Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things
Abstract
:1. Introduction
- increased morbidity and mortality due to increased atmospheric temperatures causing heat-related illnesses such as heat stroke, acute cardiovascular disease, and renal disease;
- increased morbidity and mortality due to reduced air quality as a result of greenhouse gases (GHGs), which causes health issues such as ischemic heart disease, stroke, and lung cancer;
- increased prevalence of vector-borne diseases due to warmer temperatures causing an expansion of geographic range of insects and other species; and
- increased frequency and intensity of extreme weather events, such as floods, droughts, and hurricanes. These will cause a chain reaction affecting food security, housing, and infrastructure, resulting in lost income for those affected by these events [14].
2. Methods
2.1. Identifying the Research Question and Relevant Studies
2.2. Study Selection and Charting the Data
2.3. Collating, Summarizing, and Reporting the Results
3. Artificial Intelligence in Environment and Health Research
3.1. Machine Learning in Healthcare and Public Health
3.2. Deep Learning for Modeling Climate Change
4. Blockchain in Healthcare and Environment
4.1. Smart Contracts
4.2. Blockchain in Healthcare
4.3. Blockchain in Environment
5. Internet of Things in Environment and Health
5.1. Ambient Assisted Living—AAL
5.2. Remote Patient Monitoring—RPM
5.3. Environment Monitoring
5.4. Public Health Surveillance
Challenges in the Use of IoT Technology for Surveillance
6. Software Architecture for the Pan-Canadian Monitoring and Surveillance Activities Related to Environment and Health
6.1. Device and Communication
6.2. Data and DataAPI
6.3. Applications
6.4. Security and Privacy
7. Use Cases
7.1. Automated Environmental Control
7.2. Monitoring Air Pollution at Schools
7.3. Look for Changes in Diseases and Death Pattern with Time
8. Discussion and Challenges
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gray, J.; Banhazi, T.M.; Kist, A.A. Wireless data management system for environmental monitoring in livestock buildings. Inf. Process. Agric. 2017, 4, 1–17. [Google Scholar] [CrossRef]
- Yang, C.T.; Chen, C.J.; Tsan, Y.T.; Liu, P.Y.; Chan, Y.W.; Chan, W.C. An implementation of real-time air quality and influenza-like illness data storage and processing platform. Comput. Hum. Behav. 2019, 100, 266–274. [Google Scholar] [CrossRef]
- Berry, P. Climate Change and the Health of Canadians: Understanding Risks to Protect Canadians. 2019. Available online: https://issp.uottawa.ca/sites/issp.uottawa.ca/files/berry_issp_-_march_1_2019.pdf (accessed on 10 October 2019).
- Oetomo, A.; Kuang, A.; Fadrique, L.; Sahu, K.S.; Nobrega, R.M.; Velmovitsky, P.E.; Bublitz, F.M.; Morita, P.P. Emerging Technologies for Climate Change and Health Research; Technical Report; Health Canada: Ottawa, ON, Canada, 2019.
- Santillana, M.; Nguyen, A.T.; Louie, T.; Zink, A.; Gray, J.; Sung, I.; Brownstein, J.S. Cloud-based Electronic Health Records for Real-time, Region-specific Influenza Surveillance. Sci. Rep. 2016, 6, 25732. [Google Scholar] [CrossRef] [PubMed]
- Munoz, R.; Vilalta, R.; Casellas, R.; Mayoral, A.; Martinez, R. Integrating optical transport network testbeds and cloud platforms to enable end-to-end 5G and IoT services. In Proceedings of the 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, Spain, 2–6 July 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Hino, M.; Benami, E.; Brooks, N. Machine learning for environmental monitoring. Nat. Sustain. 2018, 1, 583–588. [Google Scholar] [CrossRef]
- Lee, D.; Kang, S.; Shin, J. Using Deep Learning Techniques to Forecast Environmental Consumption Level. Sustainability 2017, 9, 1894. [Google Scholar] [CrossRef]
- Rodrigues, J.J.; De Rezende Segundo, D.B.; Junqueira, H.A.; Sabino, M.H.; Prince, R.M.I.; Al-Muhtadi, J.; De Albuquerque, V.H.C. Enabling Technologies for the Internet of Health Things. IEEE Access 2018. [Google Scholar] [CrossRef]
- Siwicki, B. The Next Big Thing in Pharmacy Supply Chain: Blockchain | Healthcare IT News. 2017. Available online: https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain (accessed on 10 October 2019).
