Analyzing Spanish News Frames on Twitter during COVID-19—A Network Study of El País and El Mundo
Abstract
:1. Introduction
2. Literature Review
2.1. Framing and Health Communication
2.2. Framing in Spanish News Media
2.3. Methodological Background
3. Methods
4. Results and Discussion
4.1. El País
4.2. El Mundo
4.3. Comparative Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19-11 March 2020. Available online: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 30 March 2020).
- Masip, P.; Aran-Ramspott, S.; Ruiz-Caballero, C.; Suau, J.; Almenar, E.; Puertas-Graell, D. Consumo informativo y cobertura mediática durante el confinamiento por el Covid-19: Sobreinformación, sesgo ideológico y sensacionalismo. El Prof. La Inf. 2020, 29. [Google Scholar] [CrossRef]
- Lee, A.Y.L. Between Global and Local: The Glocalization of Online News Coverage on the Trans-regional Crisis of SARS. Asian J. Commun. 2005, 15, 255–273. [Google Scholar] [CrossRef]
- Nguyen, A.; Western, M. The complementary relationship between the Internet and traditional mass media: The case of online news and information. Inf. Res. 2006, 11, 151–183. [Google Scholar]
- Zhang, X.; Bie, B.; Billings, A.C. Newspaper Ebola articles differ from Twitter updates. Newsp. Res. J. 2017, 38, 497–511. [Google Scholar] [CrossRef]
- Guo, L. The Application of Social Network Analysis in Agenda Setting Research: A Methodological Exploration. J. Broadcast. Electron. Media 2012, 56, 616–631. [Google Scholar] [CrossRef]
- Baumgartner, F.R.; Chaqués Bonafont, L. All news is bad news: Newspaper coverage of political parties in Spain. Polit. Commun. 2015, 32, 268–291. [Google Scholar] [CrossRef] [Green Version]
- Widlak, E.; i Pont Sorribes, C.; i Guillamet Lloveras, J. The Media portrayal of Queen Sofia of Greece in Spanish newspapers. Analysis of the press coverage of Queen Sofia in El País and El Mundo, May 2011 to August 2012. Comun. Rev. Recer. i D’anàlisi 2016, 33, 75–92. [Google Scholar]
- Hallin, D.C.; Papathanassopoulos, S. Political clientelism and the media: Southern Europe and Latin America in comparative perspective. Media Cult. Soc. 2002, 24, 175–195. [Google Scholar] [CrossRef]
- Catalan-Matamoros, D.; Do Nascimento, B.G.; Langbecker, A. Visual content published by the press during a health crisis: The case of ebola, spain, 2014. Interface Commun. Health Educ. 2020, 24, e190271. [Google Scholar] [CrossRef] [Green Version]
- Barberá-González, R.; Cambra-Cuesta, U. El virus del ébola: Análisis de su comunicación de crisis en España. Opción Rev. Ciencias Humanas y Soc. 2015, 31, 67–86. [Google Scholar]
- Ballester, M.C.C.; Villafranca, P.L. The impact of the ebola virus and rare diseases in the media and the perception of risk in Spain. Catalan J. Commun. Cult. Stud. 2016, 8, 245–263. [Google Scholar] [CrossRef]
- Guo, L.; Chen, Y.-N.K.; Vu, H.; Wang, Q.; Aksamit, R.; Guzek, D.; Jachimowski, M.; McCombs, M. Coverage of the Iraq War in the United States, Mainland China, Taiwan and Poland. J. Stud. 2015, 16, 343–362. [Google Scholar] [CrossRef]
- Guo, L.; Mays, K.; Wang, J. Whose Story Wins on Twitter? Visualizing the South China Sea Dispute. J. Stud. 2019, 20, 563–584. [Google Scholar] [CrossRef]
- Scheufele, D.A.; Tewksbury, D. Framing, Agenda Setting, and Priming: The Evolution of Three Media Effects Models. J. Commun. 2007, 57, 9–20. [Google Scholar] [CrossRef]
- Entman, R.M. Framing: Toward Clarification of a Fractured Paradigm. J. Commun. 1993, 43, 51–58. [Google Scholar] [CrossRef]
- Price, V.; Tewksbury, D.; Powers, E. Switching Trains of Thought: The Impact of News Frames on Readers’ Cognitive Responses. Communic. Res. 1997, 24, 481–506. [Google Scholar] [CrossRef]
- Lee, S.T.; Basnyat, I. From Press Release to News: Mapping the Framing of the 2009 H1N1 A Influenza Pandemic. Health Commun. 2013, 28, 119–132. [Google Scholar] [CrossRef]
