U-Shaped Association between Sleep Duration, C-Reactive Protein, and Uric Acid in Korean Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Covariates
2.3. Assessment of High-Sensitivity CRP and Uric Acid Levels
2.4. Assessment of Sleep Duration
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Restricted cubic spline curve analyses: R package, version 3.4.4 (http://www.R-project.org). Code install.packages(“rms”) library(rms) rawdata=read.csv(“D:/R/sleepduration.csv”) dim(rawdata) attach(rawdata) names(rawdata) HE_hsCRP_1<-rawdata$HE_hsCRP_ HE_Uacid<-rawdata$HE_Uacid sleep duration<-rawdata$ts60 f_uni <- ols(HE_hsCRP_1~ rcs(sleep duration) data=rawdata, x=TRUE) sleep duration <- seq(0,12,2) p_uni <- Predict(f_uni, sleep duration = sleep duration) plot(p_uni,xlab=‘ sleep duration ‘, ylab=‘HS CRP’) f_uni <- ols(HE_Uacid~ rcs(ts sleep duration),data=rawdata, x=TRUE) sleep duration <- seq(0,12,2) p_uni <- Predict(f_uni, sleep duration = sleep duration) plot(p_uni,xlab=‘ sleep duration’, ylab=‘Uacid’) |
Appendix B
hsCRP | Serum Uric Acid | |||||
---|---|---|---|---|---|---|
Exp (B) | 95% CI | p-Value | Exp (B) | 95% CI | p-Value | |
Age | 1.009 | 1.003–1.015 | 0.006 | 1.015 | 1.007–1.022 | <0.001 |
BMI (kg/m2) | 1.210 | 1.182–1.238 | <0.001 | 1.157 | 1.132–1.183 | <0.001 |
Hypertension (yes) | 0.569 | 0.477–0.679 | <0.001 | 0.444 | 0.359–0.548 | <0.001 |
Diabetes mellitus (yes) | 0.452 | 0.351–0.582 | <0.001 | 0.456 | 0.337–0.616 | <0.001 |
Hypercholesterolemia (yes) | 0.751 | 0.627–0.900 | 0.002 | 0.628 | 0.504–0.782 | <0.001 |
Cardiovascular disease (yes) | 0.680 | 0.482–0.679 | 0.028 | 0.529 | 0.389–0.719 | <0.001 |
Physical activity (yes) | 1.281 | 1.053–1.557 | 0.013 | 1.019 | 0.847–1.226 | 0.840 |
Smoking (yes) | 0.712 | 0.552–0.919 | 0.009 | 0.556 | 0.419–0.739 | <0.001 |
Alcohol (yes) | 1.122 | 0.814–1.546 | 0.482 | 0.708 | 0.546–0.916 | 0.009 |
EQ5D | 0.223 | 0.124–0.400 | <0.001 | 0.213 | 0.109–0.416 | <0.001 |
PHQ-9 | 1.018 | 0.988–1.048 | 0.238 | 1.034 | 1.001–1.069 | 0.045 |
References
- Buysse, D.J. Sleep health: Can we define it? Does it matter? Sleep 2014, 37, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, A.; Charumathi, S.; Kalidindi, S. Sleep duration and self-rated health: The national health interview survey 2008. Sleep 2011, 34, 1173–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: A systematic review and dose-response meta-analysis of prospective cohort studies. J. Am. Heart Assoc. 2017, 6, e005947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wang, D.; Cao, S.; Yin, X.; Gong, Y.; Gan, Y.; Zhou, Y.; Lu, Z. Sleep duration and risk of stroke events and stroke mortality: A systematic review and meta-analysis of prospective cohort studies. Int. J. Cardiol. 2016, 223, 870–876. [Google Scholar] [CrossRef]
- Shan, Z.; Ma, H.; Xie, M.; Yan, P.; Guo, Y.; Bao, W.; Rong, Y.; Jackson, C.L.; Hu, F.B.; Liu, L. Sleep duration and risk of type 2 diabetes: A meta-analysis of prospective studies. Diabetes Care 2015, 38, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., III; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the american heart association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Castell, J.V.; Gómez-lechón, M.J.; David, M.; Fabra, R.; Trullenque, R.; Heinrich, P.C. Acute-phase response of human hepatocytes: Regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990, 12, 1179–1186. [Google Scholar] [CrossRef]
