The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training
Abstract
:1. Introduction
1.1. Technology Acceptance
1.2. Personal and Oorganizational Antecedents
2. Materials and Methods
2.1. Procedure and Participants
2.2. Measures
2.3. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Thinking about Your Working Situation, How Much Do You Agree with The Following Statements? |
---|
1. It is easy to get the information I neeSd |
2. When I need information, I know where to get it |
3. Professional update opportunities are adequate |
4. Provided training is adequate |
5. I can learn new things and professionally grow |
References
- Ghislieri, C.; Molino, M.; Cortese, C.G. Work and organizational psychology looks at the fourth industrial revolution: How to support workers and organizations? Front. Psychol. 2018, 9, 2365. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; World Economic Forum: Geneva, Switzerland, 2016. [Google Scholar]
- Baldassari, P.; Roux, J.D. Industry 4.0: Preparing for the future of work. People Strategy 2017, 40, 20–23. [Google Scholar]
- Franzoni, L.; Zanardini, M. Industria 4.0 in Italia e nel mondo. I Governi rilanciano il manifatturiero. In SMART MANUFACTURING; Sist. Impresa: Milano, Italy, 2017; pp. 68–72. [Google Scholar]
- Cascio, W.F.; Montealegre, R. How technology is changing work and organizations. Annu. Rev. Organ. Psychol. Organ. Behav. 2016, 3, 349–375. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A complex view of industry 4.0. Sage Open 2016, 6, 2158244016653987. [Google Scholar] [CrossRef] [Green Version]
- Marler, J.H.; Dulebohn, J.H. A model of employee self-service technology acceptance. Res. Pers. Hum. Resour. Manag. 2005, 24, 137–180. [Google Scholar] [CrossRef]
- Dulebohn, J.H. 7. Information technology implementation: The need for compensation system congruency. In Advances in Human Performance and Cognitive Engineering Research; Emerald Group Publishing Limited: Bingley, UK, 2003; Volume 3, pp. 153–185. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerisation? Technol. Forecast. Soc. Chang. 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Redden, E.S.; Elliott, L.R.; Barnes, M.J. Robots: The new teammates. In The Psychology of Workplace Technology; Coovert, M.D., Thompson, L.F., Eds.; Routledge: New York, NY, USA, 2014; pp. 185–208. [Google Scholar]
- Marler, J.H.; Liang, X.; Dulebohn, J.H. Training and effective employee information technology use. J. Manag. 2006, 32, 721–743. [Google Scholar] [CrossRef] [Green Version]
- Rothmann, S. Job satisfaction, occupational stress, burnout and work engagement as components of work-related wellbeing. SA J. Ind. Psychol. 2008, 34, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.B.; Schaufeli, W.B.; Leiter, M.P.; Taris, T.W. Work engagement: An emerging concept in occupational health psychology. Work Stress 2008, 22, 187–200. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User acceptance of computer technology: A comparison of two theoretical models. Manag. Sci. 1989, 35, 982–1003. [Google Scholar] [CrossRef] [Green Version]
- Fishbein, M.; Ajzen, I. Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research; Addison-Wesley: Reading, MA, USA, 1975. [Google Scholar]
- Venkatesh, V.; Bala, H. Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Mathieson, K.; Peacock, E.; Chin, W.W. Extending the technology acceptance model: The influence of perceived user resources. ACM SIGMIS Database DATABASE Adv. Inf. Syst. 2001, 32, 86–112. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Kaasinen, E.; Liinasuo, M.; Schmalfuß, F.; Koskinen, H.; Aromaa, S.; Heikkilä, P.; Malm, T. A worker-centric design and evaluation framework for operator 4.0 solutions that support work well-being. In Proceedings of the IFIP Working Conference on Human Work Interaction Design, Espoo, Finland, 20–21 August 2018; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef] [Green Version]
- Danna, K.; Griffin, R.W. Health and well-being in the workplace: A review and synthesis of the literature. J. Manag. 1999, 25, 357–384. [Google Scholar] [CrossRef]
- International Organization for Standardization. Ergonomics of Human-System Interaction—Part 210: Human-Centred Design for Interactive Systems, ISO 9241–210; ISO: Geneve, Switzerland, 2010. [Google Scholar]
- Schaufeli, W.B.; Salanova, M.; González-Romá, V.; Bakker, A.B. The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. J. Happiness Stud. 2002, 3, 71–92. [Google Scholar] [CrossRef]
