Knowledge Assessment of COVID-19 Symptoms: Gender Differences and Communication Routes for the Generation Z Cohort
Abstract
:1. Introduction
- RQ1: Do young people believe that they are familiar with the symptoms of COVID-19?
- RQ2: Do young people want to learn more about the transmission patterns of the virus, its spread, and its symptoms?
- RQ3: Do male and female subjects express the same level of self-assessed knowledge regarding the symptoms of COVID-19?
- RQ4: What marketing communication techniques should be implemented in order to increase young people’s awareness of COVID-19 symptoms?
- It provides insights from a generational cohort that has not been studied (to our knowledge) regarding the COVID-19 disease. While one article has been found that deals with generational differences, it focuses solely on perceptions of food health-risk and attitudes toward organic food and game meat during the COVID-19 crisis in China [39]. Though, that article does not deal with COVID-19 symptoms and deals with generations and not generational cohorts.
- It studies self-assessed knowledge of COVID-19 symptoms, which is at present an understudied issue (42 academic papers exist to our knowledge). While COVID-19 is subject to extensive ongoing research, areas of main focus as regards individuals’ behavior mainly focus on the psychological impact of COVID-19, impact on work and telework, and protective measures that citizens comply with, e.g., [20,40,41,42,43,44,45,46].
- It provides an in-depth insight of research referring to young people’s self-assessed knowledge regarding the symptoms of COVID-19, an understudied topic too. Specifically, only three peer-reviewed academic research papers were found that examine young peoples’ knowledge of COVID-19 [47,48,49]. In these three papers, the majority used a sample of university students, drawn from health care and non-healthcare areas of study. The present research’s main criteria for inclusion were not to be employed in the health-care domain or be students in any healthcare school or department.
- It examines young peoples’ interest in learning more about COVID-19 symptoms as well as SARS-CoV-2 virus transmission and spread, two issues that to our knowledge have not been dealt with.
- It offers a detailed reflection of the youngest adult generation cohort’s behavior in crises situations, since information and risk knowledge can influence behavior [50]
- It explores gender differences of individuals of the generation Z cohort regarding self-assessed knowledge connected to COVID-19 symptoms, which to our knowledge has not been studied yet. While gender differences regarding various issues connected to COVID-19 has been investigated, no research has been found to be focused on gender differences from the specific generation cohort and COVID-19 self-assessed symptom knowledge.
2. Materials and Methods
2.1. Research Design
2.2. Measures
3. Results
3.1. Sample Profile
3.2. Self-Reported Knowledge Assessment-RQ1/Main Aim of the Study
3.3. Willingness to Learn about COVID-19 Symptoms-RQ2/Objective N.1
3.4. Gender Differences-RQ3/Objective N.2
4. Discussion
4.1. Self-Assessed Knowledge of COVID-19 Symptoms (RQ1-Aim of Study)
4.2. Interest in Obtaining Information Regarding COVID-19 (RQ2-Objective N.1)
4.3. Gender Differences (RQ3-Objective N.2)
4.4. Marketing Communication Routes Targeting Male and Females (RQ4/Objective N.3)
4.5. Limitations and Directions for Future Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- JHU. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at John Hopkins University. 2020. Available online: http://coronavirus.jhu.edu/map.html (accessed on 9 September 2020).
- Guan, W.-J.; Ni, Z.-Y.; Hu, Y.; Liang, W.-H.; Ou, C.-Q.; He, J.-X.; Liu, L.; Shan, H.; Lei, C.-L.; Hui, D.S.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- WHO. World Health Organization. Coronavirus Disease (COVID-19) Outbreak. 2019. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 20 January 2020).