- Koval, A.; Irigoyen, E. Mobile wireless system for outdoor air quality monitoring. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 527, pp. 345–354. [Google Scholar] [CrossRef]
- Programme, A. Inclusion Society—AAL Programme. Available online: http://www.aal-europe.eu/inclusion-society (accessed on 12 March 2019).
- Costello, A.; Abbas, M.; Allen, A.; Ball, S.; Bell, S.; Bellamy, R.; Friel, S.; Groce, N.; Johnson, A.; Kett, M.; et al. Managing the Health Effects of Climate Change. Lancet 2009, 373, 1693–1733. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change. Global Warming of 1.5 °C; The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2017. [Google Scholar]
- Bush, E.; Lemmen, D.S. Canada’s Changing Climate Report. Available online: https://www.nrcan.gc.ca/maps-tools-and-publications/publications/climate-change-publications/canada-changing-climate-reports/canadas-changing-climate-report/21177 (accessed on 12 March 2019).
- Howard, C.; Rose, C.; Hancook, T. Lancet Countdown 2018 Report: Briefing for Canadian Policymakers. Technical Report. The Lancet, Canada. 2019. Available online: http://www.lancetcountdown.org/media/1418/2018-lancet-countdown-policy-brief-canada.pdf (accessed on 11 October 2019).
- Hodgson, G. The Costs of Climate Change Are Rising—The Globe and Mail. Available online: https://www.theglobeandmail.com/business/commentary/article-the-costs-of-climate-change-are-rising/ (accessed on 16 June 2019).
- GREER RUSSELL. How Machine Learning Can Sharpen Environmental Research; Argonne National Laboratory: Lemont, IL, USA, 18 September 2018.
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Belesova, K.; Berry, H.; Bouley, T.; Boykoff, M.; Byass, P.; Cai, W.; et al. The 2018 report of the Lancet Countdown on health and climate change: Shaping the health of nations for centuries to come. Lancet 2018. [Google Scholar] [CrossRef]
- Howard, C.; Huston, P. The health effects of climate change: Know the risks and become part of the solutions. CCDRCANADA 2019, 45. [Google Scholar] [CrossRef]
- Levac, D.; Colquhoun, H.; O’Brien, K.K. Scoping studies: Advancing the methodology. Implement. Sci. 2010, 5, 69. [Google Scholar] [CrossRef]
- Mooney, S.J.; Pejaver, V. Big Data in Public Health: Terminology, Machine Learning, and Privacy. Annu. Rev. Public Health 2018, 39, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.W. Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels, 1st ed.; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Gilliland, M.; Ivanova, E. 7 Ways The Blockchain Can Save The Environment and Stop Climate Change. Future Thinkers. 2017. Available online: https://futurethinkers.org/blockchain-environment-climate-change/ (accessed on 11 September 2017).
- Hoffman, S. The Great Promise of Artificial Intelligence for Public Health | Research & Innovation. 2016. Available online: https://research.info.yorku.ca/2018/04/the-great-promise-of-artificial-intelligence-for-public-health (accessed on 15 July 2019).