- Bakker, A.B.; Demerouti, E. Job demands–resources theory: Taking stock and looking forward. J. Occup. Health Psychol. 2017, 22, 273–285. [Google Scholar] [CrossRef]
- Meijman, T.F.; Mulder, G. Psychological aspects of workload. In Handbook of Work and Organizational Psychology; Drenth, P.J.D., Thierry, H., de Wolff, C.J., Eds.; Psychology Press: Hove, UK, 1998; pp. 5–33. [Google Scholar]
- Deci, E.L.; Ryan, R.M. The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychol. Inq. 2000, 11, 319–338. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Taris, T.W. A critical review of the job demands-resources model: Implications for improving work and health. In Bridging Occupational, Organizational and Public Health; Bauer, G.F., Hämmig, O., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 43–68. [Google Scholar] [CrossRef]
- Bailey, C.; Madden, A.; Alfes, K.; Fletcher, L. The meaning, antecedents, and outcomes of employee engagement: A narrative synthesis. Int. J. Manag. Rev. 2017, 19, 31–53. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.B.; Schaufeli, W.B. Positive organizational behavior: Engaged employees in flourishing organizations. J. Organ. Behav. 2008, 29, 147–154. [Google Scholar] [CrossRef]
- Langford, P.H. The nature and consequences of employee engagement: Searching for a measure that maximizes the prediction of organizational outcomes. In Handbook of Employee Engagement: Perspectives, Issues, Research and Practice; Albrecht, S.L., Ed.; Elgar: Cheltenham, UK, 2010; pp. 272–279. [Google Scholar]
- Bennett, N.; Lemoine, G.J. What a difference a word makes: Understanding threats to performance in a VUCA world. Bus. Horiz. 2014, 57, 311–317. [Google Scholar] [CrossRef]
- Wiendahl, H.P.; ElMaraghy, H.A.; Nyhuis, P.; Zäh, M.F.; Wiendahl, H.H.; Duffie, N.; Brieke, M. Changeable manufacturing-classification, design and operation. CIRP Ann. 2007, 56, 783–809. [Google Scholar] [CrossRef]
- Tugade, M.M.; Fredrickson, B.L. Resilient individuals use positive emotions to bounce back from negative emotional experiences. J. Personal. Soc. Psychol. 2004, 86, 320–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazzeschi, L.; Bucci, O.; Di Fabio, A. Re-thinking innovation in organizations in the industry 4.0 scenario: New challenges in a primary prevention perspective. Front. Psychol. 2018, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Oosthuizen, R.M. Smart technology, artificial intelligence, robotics and algorithms (STARA): Employees’ perceptions and wellbeing in future workplaces. In Theory, Research and Dynamics of Career Wellbeing; Potgieter, I.L., Ferreira, N., Coetzee, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 17–40. [Google Scholar]
- Dweck, C.S. Motivational processes affecting learning. Am. Psychol. 1986, 41, 1040–1048. [Google Scholar] [CrossRef]
- DeShon, R.P.; Gillespie, J.Z. A motivated action theory account of goal orientation. J. Appl. Psychol. 2005, 90, 1096–1127. [Google Scholar] [CrossRef] [Green Version]
- Warnecke, H. The Fractal Company: A Revolution in Corporate Culture; Springer: Berlin, Germany, 1996. [Google Scholar]
- Olaniyi, E.O.; Reidolf, M. Organisational innovation strategies in the context of smart specialisation. J. Secur. Sustain. Issues 2015, 5, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.S. The Heart of Change Field Guide: Tools and Tactics for Leading Change in Your Organization; Harvard Business Press: Brighton, MA, USA, 2005. [Google Scholar]
- Jasperson, J.S.; Carter, P.E.; Zmud, R.W. A comprehensive conceptualization of post-adoptive behaviors associated with information technology enabled work systems. MIS Q. 2005, 29, 525–557. [Google Scholar] [CrossRef]
- Lorenzi, N.M.; Riley, R.T. Managing change: An overview. J. Am. Med Inform. Assoc. 2000, 7, 116–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotter, J.P. Leading Change; Harvard Business Press: Brighton, MA, USA, 2012. [Google Scholar]
- Trübswetter, A.; Zettl, A.; Glende, S. User-centred change-shaping corporate transformation with participatory design tools. In Proceedings of the International Society for Professional Innovation Management (ISPIM), Innovation Symposium, Stockholm, Sweden, 17–20 June 2018; pp. 1–16. [Google Scholar]
- World Medical Association. WMA declaration of helsinki—Ethical principles for medical research involving human subjects. In Proceedings of the 64th WMA General Assembly, Fortaleza, Brazil, October 2013.