- Gandhi, R.T.; Lynch, J.B.; Del Rio, C. Mild or Moderate Covid-19. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.; Lau, E.; Wong, J.; et al. Faculty Opinions recommendation of Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- McMichael, T.M.; Currie, D.W.; Clark, S.; Pogosjans, S.; Kay, M.; Schwartz, N.G.; Lewis, J.; Baer, A.; Kawakami, V.; Lukoff, M.D.; et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N. Engl. J. Med. 2020, 382, 2005–2011. [Google Scholar] [CrossRef]
- Hindson, J. COVID-19: Faecal–oral transmission? Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 259. [Google Scholar] [CrossRef]
- Gu, J.; Han, B.; Wang, J. COVID-19: Gastrointestinal Manifestations and Potential Fecal–Oral Transmission. Gastroenterol. 2020, 158, 1518–1519. [Google Scholar] [CrossRef]
- Yeo, C.; Kaushal, S.; Yeo, D. Enteric involvement of coronaviruses: Is faecal–oral transmission of SARS-CoV-2 possible? Lancet Gastroenterol. Hepatol. 2020, 5, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.W.X.; Tan, Y.K.; Chia, P.Y.; Lee, T.H.; Ng, O.-T.; Wong, M.S.Y.; Marimuthu, K. Air, Surface Environmental, and Personal Protective Equipment Contamination by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) From a Symptomatic Patient. JAMA 2020, 323, 1610. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.W.; Wu, X.X.; Jiang, X.G.; Xu, K.J.; Ying, L.J.; Ma, C.L.; Li, S.B.; Wang, H.Y.; Zhang, S.; Gao, H.N.; et al. Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ 2020, 368, m606. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; et al. Epidemiological and Clinical Characteristics of 99 Cases of 2019-Novel Coronavirus (2019-nCoV) Pneumonia in Wuhan, China. SSRN Electron. J. 2020, 395, 507–513. [Google Scholar] [CrossRef]
- Mclntosh, K.; Hirsch, M.S.; Bloom, A. Coronavirus Disease 2019 (COVID-19): Epidemiology, Virology, Clinical Features, Diagnosis, and Prevention. Available online: https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-epidemiology-virology-clinicalfeatures-diagnosis-and-prevention (accessed on 8 May 2020).
- Young, B.; Ong, S.W.X.; Kalimuddin, S.; Low, J.G.; Tan, S.Y.; Loh, J.; Ng, O.-T.; Marimuthu, K.; Ang, L.W.; Mak, T.M.; et al. Epidemiologic Features and Clinical Course of Patients Infected With SARS-CoV-2 in Singapore. JAMA 2020, 323, 1488–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescure, F.-X.; Bouadma, L.; Nguyen, D.; Parisey, M.; Wicky, P.-H.; Behillil, S.; Gaymard, A.; Bouscambert-Duchamp, M.; Donati, F.; Le Hingrat, Q.; et al. Clinical and virological data of the first cases of COVID-19 in Europe: A case series. Lancet Infect. Dis. 2020, 20, 697–706. [Google Scholar] [CrossRef] [Green Version]
- Lokuge, K.; Banks, E.; Davis, S.; Roberts, L.; Street, T.; O’Donovan, D.; Caleo, G.; Glass, K. Exit strategies: Optimising feasible surveillance for detection, elimination and ongoing prevention of COVID-19 community transmission. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Goyal, P.; Choi, J.J.; Pinheiro, L.C.; Schenck, E.J.; Chen, R.; Jabri, A.; Satlin, M.J.; Campion, T.R.; Nahid, M.; Ringel, J.B.; et al. Clinical Characteristics of Covid-19 in New York City. N. Engl. J. Med. 2020, 382, 2372–2374. [Google Scholar] [CrossRef]
- Kamenidou, I.; Stavrianea, A.; Liava, C. Achieving a Covid-19 Free Country: Citizens Preventive Measures and Communication Pathways. Int. J. Environ. Res. Public Health 2020, 17, 4633. [Google Scholar] [CrossRef]
- Strauss, W.; Howe, N.; Generation, Z. 2020. Available online: http://incomeresult.com/generation-z/#cite_note-McCrindleAU-27 (accessed on 7 August 2020).