- Neill, D.B. New Directions in Artificial Intelligence for Public Health Surveillance. IEEE Intell. Syst. 2012, 27, 56–59. [Google Scholar] [CrossRef]
- Hay, S.I.; George, D.B.; Moyes, C.L.; Brownstein, J.S. Big Data Opportunities for Global Infectious Disease Surveillance. PLoS Med. 2013, 10, e1001413. [Google Scholar] [CrossRef] [PubMed]
- Brownstein, J.S.; Freifeld, C.C.; Reis, B.Y.; Mandl, K.D. Surveillance Sans Frontières: Internet-Based Emerging Infectious Disease Intelligence and the HealthMap Project. PLoS Med. 2008, 5, e151. [Google Scholar] [CrossRef] [PubMed]
- Santillana, M.; Nguyen, A.T.; Dredze, M.; Paul, M.J.; Nsoesie, E.O.; Brownstein, J.S. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS Comput. Biol. 2015, 11, e1004513. [Google Scholar] [CrossRef] [PubMed]
- Vallmuur, K. Machine learning approaches to analysing textual injury surveillance data: A systematic review. Accid. Anal. Prev. 2015, 79, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.; Lee, J.; Oh, J.E.; Kim, H.R.; Lee, S.; Chang, H.J.; Sohn, D.K. Tumor Identification in Colorectal Histology Images Using a Convolutional Neural Network. J. Digit. Imaging 2019, 32, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Krieger, L.M. Google Computers Trained to Detect Cancer. 2017. Available online: https://www.mercurynews.com/2017/03/03/google-computers-trained-to-detect-cancer/ (accessed on 18 July 2019).
- Khoury, M.J.; Ioannidis, J.P.A. Big data meets public health. Science 2014, 346, 1054–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuromation. AI and Deep Learning Are the Keys to Unlocking the Future Of Environmental Sustainability. 2018. Available online: https://medium.com/neuromation-blog/ai-and-deep-learning-are-the-keys-to-unlocking-the-future-of-environmental-sustainability-345f93a57ec5 (accessed on 19 May 2019).
- Urban, M.C.; Pineda, D. Inside the Black Blocks: A Policymaker’s Introduction to Blockchain, Distributed Ledger Technology and the “Internet of Value”. Available online: https://mowatcentre.ca/inside-the-black-blocks/ (accessed on 27 February 2019).
- Shehryar Hasan. “We’re not PoW or PoS Fans”—Co-founder of Geeq Discusses Consensus Protocols. BlockPublisher, 2019. Available online: https://blockpublisher.com/were-not-pow-or-pos-fans-co-founder-of-geeq-discusses-consensus-protocols/ (accessed on 27 June 2019).
- Smith, B. Dokchain: Intelligent Automation in Healthcare Transaction Processing. PokitDok. 2017. Available online: https://pokitdok.com/wp-content/uploads/2018/02/DokChain_Whitepaper.pdf (accessed on 25 June 2019).
- Sharma, R. BLOCKCHAIN: The Magic Pill to Alleviate the Pain Points of the Healthcare Industry? Technical Report; France Canada Camber of Commerce Ontario: Toronto, ON, Canada, 2018. [Google Scholar]
- Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. MedRec: Using Blockchain for Medical Data Access and Permission Management. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 25–30. [Google Scholar] [CrossRef]
- EMBLEMA. Patient Blockchain for Next Generation Real World Evidence. Available online: https://www.embleema.com/ (accessed on 12 April 2019).
- Kulemin, N.; Popov, S.; Gorbachev, A. The Zenome Project: Whitepaper Blockchain-Based Genomic Ecosystem. Technical Report, The Zenome Project. 2017. Available online: https://zenome.io/download/whitepaper.pdf (accessed on 15 May 2019).
- Leslie Hackett. There’s Nothing More Personal Than Your Genome—Dawn Barry at TEDxSanDiego 2016—Welcome to TEDxSanDiego. Available online: https://www.tedxsandiego.com/theres-nothing-more-personal-than-your-genome-dawn-barry-at-tedxsandiego-2016/ (accessed on 18 May 2019).
- myBTCcoin. BlockRX ICO: Blockchain To Prevent Counterfeit Drugs | myBTCcoin.com | Pinterest | Blockchain, Mining Pool and Interview. Available online: https://bitcoinchaser.com/ico-hub/blockrx-ico-interview/ (accessed on 5 April 2019).
