Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Sample
2.3. Instruments and Measurements
2.3.1. Sociodemographics and Clinical Parameters
2.3.2. Health Literacy and Digital Healthy Diet Literacy
2.3.3. Eating Behavior and Other Lifestyle Changes
2.4. Ethical Consideration
2.5. Data Analysis
2.5.1. Psychometric Properties of Digital Healthy Diet Literacy
2.5.2. Health Literacy, Digital Healthy Diet Literacy, and Eating Behavior Changes
3. Results
3.1. Students’ Characteristics
3.2. Psychometric Properties of Digital Healthy Diet Literacy
3.3. Associations of HL and DDL with Eating Behavior Changes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BMI | body mass index |
COVID-19 | coronavirus disease-2019 |
S-COVID-19-S | suspected coronavirus disease-2019 symptoms |
SD | standard deviation |
HL | health literacy |
HLS-SF12 | a 12-item short-form health literacy survey questionnaire |
DDL | digital healthy diet literacy |
OR | odds ratio |
CI | confidence interval |
References
- Nicola, M.; Alsafi, Z.; Sohrabi, C.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, M.; Agha, R. The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int. J. Surg. 2020, 78, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Jit, M.; Warren-Gash, C.; Guthrie, B.; Wang, H.H.X.; Mercer, S.W.; Sanderson, C.; McKee, M.; Troeger, C.; Ong, K.L.; et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: A modelling study. Lancet Glob. Health 2020, 8, e1003–e1017. [Google Scholar] [CrossRef]
- Banerjee, A.; Pasea, L.; Harris, S.; Gonzalez-Izquierdo, A.; Torralbo, A.; Shallcross, L.; Noursadeghi, M.; Pillay, D.; Sebire, N.; Holmes, C.; et al. Estimating excess 1-year mortality associated with the COVID-19 pandemic according to underlying conditions and age: A population-based cohort study. Lancet 2020, 395, 1715–1725. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Pivari, F.; Soldati, L.; Attinà, A.; Cinelli, G.; Leggeri, C.; Caparello, G.; Barrea, L.; Scerbo, F.; et al. Eating habits and lifestyle changes during COVID-19 lockdown: An Italian survey. J. Transl. Med. 2020, 18, 229. [Google Scholar] [CrossRef] [PubMed]
- Ammar, A.; Brach, M.; Trabelsi, K.; Chtourou, H.; Boukhris, O.; Masmoudi, L.; Bouaziz, B.; Bentlage, E.; How, D.; Ahmed, M.; et al. Effects of COVID-19 Home Confinement on Eating Behaviour and Physical Activity: Results of the ECLB-COVID19 International Online Survey. Nutrients 2020, 12, 1583. [Google Scholar] [CrossRef]
- Sidor, A.; Rzymski, P. Dietary Choices and Habits during COVID-19 Lockdown: Experience from Poland. Nutrients 2020, 12, 1657. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pérez, C.; Molina-Montes, E.; Verardo, V.; Artacho, R.; García-Villanova, B.; Guerra-Hernández, E.J.; Ruíz-López, M.D. Changes in Dietary Behaviours during the COVID-19 Outbreak Confinement in the Spanish COVIDiet Study. Nutrients 2020, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health & Human Services; National Institutes of Health. 2020–2030 Strategic Plan for NIH Nutrition Research: A Report of the NIH Nutrition Research Task Force. Available online: https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/strategic-plan-nih-nutrition-research (accessed on 27 May 2020).