- McCrindle, M.; Wolfinger, E. The ABC of XYZ: Understanding the Global Generations; UNSW Press: Sydney, Australia, 2011. [Google Scholar]
- Lambert-Pandraud, R.; Laurent, G.; Lapersonne, E. Repeat Purchasing of New Automobiles by Older Consumers: Empirical Evidence and Interpretations. J. Mark. 2005, 69, 97–113. [Google Scholar] [CrossRef]
- Yoon, C. Age Differences in Consumers’ Processing Strategies: An Investigation of Moderating Influences. J. Consum. Res. 1997, 24, 329–342. [Google Scholar] [CrossRef]
- Weiss, M. To be about to be. Am. Demogr. 2003, 25, 28–36. [Google Scholar]
- Ryder, N.B. The Cohort as a Concept in the Study of Social Change. Am. Sociol. Rev. 1965, 30, 843. [Google Scholar] [CrossRef] [PubMed]
- Eastman, J.K.; Iyer, R.; Thomas, S.P. The impact of status consumption on shopping styles: An exploratory look at the millennial generation. Mark. Manag. J. 2013, 23, 57–73. [Google Scholar]
- Eastman, J.K.; Liu, J. The impact of generational cohorts on status consumption: An exploratory look at generational cohort and demographics on status consumption. J. Consum. Mark. 2012, 29, 93–102. [Google Scholar] [CrossRef]
- Yang, K.; Jolly, L.D. Age cohort analysis in adoption of mobile data services: Gen Xers versus baby boomers. J. Consum. Mark. 2008, 25, 272–280. [Google Scholar] [CrossRef]
- Kamenidou, I.; Stavrianea, A.; Bara, E.-Z. Generational Differences toward Organic Food Behavior: Insights from Five Generational Cohorts. Sustainability 2020, 12, 2299. [Google Scholar] [CrossRef] [Green Version]
- Debevec, K.; Schewe, C.D.; Madden, T.J.; Diamond, W.D. Are today’s Millennials splintering into a new generational cohort? Maybe! J. Consum. Behav. 2013, 12, 20–31. [Google Scholar] [CrossRef]
- Lester, S.W.; Standifer, R.; Schultz, N.J.; Windsor, J.M. Actual Versus Perceived Generational Differences at Work. J. Leadersh. Organ. Stud. 2012, 19, 341–354. [Google Scholar] [CrossRef]
- Williams, K.C.; Page, R.A. Marketing to the Generations. J. Behav. Stud. Bus. 2011, 3, 37–53. [Google Scholar]
- Rowlands, I.; Nicholas, D.; Williams, P.; Huntington, P.; Fieldhouse, M.; Gunter, B.; Withey, R.; Jamali, H.R.; Dobrowolski, T.; Tenopir, C. The Google generation: The information behaviour of the researcher of the future. Aslib Proc. 2008, 60, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Veen, W.; Vrakking, B. Homo Zappiens: Growing Up in a Digital Age; Network Continuum Education: London, UK, 2006. [Google Scholar]
- Kamenidou, I.C.; Mamalis, S.A.; Pavlidis, S.; Bara, A.E.-Z.G. Segmenting the Generation Z Cohort University Students Based on Sustainable Food Consumption Behavior: A Preliminary Study. Sustainability 2019, 11, 837. [Google Scholar] [CrossRef] [Green Version]
- Kamenidou, I.; Mamalis, S. Engagement schemes in marketing courses: A case study from Greece. Adv. High. Educ. 2018, 10, 39–46. [Google Scholar]