- IBM Institute for Business Value. How Life Sciences Can Win with Blockchain; Technical Report; IBM: Armonk, NY, USA, 2018. [Google Scholar]
- Fraser, H. Healthcare Rallies for Blockchain: Continuing the Discussion; IBM Healthcare & Life Sciences Industries Blog: Armonk, NY, USA, 2017. [Google Scholar]
- Stoffregen, E. Blockchain Healthcare Ecosystem in 2018—Erik Stoffregen—Medium. 2018. Available online: https://medium.com/@erikstoffregen/blockchain-healthcare-ecosystem-d21631024454 (accessed on 7 August 2019).
- Schegg, R.; Stampa, K. Take Part in Our Journey of Building the Leading Health Data Hub for the 21st Century; Technical Report; Health Bank: Baar, Switzerland, 2019. [Google Scholar]
- Stanley, A. Ready To Rumble: IBM Launches Food Trust Blockchain For Commercial Use. Available online: https://www.forbes.com/sites/astanley/2018/10/08/ready-to-rumble-ibm-launches-food-trust-blockchain-for-commercial-use/ (accessed on 2 February 2019).
- Armonk, N. IBM Food Trust Expands Blockchain Network to Foster a Safer, More Transparent and Efficient Global Food System. 2018. Available online: https://newsroom.ibm.com/2018-10-08-IBM-Food-Trust-Expands-Blockchain-Network-to-Foster-a-Safer-More-Transparent-and-Efficient-Global-Food-System-1 (accessed on 12 March 2019).
- World Economic Forum. Building Block(chain)s for a Better Planet; World Economic Forum: Geneva, Switzerland, 2018. [Google Scholar]
- Kite-Powell, J. Can Blockchain Technology Save The Environment? 2018. Available online: https://www.forbes.com/sites/jenniferhicks/2018/12/01/can-blockchain-technology-save-the-environment/#121bceb3233b (accessed on 19 May 2019).
- Ziegler, S.; Nikoletsea, S.; Krco, S.; Rolim, J.; Fernandes, J. Internet of Things and crowd sourcing—A paradigm change for the research on the Internet of Things. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 395–399. [Google Scholar] [CrossRef]
- Xiang, Y.S.; Hsieh, H.C. A study on the present-situation analysis and feasible path of the elderly TV programs in mainland China. In Proceedings of the 2018 1st IEEE International Conference on Knowledge Innovation and Invention (ICKII), Jeju, Korea, 3–27 July 2018; pp. 294–297. [Google Scholar] [CrossRef]
- Thapliyal, H.; Kumar Nath, R.; Mohanty, S.P. Smart Home Environment for Mild Cognitive Impairment Population: Solutions to Improve Care and Quality of Life. IEEE Consum. Electron. Mag. 2018, 7, 68–76. [Google Scholar] [CrossRef]
- SyC AAL. IEC SyC AAL—Active Assisted Living. Available online: https://www.iec.ch/dyn/www/f?p=103:214:16564900952::::FSP_ORG_ID,FSP_LANG_ID:11827,25 (accessed on 8 February 2017).