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar] [CrossRef]
- Calder, P.C.; Carr, A.C.; Gombart, A.F.; Eggersdorfer, M. Optimal Nutritional Status for a Well-Functioning Immune System Is an Important Factor to Protect against Viral Infections. Nutrients 2020, 12, 1181. [Google Scholar] [CrossRef] [Green Version]
- Morais, A.H.A.; Aquino, J.S.; Silva-Maia, J.K.D.; Vale, S.H.L.; Maciel, B.L.L.; Passos, T.S. Nutritional status, diet and viral respiratory infections: Perspectives for SARS-CoV-2. Br. J. Nutr. 2020, 1–32. [Google Scholar] [CrossRef]
- Martinez-Ferran, M.; de la Guía-Galipienso, F.; Sanchis-Gomar, F.; Pareja-Galeano, H. Metabolic Impacts of Confinement during the COVID-19 Pandemic Due to Modified Diet and Physical Activity Habits. Nutrients 2020, 12, 1549. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.J.; Barrientos, R.M. The impact of nutrition on COVID-19 susceptibility and long-term consequences. Brain Behav. Immun. 2020, 87, 53–54. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.M.; Dunne, P.E. The rise of eating disorders in Asia: A review. J. Eat. Disord. 2015, 3, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Tuan, T.N.; Minh, V.H. Non-communicable diseases, food and nutrition in Vietnam from 1975 to 2015: The burden and national response. Asian Pac. J. Clin. Nutr. 2018, 27, 19–28. [Google Scholar]
- Pengpid, S.; Peltzer, K. Risk of disordered eating attitudes and its relation to mental health among university students in ASEAN. Eat. Weight Disord. 2018, 23, 349–355. [Google Scholar] [CrossRef]
- Hua, J.; Shaw, R. Corona Virus (COVID-19) “Infodemic” and Emerging Issues through a Data Lens: The Case of China. Int. J. Environ. Res. Public Health 2020, 17, 2309. [Google Scholar] [CrossRef] [Green Version]
- Okan, O.; Bollweg, T.M.; Berens, E.-M.; Hurrelmann, K.; Bauer, U.; Schaeffer, D. Coronavirus-Related Health Literacy: A Cross-Sectional Study in Adults during the COVID-19 Infodemic in Germany. Int. J. Environ. Res. Public Health 2020, 17, 5503. [Google Scholar] [CrossRef]
- Paakkari, L.; Okan, O. COVID-19: Health literacy is an underestimated problem. Lancet Public Health 2020, 5, e249–e250. [Google Scholar] [CrossRef]
- Chong, Y.Y.; Cheng, H.Y.; Chan, H.Y.L.; Chien, W.T.; Wong, S.Y.S. COVID-19 pandemic, infodemic and the role of eHealth literacy. Int. J. Nurs. Stud. 2020, 108, 103644. [Google Scholar] [CrossRef]
- Bauchner, H.; Sharfstein, J. A Bold Response to the COVID-19 Pandemic: Medical Students, National Service, and Public Health. JAMA 2020, 323, 1790–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, D.M.; Bhatia, S.; Brown, S.; Cambridge, W.; Kamarajah, S.K.; McLean, K.A.; Brindl, N.; Lapolla, P.; Pérez-Ajates, S.; Raubenheimer, K.; et al. Medical student involvement in the COVID-19 response. Lancet 2020, 395, 1254. [Google Scholar] [CrossRef]
- Klasen, J.M.; Meienberg, A.; Nickel, C.; Bingisser, R. WAB team instead of SWAT team - students as front-line force during the COVID-19 Pandemic. Med. Educ. 2020, 54, 860. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.; Sperling, P.; Poulsen, M.S.; Emmersen, J.; Andersen, S. Medical students for health-care staff shortages during the COVID-19 pandemic. Lancet 2020, 395, e79–e80. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; Alhuwail, D.; Househ, M.; Hamdi, M.; Shah, Z. Top Concerns of Tweeters During the COVID-19 Pandemic: Infoveillance Study. J. Med. Internet Res. 2020, 22, e19016. [Google Scholar] [CrossRef] [Green Version]
- Park, H.W.; Park, S.; Chong, M. Conversations and Medical News Frames on Twitter: Infodemiological Study on COVID-19 in South Korea. J. Med. Internet Res. 2020, 22, e18897. [Google Scholar] [CrossRef]
- Sharma, S.; Oli, N.; Thapa, B. Electronic health-literacy skills among nursing students. Adv. Med. Educ. Pract. 2019, 10, 527–532. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-C.; Luo, Y.-F.; Chiang, C.-H. The Associations among Individual Factors, eHealth Literacy, and Health-Promoting Lifestyles among College Students. J. Med. Internet Res. 2017, 19, e15. [Google Scholar] [CrossRef]
