Prevalence of Metabolic Syndrome According to Absolute and Relative Values of Muscle Strength in Middle-Aged and Elderly Women
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Diagnosis of Metabolic Syndrome (MetS)
2.3. Strength Tests
2.3.1. Grip Strength
2.3.2. Leg Strength: Extension and Flexion
2.4. Health Behavior and Medical History Questionnaire
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens Rep. 2018, 20, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Gao, B.; Wang, L.; Xing, Y.; Ming, J.; Zhou, J.; Fu, J.; Li, X.; Xu, S.; Liu, G. Agreement between the JCDCG, revised NCEP-ATPIII, and IDF definitions of metabolic syndrome in a northwestern Chinese population. Diabetes Ther. 2018, 9, 1457–1468. [Google Scholar] [CrossRef]
- Ebrahimi, H.; Emamian, M.H.; Khosravi, A.; Hashemi, H.; Fotouhi, A. Comparison of the accuracy of three diagnostic criteria and estimating the prevalence of metabolic syndrome: A latent class analysis. J. Res. Med. Sci. 2019, 24, 108–114. [Google Scholar] [PubMed]
- Thomsen, M.; Nordestgaard, B.G. Myocardial infarction and ischemic heart disease in overweight and obesity with and without metabolic syndrome. JAMA Intern. Med. 2014, 174, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, X.; Lin, H.; Fu, X.; Lin, W.; Li, M.; Zeng, X.; Gao, Q. Metabolic syndrome and stroke: A meta-analysis of prospective cohort studies. J. Clin. Neurosci. 2017, 40, 34–38. [Google Scholar] [CrossRef]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.T.; Jeong, B.Y.; Oh, J.-K. The prevalence trend of metabolic syndrome and its components and risk factors in Korean adults: Results from the Korean National Health and Nutrition Examination Survey 2008–2013. BMC Public Health 2017, 17, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhao, L.; Yu, D.; Wang, Z.; Ding, G. Metabolic syndrome prevalence and its risk factors among adults in China: A nationally representative cross-sectional study. PLoS ONE 2018, 13, e0199293–e0199308. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.; Choi, Y.C. Relative grip strength cut-point and metabolic syndrome in the elderly: Korea National Health and Nutrition Examination Survey 2014–2017. J. Mens. Health 2019, 15, e47–e57. [Google Scholar]
- Kim, H.; Kim, Y.H.; Kim, W. Association of Low Muscle Mass and Isokinetic Strength with Metabolic Syndrome. J. Mens. Health 2020, 16, e50–e58. [Google Scholar] [CrossRef]
- Sénéchal, M.; McGavock, J.M.; Church, T.S.; Lee, D.-c.; Earnest, C.P.; Sui, X.; Blair, S.N. Cut-points of muscle strength associated with metabolic syndrome in men. Med. Sci. Sports Exerc. 2014, 46, 1475–1481. [Google Scholar] [CrossRef] [Green Version]
- Churilla, J.R.; Summerlin, M.; Richardson, M.R.; Boltz, A.J. Mean combined relative grip strength and metabolic syndrome: 2011–2014 national health and nutrition examination survey. J. Strength Cond. Res. 2020, 34, 995–1000. [Google Scholar] [CrossRef]
- Arai, T.; Obuchi, S.; Shiba, Y. A novel clinical evaluation method using maximum angular velocity during knee extension to assess lower extremity muscle function of older adults. Arch. Gerontol. Geriatr. 2017, 73, 143–147. [Google Scholar] [CrossRef]
- Kambič, T.; Lainščak, M.; Hadžić, V. Reproducibility of isokinetic knee testing using the novel isokinetic SMM iMoment dynamometer. PLoS ONE 2020, 15, e0237842–e0237852. [Google Scholar] [CrossRef] [PubMed]