- Sharif, M.S.; Alsallal, M.; Herghelegiu, L. An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes. In Proceedings of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK, 16–17 August 2018; pp. 113–117. [Google Scholar] [CrossRef]
- Demiris, G. Smart homes and ambient assisted living in an aging society. New opportunities and challenges for biomedical informatics. Methods Inf. Med. 2008, 47, 56–57. [Google Scholar]
- Savage, R.; Yon, Y.; Campo, M.; Wilson, A.; Kahlon, R.; Sixsmith, A. Market Potential for Ambient Assisted Living Technology: The Case of Canada. In Ambient Assistive Health and Wellness Management in the Heart of the City; Mokhtari, M., Khalil, I., Bauchet, J., Zhang, D., Nugent, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 57–65. [Google Scholar]
- Blumendorf, M.; Albayrak, S. Towards a Framework for the Development of Adaptive Multimodal User Interfaces for Ambient Assisted Living Environments; Springer: Berlin/Heidelberg, Germany, 2009; pp. 150–159. [Google Scholar] [CrossRef]
- Abril-Jiménez, P.; Vera-Muñoz, C.; Cabrera-Umpierrez, M.F.; Arredondo, M.T.; Naranjo, J.C. Design Framework for Ambient Assisted Living Platforms; Springer: Berlin/Heidelberg, Germany, 2009; pp. 139–142. [Google Scholar]
- Alzheimer Society Canada, Understanding Dementia—Alzheimer Society of Canada 2017–2018 Impact Report; Alzheimer Society: Toronto, ON, Canada; Available online: https://alzheimer.ca/en/on/We-can-help/Resources/Shifting-Focus (accessed on 3 March 2019).
- Mihailidis, A.; Stymiest, B. Making Technology Work for People Living with Dementia; Alzheimer Society: Toronto, ON, Canada, 2017. [Google Scholar]
- Hendrich, N.; Bistry, H.; Zhang, J. Architecture and Software Design for a Service Robot in an Elderly-Care Scenario. Engineering 2015, 1, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Chronaki, C.E.; Vardas, P. Remote monitoring costs, benefits, and reimbursement: A European perspective. Europace 2013, 15, i59–i64. [Google Scholar] [CrossRef] [PubMed]
- Canada health Infoway. Connecting Patients with Providers: A Pan-Canadian Study on Remote Patient Monitoring, Executive Summary | Canada Health Infoway; Technical Report; Canada Health Infoway: Toronto, ON, Canada, 2014. [Google Scholar]
- Canada Health InfowaY. Canadian Physicians Can Improve Patient Care With Advanced EMR Use; Canada Health Infoway: Toronto, ON, Canada, 28 January 2016. [Google Scholar]
- Abawajy, J.H.; Hassan, M.M. Federated Internet of Things and Cloud Computing Pervasive Patient Health Monitoring System. IEEE Commun. Mag. 2017, 55, 48–53. [Google Scholar] [CrossRef]
- Mohammed, J.; Lung, C.H.; Ocneanu, A.; Thakral, A.; Jones, C.; Adler, A. Internet of Things: Remote Patient Monitoring Using Web Services and Cloud Computing. In Proceedings of the 2014 IEEE International Conference on Internet of Things(iThings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom), Taipei, Taiwan, 1–3 September 2014; pp. 256–263. [Google Scholar] [CrossRef]
- Singer, B.C.; Delp, W.W. Response of consumer and research grade indoor air quality monitors to residential sources of fine particles. Indoor Air 2018, 28, 624–639. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.F.; Dew, K.; Cole, A.M.; Zia, J.; Fogarty, J.A.; Kientz, J.A.; Munson, S.A. Boundary Negotiating Artifacts in Personal Informatics: Patient-Provider Collaboration with Patient-Generated Data. In Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work & Social Computing—CSCW ’16, San Francisco, CA, USA, 27 February–2 March 2016; ACM Press: New York, NY, USA, 2016; pp. 768–784. [Google Scholar] [CrossRef]