- de Ridder, D.; Kroese, F.; Evers, C.; Adriaanse, M.; Gillebaart, M. Healthy diet: Health impact, prevalence, correlates, and interventions. Psychol. Health 2017, 32, 907–941. [Google Scholar] [CrossRef] [Green Version]
- Gasmi, A.; Noor, S.; Tippairote, T.; Dadar, M.; Menzel, A.; Bjørklund, G. Individual risk management strategy and potential therapeutic options for the COVID-19 pandemic. Clin. Immunol. 2020, 215, 108409. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Y. Potential interventions for Novel Coronavirus in China: A systematic review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kakodkar, P.; Kaka, N.; Baig, M.N. A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19). Cureus 2020, 12, e7560. [Google Scholar] [PubMed] [Green Version]
- Gasmi, A.; Tippairote, T.; Mujawdiya, P.K.; Peana, M.; Menzel, A.; Dadar, M.; Gasmi Benahmed, A.; Bjørklund, G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin. Immunol. 2020, 220, 108545. [Google Scholar] [CrossRef] [PubMed]
- Batlle-Bayer, L.; Aldaco, R.; Bala, A.; Puig, R.; Laso, J.; Margallo, M.; Vázquez-Rowe, I.; Antó, J.M.; Fullana, I.P.P. Environmental and nutritional impacts of dietary changes in Spain during the COVID-19 lockdown. Sci. Total Environ. 2020, 748, 141410. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Do, B.N.; Pham, K.M.; Kim, G.B.; Dam, H.T.B.; Nguyen, T.T.; Nguyen, T.T.P.; Nguyen, Y.H.; Sørensen, K.; Pleasant, A.; et al. Fear of COVID-19 Scale—Associations of Its Scores with Health Literacy and Health-Related Behaviors among Medical Students. Int. J. Environ. Res. Public Health 2020, 17, 4164. [Google Scholar] [CrossRef] [PubMed]
- Editorial Team. Overview of Novel Coronavirus (2019-nCoV). Available online: https://bestpractice.bmj.com/topics/en-gb/3000165 (accessed on 10 February 2020).
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.-M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Duong, T.V.; Aringazina, A.; Baisunova, G.; Nurjanah, N.; Pham, T.V.; Pham, K.M.; Truong, T.Q.; Nguyen, K.T.; Oo, W.M.; Su, T.T.; et al. Development and validation of a new short-form health literacy instrument (HLS-SF12) for the general public in six Asian countries. Health Lit. Res. Pract. 2019, 3, e91–e102. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.V.; Nguyen, T.T.P.; Pham, K.M.; Nguyen, K.T.; Giap, M.H.; Tran, T.D.X.; Nguyen, C.X.; Yang, S.-H.; Su, C.-T. Validation of the short-form health literacy questionnaire (HLS-SF12) and its determinants among people living in rural areas in Vietnam. Int. J. Environ. Res. Public Health 2019, 16, 3346. [Google Scholar] [CrossRef] [Green Version]
- Ho, H.V.; Hoang, G.T.; Pham, V.T.; Duong, T.V.; Pham, K.M. Factors associated with health literacy among the elderly people in Vietnam. Biomed. Res. Int. 2020, 2020, 3490635. [Google Scholar]
- Nguyen, H.C.; Nguyen, M.H.; Do, B.N.; Tran, C.Q.; Nguyen, T.T.P.; Pham, K.M.; Pham, L.V.; Tran, K.V.; Duong, T.T.; Tran, T.V.; et al. People with suspected COVID-19 symptoms were more likely depressed and had lower health-related quality of life: The potential benefit of health literacy. J. Clin. Med. 2020, 9, 965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, K.; Van den Broucke, S.; Fullam, J.; Doyle, G.; Pelikan, J.; Slonska, Z.; Brand, H. Health literacy and public health: A systematic review and integration of definitions and models. BMC Public Health 2012, 12, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sørensen, K.; Van den Broucke, S.; Pelikan, J.M.; Fullam, J.; Doyle, G.; Slonska, Z.; Kondilis, B.; Stoffels, V.; Osborne, R.H.; Brand, H. Measuring health literacy in populations: Illuminating the design and development process of the European Health Literacy Survey Questionnaire (HLS-EU-Q). BMC Public Health 2013, 13, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HLS-EU Consortium. Comparative Report of Health Literacy in Eight EU Member States. The European Health Literacy Project 2009–2012. Available online: https://www.healthliteracyeurope.net/hls-eu (accessed on 22 October 2012).