- Priporas, C.-V.; Stylos, N.; Kamenidou, I. City image, city brand personality and generation Z residents’ life satisfaction under economic crisis: Predictors of city-related social media engagement. J. Bus. Res. 2019. [Google Scholar] [CrossRef]
- Xie, X.; Huang, L.; Li, J.; Zhu, H. Generational Differences in Perceptions of Food Health/Risk and Attitudes toward Organic Food and Game Meat: The Case of the COVID-19 Crisis in China. Int. J. Environ. Res. Public Health 2020, 17, 3148. [Google Scholar] [CrossRef]
- Machida, M.; Nakamura, I.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; Kojima, T.; et al. Adoption of personal protective measures by ordinary citizens during the COVID-19 outbreak in Japan. Int. J. Infect. Dis. 2020, 94, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.H.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, W.; Fang, Z.; Hou, G.; Han, M.; Xu, X.; Dong, J.; Zheng, J. The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Res. Neuroimaging 2020, 287, 112934. [Google Scholar] [CrossRef]
- Torales, J.; O’Higgins, M.; Castaldelli-Maia, J.M.; Ventriglio, A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int. J. Soc. Psychiatry 2020, 0020764020915212. [Google Scholar] [CrossRef] [Green Version]
- Belzunegui-Eraso, A.; Erro-Garcés, A. Teleworking in the Context of the Covid-19 Crisis. Sustainability 2020, 12, 3662. [Google Scholar] [CrossRef]
- Kawashima, T.; Nomura, S.; Tanoue, Y.; Yoneoka, D.; Eguchi, A.; Shi, S.; Miyata, H. The relationship between fever rate and telework implementation as a social distancing measure against the COVID-19 pandemic in Japan. Public Health 2020. [Google Scholar] [CrossRef]
- Tremblay, D.-G.; Paquet, R.; Najem, E. Telework: A Way to Balance Work and Family or an Increase in Work-Family Conflict? Can. J. Commun. 2006, 31. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.-L.; Luo, W.; Li, H.-M.; Zhang, Q.-Q.; Liu, X.-G.; Li, W.-T.; Li, Y. Knowledge, attitudes, and practices towards COVID-19 among Chinese residents during the rapid rise period of the COVID-19 outbreak: A quick online cross-sectional survey. Int. J. Biol. Sci. 2020, 16, 1745–1752. [Google Scholar] [CrossRef]
- Alzoubi, H.; Alnawaiseh, N.; Al-Mnayyis, A.; Lubad, M.A.-; Aqel, A.; Al-Shagahin, H. COVID-19—Knowledge, Attitude and Practice among Medical and Non-Medical University Students in Jordan. J. Pure Appl. Microbiol. 2020, 14, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Escalera-Antezana, J.P.; Cerruto-Selaya, P.E.; Apaza-Huasco, M.; Miranda-Rojas, S.H.; Flores-Cárdenas, C.A.; Rivera-Zabala, L.; Olmos-Machicaddo, J.R.; Alvarez-Amaya, V.; Acevedo-López, D.; Valencia-Gallego, V.; et al. Healthcare workers’ and students’ knowledge regarding the transmission, epidemiology and symptoms of COVID-19 in 41 cities of Bolivia and Colombia. Travel Med. Infect. Dis. 2020, 101702. [Google Scholar] [CrossRef]