- Berry, T.R.; Wharf-Higgins, J.; Naylor, P.J. SARS Wars: An Examination of the Quantity and Construction of Health Information in the News Media. Health Commun. 2007, 21, 35–44. [Google Scholar] [CrossRef]
- Basnyat, I.; Lee, S.T. Framing of Influenza A (H1N1) pandemic in a Singaporean newspaper. Health Promot. Int. 2015, 30, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Shih, T.-J.; Wijaya, R.; Brossard, D. Media Coverage of Public Health Epidemics: Linking Framing and Issue Attention Cycle Toward an Integrated Theory of Print News Coverage of Epidemics. Mass Commun. Soc. 2008, 11, 141–160. [Google Scholar] [CrossRef]
- Santos-Diez, M.T.; Camacho-Markina, I. Treatment of cannabis in the Spanish press. Cuadernos. Info 2017, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Lázaro-Rodríguez, P.; Herrera-Viedma, E. Noticias sobre Covid-19 y 2019-nCoV en medios de comunicación de España: El papel de los medios digitales en tiempos de confinamiento. El Prof. La Inf. 2020, 29. [Google Scholar] [CrossRef]
- Guo, L.; Vargo, C.J.; Pan, Z.; Ding, W.; Ishwar, P. Big Social Data Analytics in Journalism and Mass Communication. J. Mass Commun. Q. 2016, 93, 332–359. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Davison, B.D. Empirical study of topic modeling in Twitter. In Proceedings of the First Workshop on Social Media Analytics, Washington, DC, USA, 25 July 2010; ACM Press: New York, NY, USA, 2010; pp. 80–88. [Google Scholar]
- Ramage, D.; Dumais, S.; Liebling, D. Characterizing Microblogs with Topic Models. In Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media, Washington, DC, USA, 23–26 May 2010; AAAI Press: Menlo Park, CA, USA, 2010; pp. 130–137. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet Allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Daud, A.; Li, J.; Zhou, L.; Muhammad, F. Knowledge discovery through directed probabilistic topic models: A survey. Front. Comput. Sci. China 2010, 4, 280–301. [Google Scholar] [CrossRef]
- Heidenreich, T.; Lind, F.; Eberl, J.-M.; Boomgaarden, H.G. Media Framing Dynamics of the ‘European Refugee Crisis’: A Comparative Topic Modelling Approach. J. Refug. Stud. 2019, 32, 172–182. [Google Scholar] [CrossRef]
- Poirier, W.; Ouellet, C.; Rancourt, M.A.; Béchard, J.; Dufresne, Y. (Un)covering the COVID-19 pandemic: Framing analysis of the crisis in Canada. Can. J. Polit. Sci. 2020, 1–7. [Google Scholar] [CrossRef]
- Lim, S.; Berry, F.S.; Lee, K.-H. Stakeholders in the Same Bed with Different Dreams: Semantic Network Analysis of Issue Interpretation in Risk Policy Related to Mad Cow Disease. J. Public Adm. Res. Theory 2016, 26, 79–93. [Google Scholar] [CrossRef]
- Fu, J.S.; Zhang, R. NGOs’ HIV/AIDS Discourse on Social Media and Websites: Technology Affordances and Strategic Communication Across Media Platforms. Int. J. Commun. 2019, 13, 181–205. [Google Scholar]
- Kang, G.J.; Ewing-Nelson, S.R.; Mackey, L.; Schlitt, J.T.; Marathe, A.; Abbas, K.M.; Swarup, S. Semantic network analysis of vaccine sentiment in online social media. Vaccine 2017, 35, 3621–3638. [Google Scholar] [CrossRef] [PubMed]
- Bail, C.A. Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media. Proc. Natl. Acad. Sci. USA 2016, 113, 11823–11828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boy, J.; Foote, J.; pyup.io bot. jboynyc/textnets: Textnets version 0.4.9 (Version V0.4.9). Zenodo 2020. [Google Scholar] [CrossRef]
- Rajaraman, A.; Ullman, J.D. Data Mining. In Mining of Massive Datasets; Cambridge University Press: Cambridge, UK, 2011; pp. 1–17. ISBN 9781107737419. [Google Scholar]
- Yu, J. Open Access Institutional and News Media Tweet Dataset for COVID-19 Social Science Research. arXiv 2020. Available online: https://arxiv.org/abs/2004.01791 (accessed on 3 May 2020).
