprehensive model. J. Environ. Psychol. 2015, 41, 112–124. [Google Scholar] [CrossRef]
- Xie, B.; Brewer, M.B.; Hayes, B.K.; McDonald, R.I.; Newell, B.R. Predicting climate change risk perception and willingness to act. J. Environ. Psychol. 2019, 65, 65. [Google Scholar] [CrossRef]
- Dryhurst, S.; Schneider, C.R.; Kerr, J.; Freeman, A.L.J.; Recchia, G.; van der Bles, A.M.; Spiegelhalter, D.; van der Linden, S. Risk perceptions of COVID-19 around the world. J. Risk Res. 2020, 23, 994–1006. [Google Scholar] [CrossRef]
- Siegrist, M.; Gutscher, H.; Earle, T.C. Perception of risk: The influence of general trust, and general confidence. J. Risk Res. 2005, 8, 145–156. [Google Scholar] [CrossRef]
- Olive, D.J. Linear Regression; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; ISBN 9783319552521. [Google Scholar]
- Su, X.; Yan, X.; Tsai, C.L. Linear regression. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 275–294. [Google Scholar] [CrossRef]
- Hayes, A.F.; Matthes, J. Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations. Behav. Res. Methods 2009, 41, 924–936. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.K.W.; Chong, G.H.C.; Chang, S.S.Y.; Wong, C.W.; Wong, C.S.Y.; Wong, M.T.P.; Wong, K.C. Adjustment to severe acute respiratory syndrome (SARS): Roles of appraisal and post-traumatic growth. Psychol. Health 2006, 21, 301–317. [Google Scholar] [CrossRef]
- Hussain, W. Role of Social Media in COVID-19 Pandemic. Int. J. Front. Sci. 2020, 4, 301–317. [Google Scholar] [CrossRef]
- Zheng, Y.; Goh, E.; Wen, J. The effects of misleading media reports about COVID-19 on Chinese tourists’ mental health: A perspective article. Anatolia 2020, 31, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Lyu, Z. Trust, risk perception, and COVID-19 infections: Evidence from multilevel analyses of combined original dataset in China. Soc. Sci. Med. 2020, 265, 113517. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
TitleVariables | Frequency | Percentages | Cognition | Significance | Worries | Significance |
---|---|---|---|---|---|---|
Sex | p < 0.05 | p > 0.05 | ||||
Male | 471 | 30.67 | 10.01 | 12.37 | ||
Female | 1067 | 69.33 | 10.37 | 12.45 | ||
Education level | p > 0.05 | p > 0.05 | ||||
Primary school and below | 3 | 0.19 | 11.00 | 13.00 | ||
Junior school | 29 | 1.88 | 10.86 | 12.86 | ||
Senior school | 82 | 5.33 | 10.96 | 12.79 | ||
College | 970 | 60.03 | 10.08 | 12.34 | ||
Postgraduate | 455 | 20.06 | 10.45 | 12.51 | ||
Marital status | p < 0.01 | p > 0.05 | ||||
Single | 1097 | 71.28 | 9.92 | 12.26 | ||
Married | 420 | 27.29 | 11.07 | 12.83 | ||
Divorced | 18 | 1.17 | 12.22 | 12.89 | ||
Widowed | 4 | 0.26 | 9.75 | 12.25 | ||
Trust in government | p < 0.001 | p < 0.001 | ||||
Yes | 1314 | 85.38 | 10.19 | 12.33 | ||
No | 225 | 14.62 | 10.63 | 12.98 | ||
Having COVID patients or not in their community | p < 0.05 | p < 0.05 | ||||
Yes | 163 | 10.59 | 10.17 | 12.44 | ||
No | 1376 | 89.41 | 10.297 | 12.42 | ||
Obtaining information from the official channel | p < 0.001 | p > 0.05 | ||||
Yes | 1239 | 80.51 | 10.19 | 12.42 | ||
No | 300 | 19.49 | 10.51 | 12.43 | ||
Obtaining information from the unofficial channel | p > 0.05 | p < 0.05 | ||||
Yes | 931 | 60.49 | 10.40 | 12.17 | ||
No | 608 | 39.51 | 10.04 | 12.59 | ||
Mean | Std Dev | |||||
Cognition | 10.26 | 2.54 | ||||
Worries | 12.43 | 1.76 | ||||
Level of concern about COVID-19 | 4.53 | 0.61 | ||||
Frequency of concern about COVID-19 | 5.35 | 0.87 | ||||
Age | 26.71 | 9.46 |
Cognition | Worries | Level of Concern about COVID-19 | Frequency of Concern about COVID-19 | |
---|---|---|---|---|
Cognition | 1.0000 | |||
Worries | 0.2138 *** | 1.0000 | ||
Level of concern about COVID-19 | 0.0166 | 0.3304 *** | 1.0000 | |
Frequency of concern about COVID-19 | 0.0380 *** | 0.2645 *** | 0.4115 *** | 1.0000 |
Variables | Model 1a | Model 1b | Model 1c | Model 1d | Model 1e | Model 2a | Model 2b | Model 2c | Model 2d | Model 2e |
---|---|---|---|---|---|---|---|---|---|---|
Frequency of concern (FC) | −0.0205 | −0.0283 | −0.0208 | −0.0207 | 0.0447 | 0.405 *** | 0.378 *** | 0.404 *** | 0.405 *** | 0.494 *** |