- Rifai, N.; Tracy, R.P.; Ridker, P.M. Clinical efficacy of an automated high-sensitivity c-reactive protein assay. Clin. Chem. 1999, 45, 2136–2141. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, C.M.; Lutsey, P.L.; Ballantyne, C.M.; Folsom, A.R.; Pankow, J.S.; Selvin, E. Six-year change in high-sensitivity c-reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am. Heart J. 2015, 170, 380–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Liu, J.; Li, C.; Gao, J.; Li, X.; Chen, S.; Wu, S.; Ding, H.; Fan, H.; Hou, S. Cumulative exposure to high-sensitivity c-reactive protein predicts the risk of cardiovascular disease. J. Am. Heart Assoc. 2017, 6, e005610. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, D.H.; Ha, S.K. Uric acid puzzle: Dual role as anti-oxidantand pro-oxidant. Electrolyte Blood Press. Ebp. 2014, 12, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiga, R.; Marini, M.A.; Mancuso, E.; Di Fatta, C.; Fuoco, A.; Perticone, F.; Andreozzi, F.; Mannino, G.C.; Sesti, G. Uric acid is associated with inflammatory biomarkers and induces inflammation via activating the nf-kappab signaling pathway in hepg2 cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Alper, A.B., Jr.; Chen, W.; Yau, L.; Srinivasan, S.R.; Berenson, G.S.; Hamm, L.L. Childhood uric acid predicts adult blood pressure: The bogalusa heart study. Hypertension 2005, 45, 34–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellen, P.B.; Bleyer, A.J.; Erlinger, T.P.; Evans, G.W.; Nieto, F.J.; Wagenknecht, L.E.; Wofford, M.R.; Herrington, D.M. Serum uric acid predicts incident hypertension in a biethnic cohort: The atherosclerosis risk in communities study. Hypertension 2006, 48, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekundayo, O.J.; Dell’Italia, L.J.; Sanders, P.W.; Arnett, D.; Aban, I.; Love, T.E.; Filippatos, G.; Anker, S.D.; Lloyd-Jones, D.M.; Bakris, G.; et al. Association between hyperuricemia and incident heart failure among older adults: A propensity-matched study. Int. J. Cardiol. 2010, 142, 279–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Alderman, M.H. Serum uric acid and cardiovascular mortality the nhanes i epidemiologic follow-up study, 1971–1992. National health and nutrition examination survey. JAMA 2000, 283, 2404–2410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuttle, K.R.; Short, R.A.; Johnson, R.J. Sex differences in uric acid and risk factors for coronary artery disease. Am. J. Cardiol. 2001, 87, 1411–1414. [Google Scholar] [CrossRef]
- Matsumura, K.; Ohtsubo, T.; Oniki, H.; Fujii, K.; Iida, M. Gender-related association of serum uric acid and left ventricular hypertrophy in hypertension. Circ. J. Off. J. Jpn. Circ. Soc. 2006, 70, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Chiang, J.K. Short duration of sleep is associated with elevated high-sensitivity c-reactive protein level in taiwanese adults: A cross-sectional study. J. Clin. Sleep Med. Off. Publ. Am. Acad. Sleep Med. 2014, 10, 743–749. [Google Scholar] [CrossRef]