- Nothman, J.; Qin, H.; Yurchak, R. Stop Word Lists in Free Open-source Software Packages. In Proceedings of the Workshop for NLP Open Source Software (NLP-OSS), Melbourne, Vic, Australia, 20 July 2018; Association for Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 7–12. [Google Scholar]
- Grün, B.; Hornik, K. Topicmodels: An r package for fitting topic models. J. Stat. Softw. 2011, 40, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Steinskog, A.; Therkelsen, J.; Gambäck, B. Twitter Topic Modeling by Tweet Aggregation. In Proceedings of the the 21st Nordic Conference on Computational Linguistics, Gothenburg, Sweden, 22–24 May 2017; Association for Computational Linguistics: Gothenburg, Sweden, 2017; pp. 77–86. [Google Scholar]
- Phan, X.-H.; Nguyen, C.-T. GibbsLDA++: A C/C++ Implementation of Latent Dirichlet Allocation (LDA) 2007. Available online: http://gibbslda.sourceforge.net/ (accessed on 20 July 2020).
- Poblete, B.; Guzman, J.; Maldonado, J.; Tobar, F. Robust Detection of Extreme Events Using Twitter: Worldwide Earthquake Monitoring. IEEE Trans. Multimed. 2018, 20, 2551–2561. [Google Scholar] [CrossRef]
- Xiang, G.; Fan, B.; Wang, L.; Hong, J.; Rose, C. Detecting offensive tweets via topical feature discovery over a large scale twitter corpus. In Proceedings of the ACM International Conference Proceeding Series, Maui, HA, USA, 29 October–2 November 2012; ACM Press: New York, NY, USA, 2012; pp. 1980–1984. [Google Scholar]
- Ahmed, S.; Jaidka, K.; Cho, J. The 2014 Indian elections on Twitter: A comparison of campaign strategies of political parties. Telemat. Inform. 2016, 33, 1071–1087. [Google Scholar] [CrossRef]
- van Ravenzwaaij, D.; Cassey, P.; Brown, S.D. A simple introduction to Markov Chain Monte–Carlo sampling. Psychon. Bull. Rev. 2018, 25, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Pan, P.-L.; Meng, J. Media Frames across Stages of Health Crisis: A Crisis Management Approach to News Coverage of Flu Pandemic. J. Contingencies Cris. Manag. 2016, 24, 95–106. [Google Scholar] [CrossRef]
- Barrat, A.; Barthélemy, M.; Pastor-Satorras, R.; Vespignani, A. The architecture of complex weighted networks. Proc. Natl. Acad. Sci. USA 2004, 101, 3747–3752. [Google Scholar] [CrossRef] [Green Version]
- Viejo, M. Desescalada: Así llega Madrid a la fase 1: Paro disparado, sin turistas y con miles de ciudadanos en las colas del hambre. El País. 25 May 2020. Available online: https://elpais.com/espana/madrid/2020-05-23/asi-llega-madrid-a-la-fase-1-paro-disparado-sin-turistas-y-con-miles-de-ciudadanos-en-las-colas-del-hambre.html. (accessed on 14 June 2020).
Livelihood | Public Health Professional | Pandemic Update | Madrid |
years | simon | spain | madrid |
life | public | country | pass |
live | mask | death | week |
child | fernando | hour | confinement |
leave | change | contagion | exit |
son/daughter | should | die | common |
family | form | data | phase |
Politics | State of Alarm | Economy | Covid Information |
police | government | crisis | person |
think | sanchez | million | pandemic |
inform | doctor | month | sanitary |
question | minister | arrive | world |
politics | alarm | spanish | virus |
video | health | work | hospital |
ask | president | economy | covid |
News Frames | Pre-Crisis Period | Lockdown Period | Recovery Period | ||||||
---|---|---|---|---|---|---|---|---|---|
S | N | P | S | N | P | S | N | P | |
Livelihood | 2583.42 | 633 | 26.3% | 5907.56 | 1625 | 18.1% | 2808.26 | 618 | 18.4% |
Public Health Professional | 1414.49 | 356 | 14.8% | 3857.47 | 1320 | 14.7% | 2253.56 | 554 | 16.5% |
Pandemic Update | 1191.59 | 320 | 13.3% | 2694.64 | 1226 | 13.6% | 1317.59 | 368 | 11.0% |
Madrid | 915.14 | 206 | 8.6% | 3436.31 | 1050 | 11.7% | 1858.97 | 447 | 13.3% |
Politics | 1611.72 | 306 | 12.7% | 3450.10 | 945 | 10.5% | 2352.80 | 470 | 14.0% |
State of Alarm | 620.85 | 185 | 7.7% | 2623.05 | 1107 | 12.3% | 1452.55 | 389 | 11.6% |
Economy | 1087.55 | 229 | 9.5% | 2631.96 | 791 | 8.8% | 1199.97 | 265 | 7.9% |
