Effects of an Information and Communication Technology-Based Fitness Program on Strength and Balance in Female Home Care Service Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Intervention: ICT-Supported Functional Fitness Program (FFP)
2.4. Measures
2.4.1. Anthropometric Data
2.4.2. Overall Strength—Grip Strength (GRIP)
2.4.3. Lower-Body Strength—30s Chair Rise (30CR)
2.4.4. Balance—Uni-Pedal-Stance (UPS)
2.5. Sample
2.6. Statistical Analysis
3. Results
3.1. Basline Data
3.2. Adherence
3.3. Effects on Grip Strength Measured by GRIP
3.4. Effects on Lower-Body Strength Measured by 30CR
3.5. Effects on Balance Measured by UPS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Bray, N.W.; Smart, R.R.; Jakobi, J.M.; Jones, G.R. Exercise prescription to reverse frailty. Appl. Physiol. Nutr. Metab. 2016, 41, 1112–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Bushman, B.A. Physical Activity Guidelines for Americans: The Relationship Between Physical Activity and Health. ACSM Health Fit. J. 2019, 23, 5–9. [Google Scholar] [CrossRef]
- Chodzko-Zajko, W.J.; Proctor, D.N.; Singh, M.A.F.; Minson, C.T.; Nigg, C.R.; Salem, G.J.; Skinner, J.S. Exercise and Physical Activity for Older Adults. Med. Sci. Sports Exerc. 2009, 41, 1510–1530. [Google Scholar] [CrossRef]
- Muellmann, S.; Forberger, S.; Möllers, T.; Bröring, E.; Zeeb, H.; Pischke, C.R. Effectiveness of eHealth interventions for the promotion of physical activity in older adults: A systematic review. Prev. Med. 2018, 108, 93–110. [Google Scholar] [CrossRef]
- Lacroix, A.; Kressig, R.W.; Muehlbauer, T.; Gschwind, Y.J.; Pfenninger, B.; Bruegger, O.; Granacher, U. Effects of a Supervised versus an Unsupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial. Gerontology 2015, 62, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Elbert, N.J.; Van Os-Medendorp, H.; Van Renselaar, W.; Ekeland, A.G.; Roijen, L.H.-V.; Raat, H.; Nijsten, T.E.C.; Pasmans, S.G.M. Effectiveness and Cost-Effectiveness of eHealth Interventions in Somatic Diseases: A Systematic Review of Systematic Reviews and Meta-Analyses. J. Med. Internet Res. 2014, 16, e110. [Google Scholar] [CrossRef]
- WHO. Decade of Healthy Ageing: Baseline Report; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Murtagh, K.N.; Hubert, H.B. Gender Differences in Physical Disability Among an Elderly Cohort. Am. J. Public Health 2004, 94, 1406–1411. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Ohyama, N.; Yamada, K.; Kanamori, M. The relationship between fear of falling, activities of daily living and quality of life among elderly individuals. Nurs. Health Sci. 2002, 4, 155–161. [Google Scholar] [CrossRef]
- Frontini, R.; Sousa, P. Exploring healthcare professionals’ acceptance towards ICT-based interventions for health promotion: A mixed-methods approach. Eur. J. Public Health 2019, 29. [Google Scholar] [CrossRef]
- Nogueira, A.C.; Resende-Neto, A.; Santos, A.J.; Chaves, L.d.S.; Azevêdo, L.; Teixeira, C.; Senna, G.; Da Silva-Grigoletto, M. Effects of a multicomponent training protocol on functional fitness and quality of life of physically active older women. Motricidade 2017, 13, 86–93. [Google Scholar]