- Ferrie, J.E.; Kivimaki, M.; Akbaraly, T.N.; Singh-Manoux, A.; Miller, M.A.; Gimeno, D.; Kumari, M.; Davey Smith, G.; Shipley, M.J. Associations between change in sleep duration and inflammation: Findings on c-reactive protein and interleukin 6 in the whitehall ii study. Am. J. Epidemiol. 2013, 178, 956–961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, M.R.; Churilla, J.R. Sleep duration and c-reactive protein in us adults. South. Med. J. 2017, 110, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Grandner, M.A.; Buxton, O.M.; Jackson, N.; Sands-Lincoln, M.; Pandey, A.; Jean-Louis, G. Extreme sleep durations and increased c-reactive protein: Effects of sex and ethnoracial group. Sleep 2013, 36, 769–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papandreou, C.; Babio, N.; Diaz-Lopez, A.; Martinez-Gonzalez, M.A.; Becerra-Tomas, N.; Corella, D.; Schroder, H.; Romaguera, D.; Vioque, J.; Alonso-Gomez, A.M.; et al. Sleep duration is inversely associated with serum uric acid concentrations and uric acid to creatinine ratio in an elderly mediterranean population at high cardiovascular risk. Nutrients 2019, 11, 761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.-J.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The korea national health and nutrition examination survey (knhanes). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlin, N.J.; Brooks, R. Eq-5d and the euroqol group: Past, present and future. Appl. Health Econ. Health Policy. 2017, 15, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Levis, B.; Benedetti, A.; Thombs, B.D. Accuracy of patient health questionnaire-9 (phq-9) for screening to detect major depression: Individual participant data meta-analysis. BMJ 2019, 365, l1476. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M. Rosuvastatin in the primary prevention of cardiovascular disease among patients with low levels of low-density lipoprotein cholesterol and elevated high-sensitivity c-reactive protein: Rationale and design of the jupiter trial. Circulation 2003, 108, 2292–2297. [Google Scholar] [CrossRef] [Green Version]
- Laskarzewski, P.M.; Khoury, P.; Morrison, J.A.; Kelly, K.; Glueck, C.J. Familial hyper- and hypouricemias in random and hyperlipidemic recall cohorts: The princeton school district family study. Metab. Clin. Exp. 1983, 32, 230–243. [Google Scholar] [CrossRef]
- Jung, Y.E.; Kang, K.Y. Elevated hs-crp level is associated with depression in younger adults: Results from the korean national health and nutrition examination survey (knhanes 2016). Psychoneuroendocrinology 2019, 109, 104397. [Google Scholar] [CrossRef]
- Stewart, S.H.; Mainous, A.G., 3rd; Gilbert, G. Relation between alcohol consumption and c-reactive protein levels in the adult us population. J. Am. Board Fam. Pract. 2002, 15, 437–442. [Google Scholar] [PubMed]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep disturbance, sleep duration, and inflammation: A systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol. Psychiatry. 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiener, R.C.; Shankar, A. Association between serum uric acid levels and sleep variables: Results from the national health and nutrition survey 2005–2008. Int. J. Inflamm. 2012, 2012, 363054. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.; Thompson, J.; Miller, C.; Gillin, J.C.; Ziegler, M. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: Clinical implications. J. Clin. Endocrinol. Metab. 1999, 84, 1979–1985. [Google Scholar] [CrossRef]