- Kimberlin, C.L.; Winterstein, A.G. Validity and reliability of measurement instruments used in research. Am. J. Health Syst. Pharm. 2008, 65, 2276–2284. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, G.; Greenland, S. Simulation study of confounder-selection strategies. Am. J. Epidemiol. 1993, 138, 923–936. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Hays, R.D.; Hayashi, T. Beyond internal consistency reliability: Rationale and user’s guide for multitrait analysis program on the microcomputer. Behav. Res. Methods Instrum. Comput. 1990, 22, 167–175. [Google Scholar] [CrossRef]
- Cronbach, L.J.; Shavelson, R.J. My current thoughts on coefficient alpha and successor procedures. Educ. Psychol. Meas. 2004, 64, 391–418. [Google Scholar] [CrossRef]
- Terwee, C.B.; Bot, S.D.M.; de Boer, M.R.; van der Windt, D.A.W.M.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C.W. Quality criteria were proposed for measurement properties of health status questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.V.; Chang, P.W.; Yang, S.-H.; Chen, M.-C.; Chao, W.-T.; Chen, T.; Chiao, P.; Huang, H.-L. A new comprehensive short-form health literacy survey tool for patients in general. Asian Nurs. Res. 2017, 11, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Duong, T.V.; Chiu, C.-H.; Lin, C.-Y.; Wong, T.-C.; Chen, Y.-C.; Chang, P.W.; Yang, S.-H. E-healthy diet literacy scale and its relationship with behaviors and health outcomes in Taiwan. Health Promot. Int. 2020. [Google Scholar] [CrossRef]
- Britt, R.K.; Collins, W.B.; Wilson, K.; Linnemeier, G.; Englebert, A.M. eHealth Literacy and Health Behaviors Affecting Modern College Students: A Pilot Study of Issues Identified by the American College Health Association. J. Med. Internet Res. 2017, 19, e392. [Google Scholar] [CrossRef] [PubMed]
- Poelman, M.P.; Dijkstra, S.C.; Sponselee, H.; Kamphuis, C.B.M.; Battjes-Fries, M.C.E.; Gillebaart, M.; Seidell, J.C. Towards the measurement of food literacy with respect to healthy eating: The development and validation of the Self Perceived food literacy scale among an adult sample in the Netherlands. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, M.A. Food Literacy and Healthy Diets of Canadian Parents: Associations and Evaluation of the Eat Well Campaign. Ph.D. Thesis, Université Laval, Québec, QC, Canada, 2019. [Google Scholar]
- Malan, H.; Watson, T.D.; Slusser, W.; Glik, D.; Rowat, A.C.; Prelip, M. Challenges, Opportunities, and Motivators for Developing and Applying Food Literacy in a University Setting: A Qualitative Study. J. Acad. Nutr. Diet. 2020, 120, 33–44. [Google Scholar] [CrossRef]
- Truman, E.; Bischoff, M.; Elliott, C. Which literacy for health promotion: Health, food, nutrition or media? Health Promot. Int. 2019, 35, 432–444. [Google Scholar] [CrossRef]
- Gallagher, T.H.; Schleyer, A.M. “We Signed Up for This!”—Student and trainee responses to the Covid-19 pandemic. N. Engl. J. Med. 2020, 382, e96. [Google Scholar] [CrossRef]