- Demerouti, E.; Mostert, K.; Bakker, A.B. Burnout and work engagement: A thorough investigation of the independency of both constructs. J. Occup. Health Psychol. 2010, 15, 209–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, A.; Huber, A.; Minichberger, J.; Ikeda, M. First application of robot teaching in an existing industry 4.0 environment: Does it really work? Societies 2016, 6, 20. [Google Scholar] [CrossRef]
- Connor, K.M.; Davidson, J.R. Development of a new resilience scale: The Connor-Davidson resilience scale (CD-RISC). Depress. Anxiety 2003, 18, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Borgogni, L.; Petitta, L.; Barbaranelli, C. TOM–Test di Orientamento Motivazionale; O.S. Organizzazioni Speciali: Firenze, Italy, 2004. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Little, T.D.; Cunningham, W.A.; Shahar, G.; Widaman, K.F. To parcel or not to parcel: Exploring the question, weighing the merits. Struct. Equ. Modeling 2002, 9, 151–173. [Google Scholar] [CrossRef]
- Bollen, K.A.; Long, J.S. Testing Structural Equation Models; Sage: Newbury Park, CA, USA, 1993; Volume 154. [Google Scholar]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef]
- Romero, D.; Bernus, P.; Noran, O.; Stahre, J.; Fast-Berglund, Å. The operator 4. In 0: Human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. In Proceedings of the IFIP International Conference on Advances in Production Management Systems (APMS), Iguassu Falls, Brazil, 3–7 September 2016; Springer: Cham, Switzerland, 2016; pp. 677–686. [Google Scholar] [CrossRef] [Green Version]
- Hobfoll, S.E. Conservation of resources: A new attempt at conceptualizing stress. Am. Psychol. 1989, 44, 513–524. [Google Scholar] [CrossRef]
- Llorens, S.; Schaufeli, W.B.; Bakker, A.B.; Salanova, M. Does a positive gain spiral of resources, efficacy beliefs and engagement exist? Comput. Hum. Behav. 2007, 23, 825–841. [Google Scholar] [CrossRef]
- Judge, T.A.; Bono, J.E.; Erez, A.; Locke, E.A. Core self-evaluations and job and life satisfaction: The role of self-concordance and goal attainment. J. Appl. Psychol. 2005, 90, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Bakker, A.B.; Demerouti, E. Job demands–resources theory. Wellbeing A Complet. Ref. Guide 2014, 1–28. [Google Scholar] [CrossRef]
- Salanova, M.; Agut, S.; Peiro, J.M. Linking organizational resources and work engagement to employee performance and customer loyalty: The mediation of service climate. J. Appl. Psychol. 2005, 90, 1217–1227. [Google Scholar] [CrossRef] [PubMed]
- Schaufeli, W.B.; Bakker, A.B.; Salanova, M. The measurement of work engagement with a short questionnaire: A cross-national study. Educ. Psychol. Meas. 2006, 66, 701–716. [Google Scholar] [CrossRef]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Management approaches for industry 4.0: A human resource management perspective. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5309–5316. [Google Scholar]
- Finstad, G.L.; Ariza-Montes, A.; Giorgi, G.; Lecca, L.I.; Arcangeli, G.; Mucci, N. The JDCS model and blue-collar bullying: Decent working conditions for a healthy environment. Int. J. Environ. Res. Public Health 2019, 16, 3411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiarini, A.; Vagnoni, E. World-class manufacturing by Fiat. Comparison with Toyota production system from a strategic management, management accounting, operations management and performance measurement dimension. Int. J. Prod. Res. 2015, 53, 590–606. [Google Scholar] [CrossRef]