- Irwin, M.R.; Cole, S.W. Reciprocal regulation of the neural and innate immune systems. Nat. Rev. Immunol. 2011, 11, 625–632. [Google Scholar] [CrossRef]
- Sumi, T.; Umeda, Y. Adrenergic regulation of the plasma levels of purine metabolites in the rat. Eur. J. Pharmacol. 1977, 46, 243–247. [Google Scholar] [CrossRef]
- Yonetani, Y.; Ishii, M.; Ogawa, Y. Stimulation by catecholamine of purine catabolism in rats and chickens. Jpn. J. Pharmacol. 1979, 29, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Leproult, R.; Van Cauter, E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr. Dev. 2010, 17, 11–21. [Google Scholar]
- Wen, Y.; Pi, F.H.; Guo, P.; Dong, W.Y.; Xie, Y.Q.; Wang, X.Y.; Xia, F.F.; Pang, S.J.; Wu, Y.C.; Wang, Y.Y.; et al. Sleep duration, daytime napping, markers of obstructive sleep apnea and stroke in a population of southern china. Sci. Rep. 2016, 6, 34689. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Shi, G. Editorial: Regulation of inflammation in chronic disease. Front. Immunol. 2019, 10, 737. [Google Scholar] [CrossRef] [Green Version]
- Matthews, K.A.; Schott, L.L.; Bromberger, J.T.; Cyranowski, J.M.; Everson-Rose, S.A.; Sowers, M. Are there bi-directional associations between depressive symptoms and c-reactive protein in mid-life women? Brain Behav. Immun. 2010, 24, 96–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tayefi, M.; Shafiee, M.; Kazemi-Bajestani, S.M.R.; Esmaeili, H.; Darroudi, S.; Khakpouri, S.; Mohammadi, M.; Ghaneifar, Z.; Azarpajouh, M.R.; Moohebati, M.; et al. Depression and anxiety both associate with serum level of hs-crp: A gender-stratified analysis in a population-based study. Psychoneuroendocrinology 2017, 81, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaisance, E.P.; Grandjean, P.W. Physical activity and high-sensitivity c-reactive protein. Sports Med. 2006, 36, 443–458. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Durstine, J.L.; Yanowitz, F.G.; Lim, T.; DuBose, K.D.; Davis, P.; Ainsworth, B.E. Cardiorespiratory fitness and c-reactive protein among a tri-ethnic sample of women. Circulation 2002, 106, 403–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sleep Duration | ||||||
---|---|---|---|---|---|---|
< 6 h | 6–7 h | 7–8 h | 8–9 h | ≥ 9 h | p-Value | |
N | 840 | 1471 | 1939 | 1289 | 612 | |
Age | 52.7 ± 0.8 | 48.9 ± 0.6 | 47.1 ± 0.5 | 46.4 ± 0.6 | 48.7 ± 1.1 | <0.001 |
BMI (kg/m2) | 24.3 ± 0.2 | 23.4 ± 0.1 | 23.3 ± 0.1 | 23.1 ± 0.1 | 23.3 ± 0.2 | <0.001 |
SBP (mmHg) | 118.0 ± 0.6 | 115.9 ± 0.6 | 114.4 ± 0.5 | 113.8 ± 0.8 | 114.6 ± 0.7 | <0.001 |
DBP (mmHg) | 74.5 ± 0.4 | 74.3 ± 0.2 | 73.1 ± 0.3 | 72.7 ± 0.3 | 72.1 ± 0.4 | <0.001 |
Glucose (mg/dL) | 101.9 ± 1.2 | 97.7 ± 0.6 | 96.4 ± 0.6 | 97.0 ± 0.7 | 98.4 ± 0.9 | <0.001 |