- Stark, T.; Walker, B.; Phillips, J.K.; Fejer, R.; Beck, R. Hand-held dynamometry correlation with the gold standard isokinetic dynamometry: A systematic review. PM&R. 2011, 3, 472–479. [Google Scholar]
- Inoue, S.; Zimmet, P.; Caterson, I.; Chunming, C.; Ikeda, Y.; Khalid, A.; Kim, Y. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; World Health Organization: Sydney, Australia, 2000. [Google Scholar]
- Mehmet, H.; Yang, A.W.; Robinson, S.R. Measurement of hand grip strength in the elderly: A scoping review with recommendations. J. Bodyw. Mov. Ther. 2020, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- CSMi. Humac Norm Users Guide; Computer Sports Medicine, Inc.: Stoughton, MA, USA, 2019. [Google Scholar]
- Oliveira, P.F.A.; Gadelha, A.B.; Gauche, R.; Paiva, F.M.L.; Bottaro, M.; Vianna, L.C.; Lima, R.M. Resistance training improves isokinetic strength and metabolic syndrome-related phenotypes in postmenopausal women. Clin. Interv. Aging 2015, 10, 1299. [Google Scholar]
- Parcell, A.C.; Sawyer, R.D.; Tricoli, V.A.; Chinevere, T.D. Minimum rest period for strength recovery during a common isokinetic testing protocol. Med. Sci. Sports Exerc. 2002, 34, 1018–1022. [Google Scholar] [CrossRef] [PubMed]
- Bottaro, M.; Russo, A.F.; De Oliveira, R.J. The effects of rest interval on quadriceps torque during an isokinetic testing protocol in elderly. J. Sports Sci. Med. 2005, 4, 285. [Google Scholar] [PubMed]
- Bhatnagar, P.; Wickramasinghe, K.; Williams, J.; Rayner, M.; Townsend, N. The epidemiology of cardiovascular disease in the UK 2014. Heart 2015, 101, 1182–1189. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, W.; Lun, Z.; Zhang, H.; Sun, Z.; Kanu, J.S.; Qiu, S.; Cheng, Y.; Liu, Y. Prevalence of metabolic syndrome in Mainland China: A meta-analysis of published studies. BMC Public Health 2016, 16, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Wang, L.; Li, M.; Xu, Y.; Jiang, Y.; Wang, W.; Li, J.; Mi, S.; Zhang, M.; Li, Y. Metabolic syndrome among adults in China: The 2010 China noncommunicable disease surveillance. J. Clin. Endocrinol. Metab. 2017, 102, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Ko, D.H.; Lee, K.H.; Kim, Y.H. Longitudinal study on the relative risk of type 2 diabetes mellitus according to obesity and physical activity. J. Mens. Health 2020, 16, 1–10. [Google Scholar]
- Merchant, R.A.; Chan, Y.H.; Lim, J.Y.; Morley, J.E. Prevalence of Metabolic Syndrome and Association with Grip Strength in Older Adults: Findings from the HOPE Study. Diabetes Metab. Syndr. Obes. 2020, 13, 2677–2686. [Google Scholar] [CrossRef]
- Atlantis, E.; Martin, S.A.; Haren, M.T.; Taylor, A.W.; Wittert, G.A. Inverse associations between muscle mass, strength, and the metabolic syndrome. Metabolism 2009, 58, 1013–1022. [Google Scholar] [CrossRef]
- Richards, L.; Palmiter-Thomas, P. Grip strength measurement: A critical review of tools, methods, and clinical utility. Crit. Rev. Phys. Rehabil. Med. 1996, 8, 87–109. [Google Scholar] [CrossRef]