- Haines, A.; Kovats, R.; Campbell-Lendrum, D.; Corvalan, C. Climate change and human health: Impacts, vulnerability and public health. Public Health 2006, 120, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Thai, P.K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environ. Int. 2018, 116, 286–299. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [Google Scholar] [CrossRef]
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Oliveira, G.; Longley, I.; Coulson, G. Development of a Low-Cost Device for Observing Indoor Particle Levels Associated with Source Activities in the Home; International Society of Exposure Science (ISES): Seattle, WA, USA, 2012. [Google Scholar]
- Jackson-Morris, A.; Bleymann, K.; Lyall, E.; Aslam, F.; Bam, T.S.; Chowdhury, I.; Daouda, E.A.; Espinosa, M.; Romo, J.; Singh, R.J.; et al. Low-Cost Air Quality Monitoring Methods to Assess Compliance With Smoke-Free Regulations: A Multi-Center Study in Six Low- and Middle-Income Countries. Nicotine Tob. Res. 2016, 18, 1258–1264. [Google Scholar] [CrossRef]
- Steinle, S.; Reis, S.; Sabel, C.E.; Semple, S.; Twigg, M.M.; Braban, C.F.; Leeson, S.R.; Heal, M.R.; Harrison, D.; Lin, C.; et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci. Total Environ. 2015, 508, 383–394. [Google Scholar] [CrossRef]
- Jerrett, M.; Donaire-Gonzalez, D.; Popoola, O.; Jones, R.; Cohen, R.C.; Almanza, E.; de Nazelle, A.; Mead, I.; Carrasco-Turigas, G.; Cole-Hunter, T.; et al. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science. Environ. Res. 2017, 158, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Talavera, J.M.; Tobón, L.E.; Gómez, J.A.; Culman, M.A.; Aranda, J.M.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Perumal, T.; Sulaiman, M.N.; Leong, C.Y. Internet of Things (IoT) enabled water monitoring system. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 86–87. [Google Scholar] [CrossRef]
- Tocchi, A.; Roca, V.; Angrisani, L.; Bonavolonta, F.; Moriello, R.S.L. First step towards an IoT implementation of a wireless sensors network for environmental radiation monitoring. In Proceedings of the 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Turin, Italy, 22–25 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Truong, T.; Dinh, A.; Wahid, K. An IoT environmental data collection system for fungal detection in crop fields. In Proceedings of the 2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Kamel Boulos, M.N.; Resch, B.; Crowley, D.N.; Breslin, J.G.; Sohn, G.; Burtner, R.; Pike, W.A.; Jezierski, E.; Chuang, K.Y. Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. Int. J. Health Geogr. 2011, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Kohler, M.D.; Heaton, T.H.; Cheng, M.H. The community seismic network and quake-catcher network: Enabling structural health monitoring through instrumentation by community participants. Int. Soc. Opt. Photonics 2013, 86923X. [Google Scholar] [CrossRef]
- Cuff, D.; Hansen, M.; Kang, J. Urban Sensing: Out of the Woods. Commun. ACM 2008, 51, 3. [Google Scholar] [CrossRef]
- Soucie, J.M. Public health surveillance and data collection: General principles and impact on hemophilia care. Hematology 2012, 17, S144–S146. [Google Scholar] [CrossRef] [PubMed]
- Hall, H.I.; Correa, A.; Yoon, P.W.; Braden, C.R.; Centers for Disease Control and Prevention. Lexicon, definitions, and conceptual framework for public health surveillance. MMWR Suppl. 2012, 61, 10–14. [Google Scholar] [PubMed]
- Huchuk, B.; O’Brien, W.; Sanner, S. A longitudinal study of thermostat behaviors based on climate, seasonal, and energy price considerations using connected thermostat data. Build. Environ. 2018, 139, 199–210. [Google Scholar] [CrossRef]
- Ápple. HealthKit—Apple Developer. Available online: https://developer.apple.com/healthkit/ (accessed on 10 October 2019).
- Ápple. ResearchKit and CareKit—Apple. Available online: https://www.apple.com/researchkit/ (accessed on 10 October 2019).