- Glik, D. Risk Communication for Public Health Emergencies. Annu. Rev. Public Heal. 2007, 28, 33–54. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.R.; Cupta, S.; Steckel, J.H. Marketing Research; Addison Wesley Longman: Reading, MA, USA, 1998. [Google Scholar]
- Spector, P. Summated Rating Scale Construction; SAGE Publications: Thousand Oaks, CA, USA, 1992. [Google Scholar]
- Kent, R. Marketing Research in Action; Routledge: London, UK, 1993. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hawley, P.H. The Evolution of Adolescence and the Adolescence of Evolution: The Coming of Age of Humans and the Theory About the Forces That Made Them. J. Res. Adolesc. 2011, 21, 307–316. [Google Scholar] [CrossRef]
- Shulman, E.P.; Smith, A.R.; Silva, K.; Icenogle, G.; Duell, N.; Chein, J.M.; Steinberg, L. The dual systems model: Review, reappraisal, and reaffirmation. Dev. Cogn. Neurosci. 2016, 17, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Spear, L.P. Adolescent neurodevelopment. J. Adolesc. Heal. 2013, 52, S7–S13. [Google Scholar] [CrossRef] [Green Version]
- Duell, N.; Steinberg, L.; Icenogle, G.; Chein, J.; Chaudhary, N.; Di Giunta, L.; Dodge, K.A.; Fanti, K.A.; Lansford, J.E.; Oburu, P.O.; et al. Age Patterns in Risk Taking Across the World. J. Youth Adolesc. 2017, 47, 1052–1072. [Google Scholar] [CrossRef]
- Eisner, M. Crime, problem drinking, and drug use: Patterns of problem behavior in cross-national perspective. Ann. Am. Acad. Political Soc. Sci. 2002, 580, 201–225. [Google Scholar] [CrossRef]
- Plant, M.A.; Plant, M.L.; Miller, P.; Gmel, G.; Kuntsche, S. The Social Consequences of Binge Drinking: A Comparison of Young Adults in Six European Countries. J. Addict. Dis. 2009, 28, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.A.; Palmer, P.H.; Chou, C.-P.; Pang, Z.; Zhou, D.; Dong, L.; Xiang, H.; Yang, P.; Xu, H.; Wang, J.; et al. Tobacco use among youth and adults in Mainland China: The China Seven Cities Study. Public Health 2006, 120, 1156–1169. [Google Scholar] [CrossRef]
- Willoughby, T.; Good, M.; Adachi, P.J.; Hamza, C.; Tavernier, R. Examining the link between adolescent brain development and risk taking from a social–developmental perspective. Brain Cogn. 2013, 83, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Akan, H.; Gürol, Y.; Izbirak, G.; Ozdatlı, S.; Çelik, G.; Vitrinel, A.; Hayran, O. Knowledge and attitudes of university students toward pandemic influenza: A cross-sectional study from Turkey. BMC Public Health 2010, 10, 413. [Google Scholar] [CrossRef] [Green Version]
- Korn, L.; Bonny-Noach, H. Gender Differences in Deviance and Health Risk Behaviors Among Young-Adults Undergraduate Students. Subst. Use Misuse 2017, 53, 1–11. [Google Scholar] [CrossRef]
- Cvetković, V.M.; Nikolić, N.; Nenadić, U.R.; Öcal, A.; Noji, E.K.; Zečević, M. Preparedness and Preventive Behaviors for a Pandemic Disaster Caused by COVID-19 in Serbia. Int. J. Environ. Res. Public Health 2020, 17, 4124. [Google Scholar] [CrossRef]