- Jurca, R.; Lamonte, M.J.; Church, T.S.; Earnest, C.P.; Fitzgerald, S.J.; Barlow, C.E.; Jordan, A.N.; Kampert, J.B.; Blair, S.N. Associations of muscle strength and fitness with metabolic syndrome in men. Med. Sci. Sports Exerc. 2004, 36, 1301–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyatake, N.; Wada, J.; Saito, T.; Nishikawa, H.; Matsumoto, S.; Miyachi, M.; Makino, H.; Numata, T. Comparison of muscle strength between Japanese men with and without metabolic syndrome. Acta Med. Okayama 2007, 61, 89–102. [Google Scholar]
- Vieira, D.C.L.; Tibana, R.A.; Tajra, V.; da Cunha Nascimento, D.; de Farias, D.L.; de Oliveira Silva, A.; Teixeira, T.G.; Fonseca, R.M.C.; de Oliveira, R.J.; dos Santos Mendes, F.A. Decreased functional capacity and muscle strength in elderly women with metabolic syndrome. Clin. Interv. Aging 2013, 8, 1377–1386. [Google Scholar]
- Yang, E.J.; Lim, S.; Lim, J.-Y.; Kim, K.W.; Jang, H.C.; Paik, N.-J. Association between muscle strength and metabolic syndrome in older Korean men and women: The Korean Longitudinal Study on Health and Aging. Metabolism 2012, 61, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Mesinovic, J.; McMillan, L.B.; Shore-Lorenti, C.; De Courten, B.; Ebeling, P.R.; Scott, D. Metabolic syndrome and its associations with components of sarcopenia in overweight and obese older adults. J. Clin. Med. 2019, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Bisschop, C.N.S.; Peeters, P.H.; Monninkhof, E.M.; van der Schouw, Y.T.; May, A.M. Associations of visceral fat, physical activity and muscle strength with the metabolic syndrome. Maturitas 2013, 76, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Egger, G.; Swinburn, B.; Islam, F.A. Economic growth and obesity: An interesting relationship with world-wide implications. Econ. Hum. Biol. 2012, 10, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Min, H.J.; Jung, W.J.; Kim, Y.H. Changes in obesity and physical activity according to gender in South Korean adults, 2002–2013. J. Mens. Health 2019, 15, e28–e36. [Google Scholar]
- Colafella, K.M.M.; Denton, K.M. Sex-specific differences in hypertension and associated cardiovascular disease. Nat. Rev. Nephrol. 2018, 14, 185–201. [Google Scholar] [CrossRef]
- Garcia, M.; Mulvagh, S.L.; Bairey Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular disease in women: Clinical perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef]
- Delitto, A. Isokinetic dynamometry. Muscle Nerve 1990, 13, S53–S57. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.; Crawford, D.; Owen, N. Obesity as a barrier to physical activity. Aust. N. Z. J. Public Health 2000, 24, 331–333. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, Y.S.; Lee, J.Y. Differences in causes of activity limitation by gender and age. J. Men’s Health 2020, 16, e18–e26. [Google Scholar]
- Leonetti, G.; Mazzola, C.; Pasotti, C.; Angioni, L.; Vaccarella, A.; Capra, A.; Botta, G.; Zanchetti, A. Treatment of hypertension in the elderly: Effects on blood pressure, heart rate, and physical fitness. Am. J. Med. 1991, 90, S12–S13. [Google Scholar] [CrossRef]
- Deichmann, R.E.; Lavie, C.J.; Asher, T.; DiNicolantonio, J.J.; O’Keefe, J.H.; Thompson, P.D. The interaction between statins and exercise: Mechanisms and strategies to counter the musculoskeletal side effects of this combination therapy. Ochsner J. 2015, 15, 429–437. [Google Scholar]
- Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-associated side effects. J. Am. Coll. Cardiol. 2016, 67, 2395–2410. [Google Scholar] [CrossRef]