- Rose, S. Medical Student Education in the Time of COVID-19. JAMA 2020, 323, 2131–2132. [Google Scholar] [CrossRef]
- Rothstein, R.; Olympia, R.P. School Nurses on the Front Lines of Healthcare: The Approach to Maintaining Student Health and Wellness during COVID-19 School Closures. NASN Sch. Nurse 2020, 35, 269–275. [Google Scholar] [CrossRef]
Geographic Location | Hospital/Health Center | Academic Field | Possible Participants | Studied Participants |
---|---|---|---|---|
North | ||||
Ha Noi | 1. Hanoi Medical University | Medical | 3386 | 844 |
Nursing | 285 | 166 | ||
2. Vietnam Military Medical University | Medical | 3034 | 1198 | |
3. Vietnam National University-School of Medicine and Pharmacy | Medical | 444 | 385 | |
Thai Nguyen | 4. Thai Nguyen University of Medicine and Pharmacy | Medical | 2830 | 742 |
Nursing | 579 | 200 | ||
Hai Duong | 5. Hai Duong Medical Technical University | Nursing | 697 | 379 |
Hai Phong | 6. Haiphong University of Medicine and Pharmacy | Medical | 3153 | 800 |
Nursing | 317 | 145 | ||
Center | ||||
Thua Thien Hue | 7. Hue University of Medicine and Pharmacy | Medical | 3800 | 425 |
Nursing | 594 | 265 | ||
Da Nang | 8. Da Nang University of Medical Technology and Pharmacy | Nursing | 718 | 311 |
South | ||||
Ho Chi Minh | 9. Pham Ngoc Thach University of Medicine | Medical | 5510 | 473 |
Nursing | 424 | 203 | ||
Can Tho | 10. Can Tho University of Medicine and Pharmacy | Medical | 6580 | 898 |
Nursing | 281 | 182 | ||
Subtotal | Medical | 28,737 | 5765 | |
Nursing | 3895 | 1851 | ||
Total | 32,632 | 7616 |
Eating Behavior | Overall Sample | Nursing Students | Medical Students | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total (N = 7616) | Unchanged or Less Healthy (N = 4353) | Healthier (N = 3263) | Subtotal (N = 1851) | Unchanged or Less Healthy (N = 924) | Healthier (N = 927) | Subtotal (N = 5765) | Unchanged or Less Healthy (N = 3429) | Healthier (N = 2336) | ||||
n (%) | n (%) | n (%) | p * | n (%) | n (%) | n (%) | p * | n (%) | n (%) | n (%) | p * | |
Age, year | 0.002 | 0.946 | 0.024 | |||||||||
19–20 | 2834 (37.2) | 1554 (35.7) | 1280 (39.2) | 957 (51.7) | 477 (51.6) | 480 (51.8) | 1877 (32.6) | 1077 (31.4) | 800 (34.2) | |||
21–27 | 4782 (62.8) | 2799 (64.3) | 1983 (60.8) | 894 (48.3) | 447 (48.4) | 447 (48.2) | 3888 (67.4) | 2352 (68.6) | 1536 (65.8) | |||
Gender | <0.001 | 0.016 | <0.001 | |||||||||
Women | 4762 (62.5) | 2512 (57.7) | 2250 (69.0) | 1723 (93.1) | 847 (91.7) | 876 (94.5) | 3039 (52.7) | 1665 (48.6) | 1374 (58.8) | |||
Men | 2854 (37.5) | 1841 (42.3) | 1013 (31.0) | 128 (6.9) | 77 (8.3) | 51 (5.5) | 2726 (47.3) | 1764 (51.4) | 962 (41.2) | |||
Academic year | <0.001 | 0.756 | 0.004 | |||||||||
Year 1–2 | 3036 (39.9) | 1655 (38.0) | 1381 (42.3) | 1000 (54.0) | 496 (53.7) | 504 (54.4) | 2036 (35.3) | 1159 (33.8) | 877 (37.5) | |||
Year 3–6 | 4580 (60.1) | 2698 (62.0) | 1882 (57.7) | 851 (46.0) | 428 (46.3) | 423 (45.6) | 3729 (64.7) | 2270 (66.2) | 1459 (62.5) | |||
Academic field | < 0.001 | |||||||||||