Level of concern (LC) | 0.443 *** | 0.444 *** | 0.435 *** | 0.508 *** | 0.443 *** | 0.716 *** | 0.716 *** | 0.695 *** | 0.803 *** | 0.715 *** |
Trust in government (TG) (No = 0) | −0.439 *** | −0.441 *** | −0.440 *** | −0.584 *** | −0.586 *** | −0.586 *** | ||||
Obtaining information from official media (OIFOM) | −0.353 ** | −0.353 ** | −0.353 ** | −0.353 ** | −0.353 ** | −0.0103 | −0.00887 | −0.0101 | −0.0102 | −0.0111 |
Obtaining information from unofficial media (OIFUM) | 0.0972 | 0.0987 | 0.0997 | 0.255 *** | 0.257 *** | 0.258 *** | ||||
OIFUM × FC | 0.0150 | 0.0484 *** | ||||||||
OIFUM × LC | 0.0170 | 0.0452 *** | ||||||||
TG × LC | −0.0772 *** | −0.104 *** | ||||||||
TG × FC | −0.0765 *** | −0.104 *** | ||||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | 2.476 | 2.524 | 2.524 | 2.109 | 2.107 | 5.556 *** | 5.721 *** | 5.684 *** | 5.069 *** | 5.065 *** |
N | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 |
R2 | 0.084 | 0.084 | 0.084 | 0.084 | 0.083 | 0.156 | 0.156 | 0.156 | 0.156 | 0.155 |
Variables | Factor 1 | Factor 2 | Uniqueness |
---|---|---|---|
High infectivity | 0.8901 | 0.0654 | 0.1271 |
Rapid fatality | 0.9325 | 0.0789 | 0.1243 |
High mortality | 0.9307 | 0.0816 | 0.1271 |
Personally affected | 0.1761 | 0.7692 | 0.3773 |
Friends and family affected | 0.0201 | 0.8 | 0.3596 |
Ordinary people affected | 0.1184 | 0.6926 | 0.5063 |
Variables | Model 3a | Model 3b | Model 3c | Model 3d | Model 3e | Model 4a | Model 4b | Model 4c | Model 4d | Model 4e |
---|---|---|---|---|---|---|---|---|---|---|
Frequency of concern (FC) | 0.191 *** | 0.181 *** | 0.191 *** | 0.191 *** | 0.208 *** | 0.140 *** | 0.128 *** | 0.140 *** | 0.140 *** | 0.192 *** |
Level of concern (LC) | 0.166 *** | 0.166 *** | 0.159 *** | 0.183 *** | 0.166 *** | 0.399 *** | 0.400 *** | 0.389 *** | 0.450 *** | 0.399 *** |
Trust in government (TG) (No = 0) | −0.111 | −0.111 | -0.112 | −0.342 *** | −0.343 *** | −0.343 *** | ||||
Obtaining information from official media (OIFOM) (No = 0) | 0.119 * | 0.120 * | 0.119 * | 0.119 * | 0.119 * | −0.103 * | −0.103 * | −0.103 * | −0.103 * | −0.104 * |
Obtaining information from unofficial media (OIFUM) (No = 0) | 0.0824 | 0.0827 | 0.0829 | 0.121 ** | 0.122 ** | 0.123 ** | ||||
OIFUM × FC | 0.0169 * | 0.0218 ** | ||||||||
OIFUM × LC | 0.0147 * | 0.0213 ** | ||||||||
TG × LC | −0.0199 * | −0.0605 *** | ||||||||
TG × FC | −0.0204 * | −0.0605 *** | ||||||||
Control variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Constant | −1.984 *** | −1.925 *** | −1.942 *** | −2.077 *** | −2.078 *** | −3.449 *** | −3.376 *** | −3.389 *** | −3.735 *** | −3.737 *** |
(0.720) | (0.721) | (0.720) | (0.717) | (0.717) | (0.679) | (0.680) | (0.680) | (0.677) | (0.677) | |
N | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 | 1537 |
R2 | 0.058 | 0.058 | 0.058 | 0.058 | 0.058 | 0.159 | 0.159 | 0.160 | 0.160 | 0.159 |
Variables | Cognition | Worries |
---|---|---|
Frequency of concern (FC) | + | |
Level of concern (LC) | + | + |
Trust in government (TG) (No = 0) | − | − |
Obtaining information from official media (OIFOM) | − | |
Obtaining information from unofficial media (OIFUM) | + | |
OIFUM × FC | + | |
OIFUM × LC | + | |
TG × LC | − | − |
TG × FC | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T. Media, Trust in Government, and Risk Perception of COVID-19 in the Early Stage of Epidemic: An Analysis Based on Moderating Effect. Healthcare 2021, 9, 1597. https://doi.org/10.3390/healthcare9111597
Xu T. Media, Trust in Government, and Risk Perception of COVID-19 in the Early Stage of Epidemic: An Analysis Based on Moderating Effect. Healthcare. 2021; 9(11):1597. https://doi.org/10.3390/healthcare9111597
Chicago/Turabian StyleXu, Tao. 2021. "Media, Trust in Government, and Risk Perception of COVID-19 in the Early Stage of Epidemic: An Analysis Based on Moderating Effect" Healthcare 9, no. 11: 1597. https://doi.org/10.3390/healthcare9111597
APA StyleXu, T. (2021). Media, Trust in Government, and Risk Perception of COVID-19 in the Early Stage of Epidemic: An Analysis Based on Moderating Effect. Healthcare, 9(11), 1597. https://doi.org/10.3390/healthcare9111597