- De Resende-Neto, A.; do Nascimento, M.A.; Aragão-Santos, J.C.; Andrade, B.C.O.; Vasconcelos, A.B.S.; da Silva, D.R.P.; Netto, R.S.M.; de Santana, J.M.; Grigoletto, M.E.D.S. Effects of Multicomponent Training on Functional Fitness and Quality of Life in Older Women: A Randomized Controlled Trial. Int. J. Sport. Exerc. Med. 2019, 5. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R.; Silva, S.; Garrido, N.; Abrantes, C.; Reis, V. Effects of Resistance and Multicomponent Training on Body Composition and Physical Fitness of Institutionalized Elderly Women. Br. J. Sports Med. 2013, 47, e3.48. [Google Scholar] [CrossRef]
- Trukeschitz, B.; Blüher, M. Measuring the Effectiveness of ‘CARIMO’, an ICT-Supported Fitness and Entertainment App for Home Care Recipients: Study Protocol and Survey Data Collection; Vienna University of Economics and Business (WU): Vienna, Austria, 2018. [Google Scholar]
- Rossi, P.H.; Lipsey, M.W.; Freeman, H.E. Evaluation: A Systematic Approach; Sage: Newbury Park, CA, USA, 2004. [Google Scholar]
- Schneider, C.; Trukeschitz, B.; Rieser, H. Measuring the Use of the Active and Assisted Living Prototype CARIMO for Home Care Service Users: Evaluation Framework and Results. Appl. Sci. 2019, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Prochaska, O.J.; DiClemente, C.C. Stages and processes of self-change of smoking: Toward an integrative model of change. J. Consult. Clin. Psychol. 1983, 51, 390. [Google Scholar] [CrossRef] [PubMed]
- Lesinski, M.; Hortobágyi, T.; Muehlbauer, T.; Gollhofer, A.; Granacher, U. Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 557–576. [Google Scholar] [CrossRef] [PubMed]
- Cadore, E. Strength and Endurance Training Prescription in Healthy and Frail Elderly. Aging Dis. 2014, 5, 183–195. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P. Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory, Musculoskeletal, and Neuromotor Fitness in Apparently Healthy Adults: Guidance for Prescribing Exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- WHO. Physical Status: The Use of snd Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Bohannon, R.W. Hand-Grip Dynamometry Predicts Future Outcomes in Aging Adults. J. Geriatr. Phys. Ther. 2008, 31, 3–10. [Google Scholar] [CrossRef]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker For Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [Green Version]
- Massy-Westropp, N.M.; Gill, T.K.; Taylor, A.W.; Bohannon, R.W.; Hill, C.L. Hand Grip Strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef] [Green Version]
- JJones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative Values for the Unipedal Stance Test with Eyes Open and Closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Rusticus, S.A.; Lovato, C.Y. Impact of sample size and variability on the power and type I error rates of equivalence tests: A simulation study. Pract. Assess. Res. Eval. 2014, 19, 11. [Google Scholar]
- Gogtay, N.; Thatte, U. Principles of correlation analysis. J. Assoc. Physicians India 2017, 65, 78–81. [Google Scholar]
- Scheffé, H. The Analysis of Variance, 6th ed.; Wiley & Sons, Inc.: Hoboken, NJ, USA, 1970. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937, 32, 675–701. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Conover, W.J.; Iman, R.L. Analysis of Covariance Using the Rank Transformation. Biometrics 1982, 38, 715–724. [Google Scholar] [CrossRef]
- Gignac, G.; Szodorai, E.T. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 1988; p. 13. [Google Scholar]
- WHO. Obesity and Overweight. Fact Sheet No. 311. January 2015. Available online: http://www.who. int/mediacentre/factsheets/fs311/en/Stand (accessed on 20 January 2020).