Nursing | 1851 (24.3) | 924 (21.2) | 927 (28.4) | |||||||||
Medical | 5765 (75.7) | 3429 (78.8) | 2336 (71.6) | |||||||||
Ability to pay for medication | 0.078 | 0.385 | 0.034 | |||||||||
Very or fairly difficult | 3674 (48.2) | 2138 (49.1) | 1536 (47.1) | 1005 (54.3) | 511 (55.3) | 494 (53.3) | 2669 (46.3) | 1627 (47.4) | 1042 (44.6) | |||
Very or fairly easy | 3942 (51.8) | 2215 (50.9) | 1727 (52.9) | 846 (45.7) | 413 (44.7) | 433 (46.7) | 3096 (53.7) | 1802 (52.6) | 1294 (55.4) | |||
BMI, kg/m2 | 0.027 | 0.172 | 0.240 | |||||||||
BMI < 18.5 | 1584 (20.8) | 864 (19.9) | 720 (22.1) | 589 (31.8) | 296 (32.0) | 293 (31.6) | 995 (17.2) | 568 (16.6) | 427 (18.3) | |||
18.5 ≤ BMI < 25.0 | 5535 (72.7) | 3188 (73.3) | 2347 (72.0) | 1217 (65.8) | 600 (64.9) | 617 (66.6) | 4318 (75.0) | 2588 (75.5) | 1730 (74.1) | |||
BMI ≥ 25.0 | 492 (6.5) | 298 (6.9) | 194 (5.9) | 44 (2.4) | 28 (3.1) | 16 (1.7) | 448 (7.8) | 270 (7.9) | 178 (7.6) | |||
S-COVID-19-S ** | 0.361 | 0.705 | 0.283 | |||||||||
No | 6156 (80.8) | 3503 (80.5) | 2653 (81.3) | 1461 (78.9) | 726 (78.6) | 735 (79.3) | 4695 (81.4) | 2777 (81.0) | 1918 (82.1) | |||
Yes | 1460 (19.2) | 850 (19.5) | 610 (18.7) | 390 (21.1) | 198 (21.4) | 192 (20.7) | 1070 (18.6) | 652 (19.0) | 418 (17.9) | |||
Comorbidity | 0.029 | 0.576 | 0.021 | |||||||||
None | 7279 (95.6) | 4141 (95.1) | 3138 (96.2) | 1762 (95.2) | 877 (94.9) | 885 (95.5) | 5517 (95.7) | 3264 (95.2) | 2253 (96.4) | |||
One or more | 337 (4.4) | 212 (4.9) | 125 (3.8) | 89 (4.8) | 47 (5.1) | 42 (4.5) | 248 (4.3) | 165 (4.8) | 83 (3.6) | |||
Smoking status | 0.003 | 0.375 | 0.009 | |||||||||
Never, stopped, or smoke less | 7395 (97.1) | 4205 (96.6) | 3190 (97.8) | 1818 (98.2) | 905 (97.9) | 913 (98.5) | 5577 (96.7) | 3300 (96.2) | 2277 (97.5) | |||
Unchanged or smoke more | 221 (2.9) | 148 (3.4) | 73 (2.2) | 33 (1.8) | 19 (2.1) | 14 (1.5) | 188 (3.3) | 129 (3.8) | 59 (2.5) | |||
Drinking status | <0.001 | 0.002 | <0.001 | |||||||||
Never, stopped, or drink less | 7137 (93.7) | 4005 (92.0) | 3132 (96.0) | 1791 (96.8) | 882 (95.5) | 909 (98.1) | 5346 (92.7) | 3123 (91.1) | 2223 (95.2) | |||
Unchanged or drink more | 479 (6.3) | 348 (8.0) | 131 (4.0) | 60 (3.2) | 42 (4.5) | 18 (1.9) | 419 (7.3) | 306 (8.9) | 113 (4.8) | |||
Physical activity | <0.001 | <0.001 | <0.001 | |||||||||
Never, stopped, or exercise less | 2309 (30.3) | 1600 (36.8) | 709 (21.7) | 499 (27.0) | 311 (33.7) | 188 (20.3) | 1810 (31.4) | 1289 (37.6) | 521 (22.3) | |||
Unchanged or exercise more | 5307 (69.7) | 2753 (63.2) | 2554 (78.3) | 1352 (73.0) | 613 (66.3) | 739 (79.7) | 3955 (68.6) | 2140 (62.4) | 1815 (77.7) | |||
HL index, mean ± SD | 34.4 ± 6.9 | 34.0 ± 6.9 | 34.9 ± 6.9 | <0.001 | 34.4 ± 6.9 | 34.0 ± 6.9 | 34.9 ± 6.9 | <0.001 | 34.4 ± 6.9 | 34.0 ± 6.9 | 34.9 ± 6.9 | < 0.001 |
DDL index, mean ± SD | 33.9 ± 8.5 | 33.3 ± 8.6 | 34.6 ± 8.4 | <0.001 | 33.9 ± 8.5 | 33.3 ± 8.6 | 34.6 ± 8.4 | <0.001 | 33.9 ± 8.5 | 33.3 ± 8.6 | 34.6 ± 8.4 | < 0.001 |
DDL Scale | Overall Sample | Nursing Students | Medical Students |