- De Coninck, D.; D’Haenens, L.; Matthijs, K. Perceived vulnerability to disease and attitudes towards public health measures: COVID-19 in Flanders, Belgium. Belgium. Personal. Individ. Differ. 2020, 166, 110220. [Google Scholar] [CrossRef]
- Cutler, D.M.; Stantcheva, S.; Alsan, M.; Yang, D. Disparities in COVID-19 Reported Incidence, Knowledge, and Behavior. Knowl. Behav. MedRxiv 2020. [Google Scholar] [CrossRef]
- Karijo, E.; Wamugi, S.; Lemanyishoe, S.; Njuki, J.; Boit, F.; Kibui, V.; Karanja, S.; Abuya, T. Knowledge, attitudes, practices, and the effects of COVID-19 on health seeking behaviors among young people in Kenya. BMC Public Health 2020. [Google Scholar] [CrossRef]
- Kaplan, A.M. If you love something, let it go mobile: Mobile marketing and mobile social media 4x4. Bus. Horiz. 2012, 55, 129–139. [Google Scholar] [CrossRef]
- Törőcsik, M.; Szűcs, K.; Kehl, D. How Generations Think: Research on Generation, Z. Acta Universitatis Sapientiae. Communicatio 2014, 1, 23–45. [Google Scholar]
- Broadbent, E.; Gougoulis, J.; Lui, N.; Pota, V.; Simons, J. Generation Z: Global citizenship survey. In What the World’s Young People Think and Feel; The Varkey Foundation: London, UK, 2017; pp. 26–44. [Google Scholar]
- Saroj, A.; Pal, S. Use of social media in crisis management: A survey. Int. J. Disaster Risk Reduct. 2020, 48, 101584. [Google Scholar] [CrossRef]
- Zhao, Y.; Xu, H. Chinese Public Attention to COVID-19 Epidemic: Based on Social Media. MedRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Basch, C.H.; Hillyer, G.C.; Meleo-Erwin, Z.; Jaime, C.; Mohlman, J.; Basch, C.E. Preventive Behaviors Conveyed on YouTube to Mitigate Transmission of COVID-19: Cross-Sectional Study (Preprint). JMIR Public Health Surveill. 2020, 6, 18807. [Google Scholar] [CrossRef] [PubMed]
- Li, H.O.Y.; Bailey, A.; Huynh, D.; Chan, J. YouTube as a source of information on COVID-19: A pandemic of misinformation? BMJ Global Health 2020, 5, e002604. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Bansal, S.; Bode, L.; Budak, C.; Chi, G.; Kawintiranon, K.; Padden, C.; Vanarsdall, R.; Vraga, E.; Wang, Y. A First Look at COVID-19. Information and Misinformation Sharing on Twitter. 2020. Available online: https://arxiv.org/pdf/2003.13907.pdf (accessed on 9 September 2020).
- Pham, T.H.; Nguyen, T.N.; Phan, T.T.H.; Nguyen, N.T. Evaluating the purchase behavior of organic food by young consumers in an emerging market economy. J. Strateg. Mark. 2019, 27, 540–556. [Google Scholar] [CrossRef]
Sample Characteristics | Frequencies | Percentages (%) |
---|---|---|
Gender | ||
Male | 315 | 41.3 |
Female | 447 | 58.7 |
Age | ||
18–19 | 237 | 31.1 |
20–21 | 194 | 25.5 |
22–23 | 177 | 23.2 |
24–25 | 154 | 20.2 |
Marital status | ||
Single | 734 | 96.9 |
Married/Divorced/Widowed | 24 | 3.1 |
Education | ||
Secondary (Lyceum) | 384 | 50.4 |
Postsecondary | 137 | 18.0 |
Graduate/Postgraduate | 241 | 31.6 |
Profession | ||
Employee (public-private) | 127 | 16.7 |
Businessman/Businesswoman | 31 | 4.1 |