- Gorre, F.; Vandekerckhove, H. Beta-blockers: Focus on mechanism of action Which beta-blocker, when and why? Acta Cardiol. 2010, 65, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.; Da Silva, J.R.; Da Silva, M.R.B.; Bevilaqua-Grossi, D. Reliability and validity of the belt-stabilized handheld dynamometer in hip-and knee-strength tests. J. Athl. Training 2017, 52, 809–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Franco, N.; Jiménez-Reyes, P.; Fernández-Domínguez, J.C. Concurrent Validity and Reliability of a Low-Cost Dynamometer to Assess Maximal Isometric Strength in Neck Movements. J. Manip. Physiol. Therapeutics 2021, 44, 229–235. [Google Scholar] [CrossRef]
Variables | Middle-Aged (n = 453) | Elderly (n = 601) | ||||
---|---|---|---|---|---|---|
Non-MetS | MetS | p | Non-MetS | MetS | p | |
n (%) | 357 (78.8%) | 96 (21.2%) | - | 364 (60.6%) | 237 (39.4%) | - |
Age, years | 48.2 ± 4.0 | 52.1 ± 4.8 | <0.001 * | 67.2 ± 4.6 | 67.1 ± 3.9 | 0.607 |
Height, cm | 158.1 ± 4.8 | 158.9 ± 4.2 | 0.124 | 152.8 ± 5.3 | 152.9 ± 4.3 | 0.054 |
Weight, kg | 56.0 ± 6.5 | 66.3 ± 8.8 | <0.001 * | 56.7 ± 7.5 | 61.0 ± 8.3 | <0.001 * |
BMI, kg/m2 | 22.4 ± 2.7 | 26.2 ± 3.0 | <0.001 * | 24.2 ± 2.5 | 26.6 ± 3.1 | <0.001 * |
MetS risk factors | ||||||
Waist circumference, cm | 80.9 ± 6.9 | 87.3 ±7.6 | <0.001 * | 79.1 ± 7.5 | 86.6 ± 6.8 | <0.001 * |
SBP, mmHg | 118.3 ± 14.6 | 132.6 ± 20.2 | <0.001 * | 125.9 ± 17.3 | 138.9 ± 16.7 | <0.001 * |
DBP, mmHg | 78.1 ± 9.5 | 87.3 ± 10.5 | <0.001 * | 80.2 ± 9.2 | 89.4 ± 8.1 | <0.001 * |
HDLC, mg/dL | 62.7 ± 13.5 | 42.5 ± 8.4 | <0.001 * | 61.1 ± 12.1 | 46.8 ± 10.7 | <0.001 * |
TG, mg/dL | 95.6 ± 39.6 | 172.3 ± 69.0 | <0.001 * | 102.1 ± 43.5 | 168.4 ± 75.0 | <0.001 * |
Glucose, mg/dL | 92.5 ± 8.2 | 104.0 ± 16.2 | <0.001 * | 97.1 ± 12.4 | 116.9 ± 12.8 | <0.001 * |
Medication status, (%) | ||||||
Hypertension | 35 (9.8%) | 24 (25%) | <0.001 * | 127 (34.9%) | 130 (54.9%) | <0.001 * |
Diabetes | 7 (2.0%) | 9 (9.4%) | <0.001 * | 50 (14.0%) | 55 (23.2%) | <0.001 * |
Dyslipidemia | 25 (7.0%) | 17 (17.7%) | <0.001 * | 57 (15.7%) | 53 (22.4%) | <0.001 * |
Variables | Middle-Aged (n = 453) | Elderly (n = 601) | ||||
---|---|---|---|---|---|---|
Non-MetS | MetS | p | Non-MetS | MetS | p | |
Absolute strength values | ||||||
Leg extension, Nm | 81.3± 19.1 | 90.8 ± 29.9 | <0.001 * | 62.8 ± 16.9 | 65.7 ± 17.7 | 0.029 * |
Leg flexion, Nm | 44.5 ± 11.3 | 51.8 ± 17.8 | <0.001 * | 31.7 ± 11.6 | 34.3 ± 10.7 | 0.003 * |
Grip strength, kg | 22.9 ± 4.1 | 24.5 ± 4.5 | <0.001 * | 21.0 ± 3.9 | 22.9 ± 3.6 | 0.403 |
Relative strength values | ||||||
Leg extension, Nm/BW | 1.46 ± 0.32 | 1.36 ± 0.33 | 0.018 * | 1.11 ± 0.28 | 1.07 ± 0.32 | 0.027 * |
Leg flexion, Nm/BW | 0.79 ± 0.19 | 0.77 ± 0.20 | 0.229 | 0.56 ± 0.18 | 0.55 ± 0.19 | 0.328 |
Grip strength, kg/BW | 0.39 ± 0.09 | 0.37 ± 0.08 | 0.007 * | 0.37 ± 0.07 | 0.36 ± 0.09 | 0.056 |
Alcohol consumption, % | ||||||
None | 14.5 | 16.6 | 0.041 * | 31.9 | 30.0 | 0.046 * |
1 time/month | 49.4 | 41.7 | 52.8 | 47.1 | ||
1 time/week | 26.7 | 27.1 | 10.2 | 12.1 | ||
≥2 time/week | 9.4 | 14.6 | 5.1 | 10.8 | ||
Smoking status, % | ||||||
Never | 82.2 | 75.1 | 0.381 | 90.7 | 85.0 | 0.285 |
Quit | 10.2 | 12.5 | 6.1 | 7.9 | ||
Present | 7.6 | 12.4 | 3.2 | 7.1 | ||
Physical activity, % | ||||||