HbA1c (%) | 5.8 ± 0.0 | 5.6 ± 0.0 | 5.6 ± 0.0 | 5.6 ± 0.0 | 5.6 ± 0.0 | <0.001 |
Total cholesterol (mg/dL) | 198.5 ± 1.7 | 196.2 ± 1.1 | 193.2 ± 1.1 | 192.8 ± 1.0 | 196.0 ± 1.8 | 0.030 |
hsCRP (mg/L) | 1.23 ± 0.08 | 1.02 ± 0.05 | 1.02 ± 0.05 | 1.06 ± 0.04 | 1.26 ± 0.09 | 0.057 |
SUA (mg/dL) | 4.53 ± 0.04 | 4.35 ± 0.03 | 4.35 ± 0.02 | 4.33 ± 0.04 | 4.42 ± 0.05 | 0.002 |
Hypertension (yes) † | 32.2 (2.3) | 22.9 (1.3) | 21.6 (1.3) | 21.0 (1.4) | 25.9 (2.3) | <0.001 |
Diabetes (yes) † | 13.9 (1.5) | 9.3 (0.9) | 8.0 (0.9) | 9.5 (0.8) | 9.8 (1.3) | 0.001 |
Cardiovascular diseases (yes) † | 2.8 (0.6) | 2.8 (0.4) | 3.0 (0.4) | 3.2 (0.6) | 4.1 (0.9) | 0.594 |
Hypercholesterolemia (yes) † | 27.1 (1.7) | 24.1 (1.2) | 20.6 (1.0) | 19.9 (1.3) | 19.8 (1.8) | 0.001 |
Smoking (yes) † | 13.0 (1.1) | 9.8 (1.1) | 9.4 (0.7) | 8.4 (0.8) | 14.1 (1.6) | 0.002 |
Alcohol (yes) † | 14.2 (1.2) | 10.2 (0.8) | 13.2 (0.7) | 12.3 (1.0) | 13.4 (1.5) | 0.047 |
Physical activity (yes) † | 44.0 (1.8) | 46.3 (1.6) | 45.6 (1.6) | 44.1 (1.6) | 33.7 (2.4) | 0.001 |
EQ5D | 0.93 ± 0.01 | 0.95 ± 0.00 | 0.95 ± 0.00 | 0.95 ± 0.00 | 0.93 ± 0.01 | <0.001 |
PHQ-9 | 4.0 ± 0.3 | 2.8 ± 0.2 | 3.1 ± 0.1 | 3.0 ± 0.2 | 3.7 ± 0.3 | <0.001 |
Sleep Duration | |||||
---|---|---|---|---|---|
< 6 h | 6–7 h | 7–8 h | 8–9 h | ≥ 9 h | |
Model 1 | 1.48 (1.11–1.97) | 1.10 (0.88–1.38) | Ref (1) | 1.26 (0.99–1.59) | 1.41 (1.04–1.90) |
Model 2 | 1.20 (0.89–1.62) | 1.09 (0.86–1.39) | Ref (1) | 1.32 (1.06–1.65) | 1.48 (1.10–1.99) |
Model 3 | 1.28 (0.93–1.77) | 1.14 (0.87–1.45) | Ref (1) | 1.37 (1.10–1.72) | 1.42 (1.04–1.93) |
Model 4 | 1.43 (0.95–2.16) | 1.19 (0.87–1.64) | Ref (1) | 1.21 (0.87–1.70) | 1.64 (1.09–2.48) |
Sleep Duration | |||||
---|---|---|---|---|---|
< 6 h | 6–7 h | 7–8 h | 8–9 h | ≥ 9 h | |
Model 1 | 2.07 (1.53–2.81) | 1.35 (1.02–1.78) | Ref (1) | 1.42 (0.98–2.06) | 1.74 (1.27–2.39) |
Model 2 | 1.74 (1.30–2.33) | 1.33 (1.01–1.75) | Ref (1) | 1.49 (1.02–2.17) | 1.78 (1.29–2.46) |
Model 3 | 1.81 (1.37–2.37) | 1.40 (1.05–1.86) | Ref (1) | 1.60 (1.10–2.35) | 1.82 (1.34–2.49) |
Model 4 | 1.54 (1.04–2.26) | 1.13 (0.79–1.62) | Ref (1) | 1.35 (0.95–1.94) | 1.94 (1.27–2.96) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-C.; Son, D.-H.; Kwon, Y.-J. U-Shaped Association between Sleep Duration, C-Reactive Protein, and Uric Acid in Korean Women. Int. J. Environ. Res. Public Health 2020, 17, 2657. https://doi.org/10.3390/ijerph17082657
Lee Y-C, Son D-H, Kwon Y-J. U-Shaped Association between Sleep Duration, C-Reactive Protein, and Uric Acid in Korean Women. International Journal of Environmental Research and Public Health. 2020; 17(8):2657. https://doi.org/10.3390/ijerph17082657
Chicago/Turabian StyleLee, Yea-Chan, Da-Hye Son, and Yu-Jin Kwon. 2020. "U-Shaped Association between Sleep Duration, C-Reactive Protein, and Uric Acid in Korean Women" International Journal of Environmental Research and Public Health 17, no. 8: 2657. https://doi.org/10.3390/ijerph17082657
APA StyleLee, Y. -C., Son, D. -H., & Kwon, Y. -J. (2020). U-Shaped Association between Sleep Duration, C-Reactive Protein, and Uric Acid in Korean Women. International Journal of Environmental Research and Public Health, 17(8), 2657. https://doi.org/10.3390/ijerph17082657