Labourer | 12 | 1.6 |
Student | 342 | 44.8 |
Housekeeper | 57 | 7.5 |
Unemployed | 193 | 25.3 |
Area of residence | ||
Urban | 462 | 60.9 |
Rural | 300 | 39.1 |
Net monthly personal Income (€) | ||
≤350.00 | 466 | 61.2 |
350.01–1000.00 | 169 | 22.2 |
1000.01+ | 127 | 16.6 |
Statements | n | % |
---|---|---|
1 = I do not have any knowledge at all (absolute ignorance) | 21 | 2.8 |
2 = I am quite ignorant/unaware | 23 | 3.0 |
3 = I am somewhat ignorant/unaware | 35 | 4.6 |
4 = I neither have ignorance/nor have knowledge (neutral) | 65 | 8.5 |
5 = I have some knowledge | 125 | 16.4 |
6= I have quite a lot of knowledge | 223 | 29.3 |
7 = I have absolute knowledge | 270 | 35.4 |
Total | 762 | 100.0 |
Mean Score (MS) | 5.62 |
Statements | 1 | 2 | 3 | 4 | 5 | 6 | 7 | MS |
---|---|---|---|---|---|---|---|---|
| 5.2 | 2.5 | 3.0 | 4.9 | 13.4 | 10.9 | 60.1 | 5.9 |
| 4.2 | 4.1 | 3.7 | 5.6 | 13.3 | 13.1 | 56.0 | 5.8 |
| 5.5 | 3.9 | 4.5 | 6.6 | 17.2 | 13.6 | 48.7 | 5.6 |
| 6.6 | 5.1 | 7.2 | 12.2 | 17.7 | 14.3 | 36.9 | 5.2 |
| 7.9 | 8.0 | 8.1 | 13.5 | 17.5 | 16.4 | 28.6 | 4.9 |
| 9.6 | 7.6 | 9.7 | 18.1 | 15.7 | 11.5 | 27.7 | 4.7 |
| 11.5 | 7.6 | 8.1 | 15.6 | 15.4 | 13.8 | 28.0 | 4.7 |
| 16.9 | 9.2 | 10.6 | 16.7 | 12.9 | 13.1 | 20.6 | 4.2 |
| 17.3 | 11.5 | 11.4 | 18.9 | 12.9 | 10.0 | 18.0 | 4.0 |
| 20.9 | 12.1 | 13.3 | 17.2 | 12.2 | 9.2 | 15.2 | 3.8 |
| 22.7 | 11.5 | 13.0 | 13.8 | 13.0 | 8.5 | 17.5 | 3.8 |
| 20.2 | 13.8 | 12.1 | 19.0 | 10.8 | 9.3 | 14.8 | 3.7 |
| 30.3 | 13.3 | 12.5 | 16.4 | 8.4 | 8.4 | 10.8 | 3.3 |
Willingness to Learn about the… | Yes | No | ||
---|---|---|---|---|
n | % | n | % | |
| 523 | 68.6 | 239 | 31.4 |
| 506 | 66.4 | 256 | 33.6 |
| 560 | 73.5 | 202 | 26.5 |
Symptoms | Gender | n | Mean | Std. Deviation | Std. Error Mean |
---|---|---|---|---|---|
Overall self-assessed level of knowledge | Male | 315 | 5.286 | 1.6222 | 0.0914 |
Female | 447 | 5.566 | 1.3706 | 0.0648 | |
Fever | Male | 315 | 5.771 | 1.7806 | 0.1003 |
Female | 447 | 6.020 | 1.6450 | 0.0778 | |
Cough | Male | 315 | 5.695 | 1.7547 | 0.0989 |
Female | 447 | 5.928 | 1.6739 | 0.0792 | |
Myalgia (muscle pain) | Male | 315 | 4.489 | 1.9926 | 0.1123 |
Female | 447 | 4.819 | 1.9594 | 0.0927 | |
Fatigue | Male | 315 | 4.933 | 1.9283 | 0.1086 |
Female | 447 | 5.385 | 1.8104 | 0.0856 | |
Dyspnea | Male | 315 | 5.498 | 1.8432 | 0.1039 |
Female | 447 | 5.700 | 1.7410 | 0.0823 | |
Anorexia | Male | 315 | 3.806 | 2.0574 | 0.1159 |
Female | 447 | 3.732 | 2.0876 | 0.0987 | |
Productive cough with expectoration (phlegm) | Male | 315 | 4.689 | 2.0869 | 0.1176 |
Female | 447 | 4.687 | 2.0157 | 0.0953 | |
Headache | Male | 315 | 4.914 | 1.8858 | 0.1063 |
Female | 447 | 4.861 | 1.9692 | 0.0931 | |
Pharyngodynia | Male | 315 | 3.927 | 2.0928 | 0.1179 |
Female | 447 | 3.602 | 2.0273 | 0.0959 | |
Nausea-Vomitus | Male | 315 | 4.203 | 2.0024 | 0.1128 |
Female | 447 | 3.861 | 2.1077 | 0.0997 | |
Diarrhea | Male | 315 | 4.273 | 2.0351 | 0.1147 |