5–7 days/week | 15.0 | 12.3 | 0.011 * | 13.9 | 10.7 | 0.009 * |
3–4 days/week | 47.8 | 29.2 | 37.5 | 29.3 | ||
1–2 days/week | 28.9 | 34.6 | 30.1 | 39.3 | ||
None | 8.3 | 23.9 | 18.5 | 20.7 |
Variables | Model 1 | Model 2 | |||
---|---|---|---|---|---|
Middle-Aged | Group | OR (95% CI) | p | OR (95% CI) | p |
Absolute Leg extension, Nm | Q1 | Reference | - | Reference | - |
Q2 | 0.896 (0.443–1.216) | 0.150 | 0.621 (0.037–1.323) | 0.113 | |
Q3 | 0.672 (0.541–1.025) | 0.125 | 0.545 (0.214–0.839) | 0.009 * | |
Q4 | 0.508 (0.348–0.944) | 0.013 * | 0.520 (0.305–0.862) | 0.005 * | |
Relative Leg extension, Nm/BW | Q1 | Reference | - | Reference | - |
Q2 | 1.223 (0.567–2.638) | 0.413 | 0.666 (0.275–1.613) | 0.361 | |
Q3 | 1.551 (0.570–2.324) | 0.312 | 1.779 (1.231–3.810) | 0.021 * | |
Q4 | 2.030 (1.278–4.215) | 0.009 * | 2.508 (1.255–5.011) | <0.001 * | |
Absolute Flexion, Nm | Q1 | Reference | - | Reference | - |
Q2 | 0.920 (0.507–1.450) | 0.543 | 0.774 (0.030–1.184) | 0.501 | |
Q3 | 0.803 (0.403–1.597) | 0.219 | 0.602 (0.091–1.449) | 0.416 | |
Q4 | 0.765 (0.386–0.918) | 0.011 * | 0.566 (0.130–0.885) | 0.003 * | |
Relative Flexion, Nm/BW | Q1 | Reference | - | Reference | - |
Q2 | 1.048 (0.800–1.408) | 0.846 | 0.770 (0.311–2.441) | 0.846 | |
Q3 | 1.187 (0.669–1.633) | 0.840 | 1.052 (0.335–2.689) | 0.540 | |
Q4 | 1.227 (0.776–2.006) | 0.149 | 1.181 (0.703–2.279) | 0.094 | |
Elderly | |||||
Absolute Leg extension, Nm | Q1 | Reference | - | Reference | - |
Q2 | 0.804 (0.505–1.281) | 0.459 | 0.794 (0.455–1.386) | 0.416 | |
Q3 | 0.710 (0.463–1.088) | 0.342 | 0.589 (0.236–1.061) | 0.318 | |
Q4 | 0.639 (0.216–0.932) | 0.023 * | 0.583 (0.172–0.868) | 0.004 * | |
Relative Leg extension, Nm/BW | Q1 | Reference | - | Reference | - |
Q2 | 1.039 (0.226–1.968) | 0.412 | 1.082 (0.512–1.314) | 0.151 | |
Q3 | 1.027 (0.540–1.265) | 0.241 | 1.435 (0.865–2.115) | 0.125 | |
Q4 | 1.400 (1.099–2.181) | 0.010 * | 1.550 (1.096–2.148) | <0.001 * | |
Absolute Flexion, Nm | Q1 | Reference | - | Reference | - |
Q2 | 0.778 (0.510–1.186) | 0.741 | 0.880 (0.289–1.296) | 0.846 | |
Q3 | 0.722 (0.273–1.852) | 0.649 | 0.668 (0.288–1.583) | 0.645 | |
Q4 | 0.619 (0.263–0.967) | 0.019 * | 0.562 (0.155–0.842) | 0.008 * | |
Relative Flexion, Nm/BW | Q1 | Reference | - | Reference | - |
Q2 | 0.669 (0.432–1.035) | 0.521 | 0.710 (0.437–1.153) | 0.479 | |
Q3 | 1.043 (0.678–1.604) | 0.110 | 1.140 (0.445–1.830) | 0.134 | |
Q4 | 1.264 (0.566–1.640) | 0.098 | 1.283 (0.828–1.986) | 0.061 |
Variables | Model 1 | Model 2 | |||
---|---|---|---|---|---|
Middle-Aged | Group | OR (95% CI) | p | OR (95% CI) | p |
Absolute Grip strength, kg | Q1 | Reference | - | Reference | - |
Q2 | 0.723 (0.343–1.523) | 0.431 | 0.618 (0.289–1.883) | 0.411 | |
Q3 | 0.654 (0.214–1.156) | 0.400 | 0.573 (0.314–1.149) | 0.199 | |
Q4 | 0.542 (0.112–0.856) | 0.019 * | 0.413 (0.168–0.915) | <0.001 * | |
Relative Grip strength, kg/BW | Q1 | Reference | - | Reference | - |
Q2 | 1.171 (0.564–2.431) | 0.326 | 0.974 (0.443–2.142) | 0.216 | |
Q3 | 1.251 (0.900–3.808) | 0.219 | 1.349 (1.027–3.893) | 0.015 * | |
Q4 | 1.785 (1.107–3.549) | 0.022 * | 1.554 (1.178–4.314) | 0.002 * | |
Elderly | |||||
Absolute Grip strength, kg | Q1 | Reference | - | Reference | - |
Q2 | 1.291 (0.840–1.982) | 0.744 | 0.746 (0.462–1.204) | 0.461 | |