---|---|---|---|
Factor loadings: “On a scale from very difficult to very easy, to what extent would you say it is difficult or easy to: …” | |||
1. Find reliable and accurate healthy diet information on the internet? | 0.85 | 0.82 | 0.86 |
2. Understand healthy diet information and dietary guidelines on the internet? | 0.88 | 0.86 | 0.88 |
3. Judge whether healthy diet information on the internet applied to you? | 0.86 | 0.84 | 0.86 |
4. Apply healthy diet information from the internet to your daily life to make you eat better? | 0.79 | 0.76 | 0.80 |
Percentage of variance, % | 71.32 | 67.12 | 72.47 |
Item-scale convergent validity, mean of Rho (range) * | 0.81 (0.80–0.83) | 0.78 (0.76–0.80) | 0.82 (0.81–0.84) |
Criterion validity, correlation with HL, Rho ** | 0.68 | 0.68 | 0.68 |
Internal consistency, Cronbach’s alpha | 0.86 | 0.83 | 0.87 |
Floor effects, % | 0.20 | 0.30 | 0.20 |
Ceiling effect, % | 12.00 | 7.90 | 13.3 |
Healthier Eating Behaviors * | Total Sample | Nursing Students | Medical Students | |||
---|---|---|---|---|---|---|
OR (95%CI) | p | OR (95%CI) | p | OR (95%CI) | p | |
HL index ** | ||||||
Model 1 | 1.19 (1.12, 1.26) | <0.001 | 1.28 (1.13, 1.43) | <0.001 | 1.19 (1.12, 1.27) | <0.001 |
Model 2 | 1.23 (1.15, 1.30) | <0.001 | 1.24 (1.09, 1.40) | 0.001 | 1.23 (1.15, 1.31) | <0.001 |
DDL index ** | ||||||
Model 1 | 1.17 (1.11, 1.22) | <0.001 | 1.25 (1.13, 1.37) | <0.001 | 1.16 (1.10, 1.22) | <0.001 |
Model 2 | 1.18 (1.13, 1.24) | <0.001 | 1.23 (1.10, 1.35) | <0.001 | 1.17 (1.11, 1.24) | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, T.V.; Pham, K.M.; Do, B.N.; Kim, G.B.; Dam, H.T.B.; Le, V.-T.T.; Nguyen, T.T.P.; Nguyen, H.T.; Nguyen, T.T.; Le, T.T.; et al. Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey. Int. J. Environ. Res. Public Health 2020, 17, 7185. https://doi.org/10.3390/ijerph17197185
Duong TV, Pham KM, Do BN, Kim GB, Dam HTB, Le V-TT, Nguyen TTP, Nguyen HT, Nguyen TT, Le TT, et al. Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey. International Journal of Environmental Research and Public Health. 2020; 17(19):7185. https://doi.org/10.3390/ijerph17197185
Chicago/Turabian StyleDuong, Tuyen Van, Khue M. Pham, Binh N. Do, Giang B. Kim, Hoa T. B. Dam, Vinh-Tuyen T. Le, Thao T. P. Nguyen, Hiep T. Nguyen, Trung T. Nguyen, Thuy T. Le, and et al. 2020. "Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey" International Journal of Environmental Research and Public Health 17, no. 19: 7185. https://doi.org/10.3390/ijerph17197185
APA StyleDuong, T. V., Pham, K. M., Do, B. N., Kim, G. B., Dam, H. T. B., Le, V. -T. T., Nguyen, T. T. P., Nguyen, H. T., Nguyen, T. T., Le, T. T., Do, H. T. T., & Yang, S. -H. (2020). Digital Healthy Diet Literacy and Self-Perceived Eating Behavior Change during COVID-19 Pandemic among Undergraduate Nursing and Medical Students: A Rapid Online Survey. International Journal of Environmental Research and Public Health, 17(19), 7185. https://doi.org/10.3390/ijerph17197185