- Greve, J.M.D.; Alonso, A.C.; Bordini, A.C.P.; Camanho, G.L. Correlation between body mass index and postural balance. Clinics 2007, 62, 717–720. [Google Scholar] [CrossRef] [Green Version]
- Schmid, S.; Armand, S.; Pataky, Z.; Golay, A.; Allet, L. The Relationship Between Different Body Mass Index Categories and Chair Rise Performance in Adult Women. J. Appl. Biomech. 2013, 29, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Dodds, R.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.; Dennison, E.; Der, G.; Gale, C.; Inskip, H.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e113637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rikli, R.E.; Jones, C.J. Functional Fitness Normative Scores for Community-Residing Older Adults, Ages 60–94. J. Aging Phys. Act. 1999, 7, 162–181. [Google Scholar] [CrossRef]
- Brach, J.S.; FitzGerald, S.; Newman, A.B.; Kelsey, S.; Kuller, L.; VanSwearingen, J.M.; Kriska, A.M. Physical activity and functional status in community-dwelling older women: A 14-year prospective study. Arch. Intern. Med. 2003, 163, 2565–2571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furtado, H.; Sousa, N.; Simão, R.; Pereira, F.; Vilaça-Alves, J. Physical exercise and functional fitness in independently living vs institutionalized elderly women: A comparison of 60- to 79-year-old city dwellers. Clin. Interv. Aging 2015, 10, 795–801. [Google Scholar]
- Yerrakalva, D.; Yerrakalva, D.; Hajna, S.; Griffin, S. Effects of Mobile Health App Interventions on Sedentary Time, Physical Activity, and Fitness in Older Adults: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2019, 21, e14343. [Google Scholar] [CrossRef]
- Kelders, S.M.; Kok, R.; Ossebaard, H.C.; Van Gemert-Pijnen, J.E. Persuasive System Design Does Matter: A Systematic Review of Adherence to Web-based Interventions. J. Med. Internet Res. 2012, 14, e152. [Google Scholar] [CrossRef]
- Bastone, A.; Filho, W.J. Effect of an exercise program on functional performance of institutionalized elderly. J. Rehabil. Res. Dev. 2004, 41, 659. [Google Scholar] [CrossRef] [PubMed]
- Chao, D.; Foy, C.G.; Farmer, D. Exercise Adherence among Older Adults: Challenges and Strategies. Control. Clin. Trials 2000, 21, S212–S217. [Google Scholar] [CrossRef]
- Dishman, R.K. Increasing and maintaining exercise and physical activity. Behav. Ther. 1991, 22, 345–378. [Google Scholar] [CrossRef]
- Picorelli, A.; Sirineu, D.; Felício, D.; Anjos, D.; Gomes, D.; Dias, R.; Pereira, D.; Assis, M.G. Adherence of older women with strength training and aerobic exercise. Clin. Interv. Aging 2014, 9, 323–331. [Google Scholar] [CrossRef] [Green Version]
- Santanasto, A.; Glynn, N.W.; Lovato, L.C.; Blair, S.N.; Fielding, R.A.; Gill, T.M.; Guralnik, J.M.; Hsu, F.; King, A.C.; Strotmeyer, E.S.; et al. Effect of Physical Activity versus Health Education on Physical Function, Grip Strength and Mobility. J. Am. Geriatr. Soc. 2017, 65, 1427–1433. [Google Scholar] [CrossRef] [PubMed]
- Hrysomallis, C. Balance Ability and Athletic Performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-Stand Performance Depends on Sensation, Speed, Balance, and Psychological Status in Addition to Strength in Older People. J. Gerontol. Ser. A 2002, 57, M539–M543. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.; Habicht, J.-P.; Bryce, J. Evidence-Based Public Health: Moving Beyond Randomized Trials. Am. J. Public Health 2004, 94, 400–405. [Google Scholar] [CrossRef]
Workout Routine—Structure | |||