Q3 | 0.668 (0.414–1.078) | 0.646 | 0.791 (0.437–1.430) | 0.240 | |
Q4 | 0.614 (0.496–1.203) | 0.341 | 0.275 (0.162–1.464) | 0.156 | |
Relative Grip strength, kg/BW | Q1 | Reference | - | Reference | - |
Q2 | 0.940 (0.568–1.556) | 0.226 | 0.854 (0.504–1.449) | 0.254 | |
Q3 | 1.286 (0.800–3.414) | 0.164 | 1.108 (0.713–1.720) | 0.101 | |
Q4 | 1.530 (0.926–2.208) | 0.007 * | 1.239 (1.052–2.124) | <0.001 * |
Variables | Model 1 | Model 2 | |||
---|---|---|---|---|---|
Middle-Aged | Group | OR (95% CI) | p | OR (95% CI) | p |
Alcohol consumption | None | Reference | - | Reference | - |
1 time/month | 1.073 (0.564–2.189) | 0.512 | 1.073 (0.431–1.985) | 0.416 | |
1 time/week | 1.399 (0.673–2.843) | 0.148 | 1.287 (0.519–2.484) | 0.110 | |
≥2 time/week | 1.654 (1.041–3.015) | 0.008 * | 1.557 (1.114–3.091) | 0.009 * | |
Smoking status | Never | Reference | - | Reference | - |
Quit | 0.920 (0.611–2.145) | 0.684 | 1.100 (0.515–1.984) | 0.466 | |
Present | 1.277 (0.719–2.641) | 0.450 | 1.195 (0.610–2.110) | 0.349 | |
Physical activity | 5–7 days/week | Reference | - | Reference | - |
3–4 days/week | 1.234 (0.684–2.417) | 0.149 | 1.034 (0.484–1.941) | 0.101 | |
1–2 days/week | 1.258 (0.584–2.613) | 0.097 | 1.046 (0.511–2.015) | 0.060 | |
None | 2.712 (1.121–3.689) | 0.021 * | 2.115 (1.219–4.214) | 0.006 * | |
Elderly | |||||
Alcohol consumption | None | Reference | - | Reference | - |
1 time/month | 1.279 (0.545–2.219) | 0.845 | 1.079 (0.585–2.945) | 0.610 | |
1 time/week | 1.248 (0.599–2.495) | 0.189 | 1.036 (0.594–3.155) | 0.094 | |
≥2 times/week | 2.047 (1.013–4.194) | 0.040 * | 1.850 (1.099–3.458) | 0.014 * | |
Smoking status | Never | Reference | - | Reference | - |
Quit | 1.343 (0.711–2.921) | 0.741 | 1.131 (0.645–2.964) | 0.501 | |
Present | 1.835 (0.419–4.094) | 0.364 | 1.538 (0.849–5.100) | 0.284 | |
Physical activity | 5–7 days/week | Reference | - | Reference | - |
3–4 days/week | 1.282 (0.511–2.671) | 0.418 | 1.082 (0.544–2.740) | 0.463 | |
1–2 days/week | 1.352 (0.694–2.499) | 0.340 | 1.140 (0.697–2.646) | 0.290 | |
None | 2.194 (1.085–3.974) | 0.030 * | 1.797 (1.102–5.109) | 0.022 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhao, Z.; Sun, X.; Tian, X. Prevalence of Metabolic Syndrome According to Absolute and Relative Values of Muscle Strength in Middle-Aged and Elderly Women. Int. J. Environ. Res. Public Health 2021, 18, 9073. https://doi.org/10.3390/ijerph18179073
Zhang W, Zhao Z, Sun X, Tian X. Prevalence of Metabolic Syndrome According to Absolute and Relative Values of Muscle Strength in Middle-Aged and Elderly Women. International Journal of Environmental Research and Public Health. 2021; 18(17):9073. https://doi.org/10.3390/ijerph18179073
Chicago/Turabian StyleZhang, Wangyang, Zijian Zhao, Xuebin Sun, and Xiaoxia Tian. 2021. "Prevalence of Metabolic Syndrome According to Absolute and Relative Values of Muscle Strength in Middle-Aged and Elderly Women" International Journal of Environmental Research and Public Health 18, no. 17: 9073. https://doi.org/10.3390/ijerph18179073
APA StyleZhang, W., Zhao, Z., Sun, X., & Tian, X. (2021). Prevalence of Metabolic Syndrome According to Absolute and Relative Values of Muscle Strength in Middle-Aged and Elderly Women. International Journal of Environmental Research and Public Health, 18(17), 9073. https://doi.org/10.3390/ijerph18179073