Female | 447 | 4.168 | 2.1681 | 0.1025 | |
Hemoptysis | Male | 315 | 3.549 | 2.0949 | 0.1180 |
Female | 447 | 3.083 | 2.0189 | 0.0955 | |
Abdominal pain | Male | 315 | 3.971 | 2.1181 | 0.1193 |
Female | 447 | 3.649 | 2.1698 | 0.1026 |
Overall Knowledge and Specific-Symptom Knowledge | T-Test for Equality of Means | |||||||
---|---|---|---|---|---|---|---|---|
F | t | df | Sig. (2-Tailed) | Mean Difference | Std. Error Difference | 95% Confidence Interval of the Difference | ||
Lower | Upper | |||||||
Overall self-assessed level of knowledge | 11.949 | −2.575 | 760 | 0.010 | −0.2803 | 0.1089 | −0.4940 | −0.0666 |
Fever | 7.485 | −1.986 | 760 | 0.047 | −0.2487 | 0.1252 | −0.4945 | −0.0029 |
Cough | 3.653 | −1.856 | 760 | 0.064 | −0.2332 | 0.1256 | −0.4798 | 0.0134 |
Myalgia (muscle pain) | 0.980 | −2.273 | 760 | 0.023 | −0.3299 | 0.1452 | −0.6149 | −0.0449 |
Fatigue | 1.435 | −3.299 | 760 | 0.001 | −0.4515 | 0.1368 | −0.7201 | −0.1828 |
Dyspnea | 3.448 | −1.538 | 760 | 0.125 | −0.2018 | 0.1312 | −0.4594 | 0.0558 |
Anorexia | 0.515 | 0.490 | 760 | 0.624 | 0.0748 | 0.1527 | −0.2249 | 0.3745 |
Productive cough with expectoration (phlegm) | 1.232 | 0.014 | 760 | 0.989 | 0.0021 | 0.1505 | −0.2933 | 0.2975 |
Headache | 1.495 | 0.372 | 760 | 0.710 | 0.0530 | 0.1424 | −0.2265 | 0.3325 |
Pharyngodynia | 0.058 | 2.151 | 760 | 0.032 | 0.3252 | 0.1512 | 0.0285 | 0.6219 |
Nausea-Vomitus | 1.978 | 2.251 | 760 | 0.025 | 0.3419 | 0.1519 | 0.0437 | 0.6401 |
Diarrhea | 4.550 | 0.677 | 760 | 0.499 | 0.1052 | 0.1555 | −0.2001 | 0.4105 |
Hemoptysis | 0.773 | 3.092 | 760 | 0.002 | 0.4664 | 0.1509 | 0.1703 | 0.7626 |
Abdominal pain | 2.541 | 2.041 | 760 | 0.042 | 0.3227 | 0.1581 | 0.0124 | 0.6329 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenidou, I.; Stavrianea, A.; Mamalis, S.; Mylona, I. Knowledge Assessment of COVID-19 Symptoms: Gender Differences and Communication Routes for the Generation Z Cohort. Int. J. Environ. Res. Public Health 2020, 17, 6964. https://doi.org/10.3390/ijerph17196964
Kamenidou I, Stavrianea A, Mamalis S, Mylona I. Knowledge Assessment of COVID-19 Symptoms: Gender Differences and Communication Routes for the Generation Z Cohort. International Journal of Environmental Research and Public Health. 2020; 17(19):6964. https://doi.org/10.3390/ijerph17196964
Chicago/Turabian StyleKamenidou, Irene (Eirini), Aikaterini Stavrianea, Spyridon Mamalis, and Ifigeneia Mylona. 2020. "Knowledge Assessment of COVID-19 Symptoms: Gender Differences and Communication Routes for the Generation Z Cohort" International Journal of Environmental Research and Public Health 17, no. 19: 6964. https://doi.org/10.3390/ijerph17196964
APA StyleKamenidou, I., Stavrianea, A., Mamalis, S., & Mylona, I. (2020). Knowledge Assessment of COVID-19 Symptoms: Gender Differences and Communication Routes for the Generation Z Cohort. International Journal of Environmental Research and Public Health, 17(19), 6964. https://doi.org/10.3390/ijerph17196964