Covid Information | 744.08 | 169 | 7.0% | 2826.89 | 907 | 10.1% | 996.43 | 249 | 7.4% |
Pre-Crisis Period | Lockdown Period | Recovery Period | |||
---|---|---|---|---|---|
Edge name | Edge weight | Edge name | Edge weight | Edge name | Edge weight |
Livelihood–Politics | 766.78 | Livelihood–Politics | 1273.50 | Livelihood–Politics | 738.83 |
Livelihood–Economy | 468.20 | Livelihood–Madrid | 1052.63 | Livelihood–Public Health Professional | 536.00 |
Livelihood–Public Health Professional | 463.99 | Livelihood–Public Health Professional | 956.40 | Livelihood–Madrid | 431.43 |
Livelihood–Madrid | 321.80 | Livelihood–Covid Information | 800.83 | Madrid–Public Health Professional | 405.91 |
Covid Information–Pandemic Update | 290.59 | Livelihood–Economy | 728.75 | Politics–State of Alarm | 386.56 |
Madrid | State of Alarm | Lockdown | Covid Information |
madrid | government | confinement | world |
pass | sanchez | person | country |
common | alarm | doctor | pandemic |
phase | pedro | leave | inform |
health | ask | social | virus |
week | president | secure/insurance | china |
de-escalation | announcement | quarantine | port |
Economy | Pandemic Update | Hospital | Politics |
sanitary | spain | years | minister |
crisis | death | hospital | police |
million | case | death | iglesias |
spanish | covid | patient | pablo |
mask | contagion | doctor | investigation |
economy | die | resident | press |
euro | italy | child | civil |
News Frames | Pre-Crisis Period | Lockdown Period | Recovery Period | ||||||
---|---|---|---|---|---|---|---|---|---|
S | N | P | S | N | P | S | N | P | |
Madrid | 1339.36 | 537 | 19.4% | 3073.28 | 1389 | 17.6% | 1713.88 | 694 | 21.9% |
State of Alarm | 1174.63 | 450 | 16.2% | 2274.25 | 1126 | 14.2% | 1407.71 | 542 | 17.1% |
Lockdown | 1177.45 | 426 | 15.4% | 2616.23 | 1210 | 15.3% | 1058.93 | 391 | 12.3% |
Covid Information | 688.13 | 319 | 11.5% | 1760.66 | 958 | 12.1% | 856.27 | 373 | 11.8% |
Economy | 482.75 | 200 | 7.2% | 2039.09 | 927 | 11.7% | 797.00 | 299 | 9.4% |
Pandemic Update | 714.74 | 296 | 10.7% | 1212.13 | 806 | 10.2% | 725.14 | 316 | 10.0% |
Hospital | 619.37 | 271 | 9.8% | 1562.08 | 871 | 11.0% | 615.52 | 245 | 7.7% |
Politics | 768.16 | 271 | 9.8% | 1164.04 | 622 | 7.9% | 846.89 | 308 | 9.7% |
Pre-Crisis Period | Lockdown Period | Recovery Period | |||
---|---|---|---|---|---|
Edge name | Edge weight | Edge name | Edge weight | Edge name | Edge weight |
Madrid–Lockdown | 339.38 | Madrid–Lockdown | 744.75 | Madrid–State of Alarm | 455.67 |
Madrid–State of Alarm | 276.40 | Madrid–State of Alarm | 560.53 | Madrid–Lockdown | 314.04 |
Lockdown–State of Alarm | 240.89 | Madrid–Economy | 502.84 | Politics–State of Alarm | 244.29 |
Politics–State of Alarm | 239.43 | Lockdown–State of Alarm | 436.85 | Madrid–Economy | 229.17 |
Madrid–Pandemic Update | 178.53 | Economy–State of Alarm | 429.68 | Madrid–Pandemic Update | 214.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Lu, Y.; Muñoz-Justicia, J. Analyzing Spanish News Frames on Twitter during COVID-19—A Network Study of El País and El Mundo. Int. J. Environ. Res. Public Health 2020, 17, 5414. https://doi.org/10.3390/ijerph17155414
Yu J, Lu Y, Muñoz-Justicia J. Analyzing Spanish News Frames on Twitter during COVID-19—A Network Study of El País and El Mundo. International Journal of Environmental Research and Public Health. 2020; 17(15):5414. https://doi.org/10.3390/ijerph17155414
Chicago/Turabian StyleYu, Jingyuan, Yanqin Lu, and Juan Muñoz-Justicia. 2020. "Analyzing Spanish News Frames on Twitter during COVID-19—A Network Study of El País and El Mundo" International Journal of Environmental Research and Public Health 17, no. 15: 5414. https://doi.org/10.3390/ijerph17155414
APA StyleYu, J., Lu, Y., & Muñoz-Justicia, J. (2020). Analyzing Spanish News Frames on Twitter during COVID-19—A Network Study of El País and El Mundo. International Journal of Environmental Research and Public Health, 17(15), 5414. https://doi.org/10.3390/ijerph17155414