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Work engagement | 0.82 | ||||||
2. Technology acceptance | 0.32 ** | 0.76 | |||||
3. Resilience | 0.37 ** | 0.29 ** | 0.73 | ||||
4. Goal orientation | 0.44 ** | 0.31 ** | 0.50 ** | 0.78 | |||
5. Opp. for information and training | 0.50 ** | 0.23 ** | 0.25 ** | 0.24 ** | 0.81 | ||
6. Age | −0.03 | −0.16 ** | −0.10 * | −0.22 ** | 0.02 | - | |
7. Professional seniority | −0.03 | −0.15 ** | −0.12 ** | −0.17 ** | 0.02 | 0.69 ** | - |
M | 3.60 | 3.86 | 3.83 | 4.14 | 3.34 | 42.82 | 21.33 |
SD | 0.80 | 0.82 | 0.69 | 0.69 | 0.83 | 9.31 | 10.37 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1. Work engagement | 0.78/0.82 | 0.29 ** | 0.38 ** | 0.45 ** | 0.53 ** | −0.02 | −0.05 |
2. Technology acceptance | 0.39 ** | 0.75/0.77 | 0.28 ** | 0.31 ** | 0.23 ** | −0.19 ** | −0.18 ** |
3. Resilience | 0.36 ** | 0.32 ** | 0.74/0.73 | 0.50 ** | 0.24 ** | −0.08 | −0.13 * |
4. Goal orientation | 0.42 ** | 0.29 ** | 0.51 ** | 0.80/0.77 | 0.26 ** | −0.21 ** | −0.18 ** |
5. Opp. for information and training | 0.42 ** | 0.21 ** | 0.25 ** | 0.20 ** | 0.84/0.79 | 0.03 | 0.05 |
6. Age | −0.05 | −0.10 | −0.13 | −0.25 ** | −0.01 | - | 0.68 ** |
7. Professional seniority | −0.05 | −0.12 | −0.09 | −0.19 ** | −0.05 | 0.71 ** | - |
White-collar | |||||||
M | 3.84 | 3.95 | 3.84 | 4.21 | 3.42 | 43.97 | 21.33 |
SD | 0.63 | 0.67 | 0.64 | 0.59 | 0.77 | 8.67 | 10.43 |
Blue-collar | |||||||
M | 3.45 | 3.81 | 3.82 | 4.09 | 3.29 | 42.16 | 21.33 |
SD | 0.85 | 0.89 | 0.71 | 0.74 | 0.86 | 9.60 | 10.35 |
Models | χ2 | df | p | CFI | TLI | RMSEA | SRMR | AIC | Comparison | Δχ2 | p |
---|---|---|---|---|---|---|---|---|---|---|---|
M1. | 255.99 | 103 | <0.001 | 0.93 | 0.91 | 0.07 (0.05, 0.08) | 0.07 | 12,997.21 | |||
M2. | 262.53 | 102 | <0.001 | 0.92 | 0.90 | 0.07 (0.06, 0.08) | 0.08 | 13,005.76 | M2 − M1 | 6.54 | 0.011 |
M3. | 250.67 | 102 | <0.001 | 0.93 | 0.91 | 0.07 (0.05, 0.08) | 0.07 | 12,993.90 | M1 − M2 | 5.32 | 0.021 |
Indirect Effects—White-Collar | Est. | SE | p | CI 95% |
---|---|---|---|---|
Res → Tech → WE | 0.05 | 0.02 | 0.020 | (0.01, 0.12) |
Inf/Train → Tech → WE | 0.04 | 0.01 | 0.038 | (0.01, 0.06) |
Indirect Effects—Blue-Collar | Est. | SE | p | CI 95% |
Res → Tech → WE | 0.05 | 0.02 | 0.019 | (0.01, 0.10) |
Inf/Train → Tech → WE | 0.03 | 0.01 | 0.039 | (0.01, 0.05) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molino, M.; Cortese, C.G.; Ghislieri, C. The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training. Int. J. Environ. Res. Public Health 2020, 17, 2438. https://doi.org/10.3390/ijerph17072438
Molino M, Cortese CG, Ghislieri C. The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training. International Journal of Environmental Research and Public Health. 2020; 17(7):2438. https://doi.org/10.3390/ijerph17072438
Chicago/Turabian StyleMolino, Monica, Claudio G. Cortese, and Chiara Ghislieri. 2020. "The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training" International Journal of Environmental Research and Public Health 17, no. 7: 2438. https://doi.org/10.3390/ijerph17072438
APA StyleMolino, M., Cortese, C. G., & Ghislieri, C. (2020). The Promotion of Technology Acceptance and Work Engagement in Industry 4.0: From Personal Resources to Information and Training. International Journal of Environmental Research and Public Health, 17(7), 2438. https://doi.org/10.3390/ijerph17072438