- Kamel Boulos, M.N.; Al-Shorbaji, N.M. On the Internet of Things, smart cities and the WHO Healthy Cities. Int. J. Health Geogr. 2014, 13, 10. [Google Scholar] [CrossRef]
- TEREPAC. Terepac Corporation Awarded Contract by City of Waterloo for Online Wireless System to Detect Water Main Leaks; TEREPAC: Waterloo, ON, Canada, 2018. [Google Scholar]
- Novitzky, P.; Smeaton, A.F.; Chen, C.; Irving, K.; Jacquemard, T.; O’Brolcháin, F.; O’Mathúna, D.; Gordijn, B. A Review of Contemporary Work on the Ethics of Ambient Assisted Living Technologies for People with Dementia. Sci. Eng. Ethics 2015, 21, 707–765. [Google Scholar] [CrossRef]
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. Discuss. 2016, 1–24. [Google Scholar] [CrossRef]
- Louis, M.S. Global Health Surveillance. Morb. Mortal. Wkly. Rep. (MMWR) 2012, 61, 15–19. [Google Scholar]
- Savel, T.G.; Foldy, S.; Centers for Disease Control and Prevention. The role of public health informatics in enhancing public health surveillance. MMWR Suppl. 2012, 61, 20–24. [Google Scholar] [PubMed]
- Navarro, J.; Vidaña-Vila, E.; Alsina-Pagès, R.M.; Hervás, M. Real-Time Distributed Architecture for Remote Acoustic Elderly Monitoring in Residential-Scale Ambient Assisted Living Scenarios. Sensors 2018, 18, 2492. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.J.; Larkin, H.; Kang, J.J.; Larkin, H. Intelligent personal health devices converged with internet of things networks. J. Mob. Multimed. 2017, 12, 197–212. [Google Scholar]
- Peetoom, K.K.; Lexis, M.A.; Joore, M.; Dirksen, C.D.; De Witte, L.P. Literature review on monitoring technologies and their outcomes in independently living elderly people. Disabil. Rehabil. Assist. Technol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Hamamreh, J.M.; Furqan, H.M.; Arslan, H. Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey. IEEE Commun. Surv. Tutor. 2018. [Google Scholar] [CrossRef]
- Dener, M.; Bostancıoğlu, C. Smart Technologies with Wireless Sensor Networks. Procedia—Soc. Behav. Sci. 2015. [Google Scholar] [CrossRef]
- Sood, S.K.; Sandhu, R.; Singla, K.; Chang, V. IoT, big data and HPC based smart flood management framework. Sustain. Comput. Inform. Syst. 2018, 20, 102–117. [Google Scholar] [CrossRef] [Green Version]
- Gill, N.S. Data Ingestion, Processing and Big Data Architecture Layers—XenonStack. Available online: https://www.stitchdata.com/resources/data-ingestion/ (accessed on 7 July 2019).
- Rei, J.; Brito, C.; Sousa, A. Assessment of an IoT Platform for Data Collection and Analysis for Medical Sensors. In Proceedings of the 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018; pp. 405–411. [Google Scholar] [CrossRef]
- Monteriù, A.; Prist, M.; Frontoni, E.; Longhi, S.; Pietroni, F.; Casaccia, S.; Scalise, L.; Cenci, A.; Romeo, L.; Berta, R.; et al. A Smart Sensing Architecture for Domestic Monitoring: Methodological Approach and Experimental Validation. Sensors 2018, 18, 2310. [Google Scholar] [CrossRef]
- Knud Lasse Lueth. The 10 Most Popular Internet of Things Applications Right Now. Available online: https://iot-analytics.com/10-internet-of-things-applications/ (accessed on 24 September 2019).
- Lehmann, S. Implementing the Urban Nexus approach for improved resource-efficiency of developing cities in Southeast-Asia. City Cult. Soc. 2018, 13, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Mena, D.M.; Papapanagiotou, I.; Yang, B. Internet of things: Survey on security. Inf. Secur. J. A Glob. Perspect. 2018, 27, 162–182. [Google Scholar] [CrossRef]
- Sadeghi, A.R.; Wachsmann, C.; Waidner, M. Security and privacy challenges in industrial internet of things. In Proceedings of the 52nd Annual Design Automation Conference on—DAC ’15, San Francisco, CA, USA, 8–12 June 2015; ACM Press: New York, NY, USA; pp. 1–6. [Google Scholar] [CrossRef]
- Cognizant. Blockchain’s Healthcare Technology Impact. 2017. Available online: https://soundcloud.com/cognizant-worldwide/impact-of-blockchain-technology-on-healthcare-codex2937 (accessed on 5 August 2019).