---|---|---|---|
WarmUp | Joint Mobility Exercise 1 | Set 1 | 40 s |
Joint Mobility Exercise 2 | Set 1 | 40 s | |
Joint Mobility Exercise 1 | Set 2 | 40 s | |
Joint Mobility Exercise 2 | Set 2 | 40 s | |
Coordination | Coordination Exercise | Set 1 | 40 s or 8–12 reps |
Balance Exercise | Set 1 | 40 s | |
Coordination Exercise | Set 2 | 40 s or 8–12 reps | |
Balance Exercise | Set 2 | 40 s | |
Strength | Strengthening Exercise 1 | Set 1 | 8–12 reps |
Strengthening Exercise 2 | Set 1 | 8–12 reps | |
Strengthening Exercise 1 | Set 2 | 8–12 reps | |
Strengthening Exercise 2 | Set 2 | 8–12 reps |
Descriptives | rTG | iTG | rCG | |||
---|---|---|---|---|---|---|
n = 26 | n = 17 | n = 29 | ||||
M | SD | M | SD | M | SD | |
Age, yrs | 74.4 | 6.8 | 75.5 | 7.4 | 76.6 | 8.5 |
Height, cm | 158.4 | 7.7 | 159.2 | 7.5 | 160.8 | 6.3 |
Weight, kg | 71.7 | 18.5 | 84.5 | 21.3 | 71.5 | 15.6 |
BMI, kg/m² | 28.3 | 5.1 | 33.2 | 7.3 | 27.7 | 6.0 |
GRIP, kg | 20.7 | 6.1 | 17.4 | 5.7 | 17.6 | 5.7 |
30CR, cts | 10.5 | 6.2 | 8.5 | 3.3 | 5.6 | 5.6 |
UPS, s | 13.8 | 17.1 | 10.7 | 11.4 | 9.7 | 16.0 |
GRIP, kg | rTG | iTG | rCG | ANOVA | |||||
---|---|---|---|---|---|---|---|---|---|
n = 26 | n = 17 | n = 29 | |||||||
M | SD | M | SD | M | SD | F (2/69) | p | η2 | |
t0_GRIP_mean | 20.7 | 6.1 | 17.4 | 5.7 | 17.6 | 5.7 | 2.411 | 0.097 | 0.065 |
t1_GRIP_mean | 21.1 | 6.6 | 16.5 | 5.7 | 16.9 | 4.6 | 5.088 | 0.009 | 0.129 |
t2_GRIP_mean | 19.3 | 6.4 | 17.2 | 4.8 | 17.0 | 5.9 | 1.218 | 0.302 | 0.034 |
30CR, cts | rTG | iTG | rCG | Kruskal–Wallis | |
---|---|---|---|---|---|
n = 26 | n = 17 | n = 29 | |||
Mdn | Mdn | Mdn | χ2 (2) | padj | |
t0_30CR | 10.5 | 10.0 | 5.0 | 9.580 | 0.008 |
t1_30CR | 12.0 | 9.0 | 7.0 | 6.666 | 0.036 |
t2_30CR | 13.5 | 10.0 | 5.0 | 13.645 | 0.001 |
UPS, sec | rTG | iTG | rCG | Kruskal–Wallis | |
---|---|---|---|---|---|
n = 26 | n = 17 | n = 29 | |||
Mdn | Mdn | Mdn | χ2 (2) | padj | |
t0_UPS | 5.8 | 8.0 | 0.0 | 2.604 | 0.272 |
t1_UPS | 15.0 | 2.0 | 0.0 | 8.589 | 0.014 |
t2_UPS | 11.0 | 8.0 | 0.0 | 4.290 | 0.117 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jungreitmayr, S.; Ring-Dimitriou, S.; Trukeschitz, B.; Eisenberg, S.; Schneider, C. Effects of an Information and Communication Technology-Based Fitness Program on Strength and Balance in Female Home Care Service Users. Int. J. Environ. Res. Public Health 2021, 18, 7955. https://doi.org/10.3390/ijerph18157955
Jungreitmayr S, Ring-Dimitriou S, Trukeschitz B, Eisenberg S, Schneider C. Effects of an Information and Communication Technology-Based Fitness Program on Strength and Balance in Female Home Care Service Users. International Journal of Environmental Research and Public Health. 2021; 18(15):7955. https://doi.org/10.3390/ijerph18157955
Chicago/Turabian StyleJungreitmayr, Sonja, Susanne Ring-Dimitriou, Birgit Trukeschitz, Siegfried Eisenberg, and Cornelia Schneider. 2021. "Effects of an Information and Communication Technology-Based Fitness Program on Strength and Balance in Female Home Care Service Users" International Journal of Environmental Research and Public Health 18, no. 15: 7955. https://doi.org/10.3390/ijerph18157955
APA StyleJungreitmayr, S., Ring-Dimitriou, S., Trukeschitz, B., Eisenberg, S., & Schneider, C. (2021). Effects of an Information and Communication Technology-Based Fitness Program on Strength and Balance in Female Home Care Service Users. International Journal of Environmental Research and Public Health, 18(15), 7955. https://doi.org/10.3390/ijerph18157955