- Furlonger, D.; Haner, J. What Insurance CIOs Need to Know About Blockchain. 2016. Available online: https://www.gartner.com/en/documents/3321717/what-insurance-cios-need-to-know-about-blockchain (accessed on 5 August 2019).
- Office of the Privacy Commissioner of Canada. The Personal Information Protection and Electronic Documents Act (PIPEDA). Available online: https://www.priv.gc.ca/en/privacy-topics/privacy-laws-in-canada/the-personal-information-protection-and-electronic-documents-act-pipeda/ (accessed on 6 August 2019).
- Tuljapurkar, S.; Li, N.; Boe, C. A universal pattern of mortality decline in the G7 countries. Nature 2000, 405, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Ezzati, M.; Vander Hoorn, S.; Lawes, C.M.M.; Leach, R.; James, W.P.T.; Lopez, A.D.; Rodgers, A.; Murray, C.J.L. Rethinking the Diseases of Affluence Paradigm: Global Patterns of Nutritional Risks in Relation to Economic Development. PLoS Med. 2005, 2, e133. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Syndromic Surveillance (SS). 2017. Available online: https://www.cdc.gov (accessed on 6 August 2019).
- Mead, C.N. Data Interchange Standards in Healthcare IT—Computable Semantic Interoperability: Now Possible but Still Difficult, Do We Really Need a Better Mousetrap? J. Healthc. Inf. Manag. 2006, 20, 71. [Google Scholar] [PubMed]
- Cao, Q.H.; Khan, I.; Farahbakhsh, R.; Madhusudan, G.; Lee, G.M.; Crespi, N. A Trust Model for Data Sharing in Smart Cities. arXiv 2016, arXiv:1603.07524. [Google Scholar]
- TrustArc. 73% Open to Wearables at Work but Potential Privacy Issues Could Be a Concern. 2014. Available online: https://www.trustarc.com/blog/2014/10/27/wearables-at-work-privacy-concern/ (accessed on 5 August 2019).
- McGhin, T.; Choo, K.K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Daubert, J.; Wiesmaier, A.; Kikiras, P. A view on privacy & trust in IoT. In Proceedings of the 2015 IEEE International Conference on Communication Workshop, ICCW 2015, London, UK, 8–12 June 2015; pp. 2665–2670. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
M. Bublitz, F.; Oetomo, A.; S. Sahu, K.; Kuang, A.; X. Fadrique, L.; E. Velmovitsky, P.; M. Nobrega, R.; P. Morita, P. Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. Int. J. Environ. Res. Public Health 2019, 16, 3847. https://doi.org/10.3390/ijerph16203847
M. Bublitz F, Oetomo A, S. Sahu K, Kuang A, X. Fadrique L, E. Velmovitsky P, M. Nobrega R, P. Morita P. Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. International Journal of Environmental Research and Public Health. 2019; 16(20):3847. https://doi.org/10.3390/ijerph16203847
Chicago/Turabian StyleM. Bublitz, Frederico, Arlene Oetomo, Kirti S. Sahu, Amethyst Kuang, Laura X. Fadrique, Pedro E. Velmovitsky, Raphael M. Nobrega, and Plinio P. Morita. 2019. "Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things" International Journal of Environmental Research and Public Health 16, no. 20: 3847. https://doi.org/10.3390/ijerph16203847
APA StyleM. Bublitz, F., Oetomo, A., S. Sahu, K., Kuang, A., X. Fadrique, L., E. Velmovitsky, P., M. Nobrega, R., & P. Morita, P. (2019). Disruptive Technologies for Environment and Health Research: An Overview of Artificial Intelligence, Blockchain, and Internet of Things. International Journal of Environmental Research and Public Health, 16(20), 3847. https://doi.org/10.3390/ijerph16203847