Behavioral Correlates of COVID-19 Worry: Stigma, Knowledge, and News Source
Abstract
:1. Introduction
1.1. COVID-19 Stigma
1.2. COVID-19 Knowledge
1.3. Preferred News Source
1.4. Depression
2. Materials and Methods
Statistics
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moghadas, S.M.; Fitzpatrick, M.C.; Sah, P.; Pandey, A.; Shoukat, A.; Singer, B.H.; Galvani, A.P. The implications of silent transmission for the control of COVID-19 outbreaks. Proc. Natl. Acad. Sci. USA 2020, 117, 17513–17515. [Google Scholar] [CrossRef]
- AFP. Thousands Around Globe Protest COVID-19 Shots, Lockdowns. Available online: https://www.voanews.com/a/covid-19-pandemic_thousands-around-globe-protest-covid-19-shots-lockdowns/6208675.html (accessed on 27 September 2021).
- BBC. Coronavirus Lockdown Protest: What’s behind the US Demonstrations? Available online: https://www.bbc.com/news/world-us-canada-52359100 (accessed on 27 September 2021).
- Nzaji, M.K.; Mwamba, G.N.; Miema, J.M.; Umba, E.K.N.; Kangulu, I.B.; Ndala, D.B.B.; Mukendi, P.C.; Mutombo, D.K.; Kabasu, M.C.B.; Katala, M.K.; et al. Predictors of Non-Adherence to Public Health Instructions During the COVID-19 Pandemic in the Democratic Republic of the Congo. J. Multidiscip. Healthc. 2020, 13, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Pollak, Y.; Dayan, H.; Shoham, R.; Berger, I. Predictors of adherence to public health instructions during the COVID-19 pandemic. Psychiatry Clin. Neurosci. 2020, 74, 602–604. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.B.; Thompson, N.J.; Weaver, S.S.; Hopkins, G.L. Healthcare non-adherence decisions and internet health information. Comput. Hum. Behav. 2009, 25, 1373–1380. [Google Scholar] [CrossRef]
- Hills, S.; Eraso, Y. Factors associated with non-adherence to social distancing rules during the COVID-19 pandemic: A logistic regression analysis. BMC Public Health 2021, 21, 352. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Historical origins of the health belief model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Champion, V.L.; Skinner, C.S. The health belief model. Health Behav. Health Educ. Theory Res. Pract. 2008, 4, 45–65. [Google Scholar]
- Chauvin, B.; Hermand, D.; Mullet, E. Risk perception and personality facets. Risk Anal. 2007, 27, 171–185. [Google Scholar] [CrossRef]
- El-Toukhy, S. Parsing susceptibility and severity dimensions of health risk perceptions. J. Health Commun. 2015, 20, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Palmer, C. Risk perception: Another look at the ‘white male’ effect. Health Risk Soc. 2003, 5, 71–83. [Google Scholar] [CrossRef]
- Renn, O.; Rohrmann, B. Cross-Cultural Risk Perception: A Survey of Empirical Studies; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2000. [Google Scholar]
- Hsing, J.C.; Ma, J.; Barrero-Castillero, A.; Jani, S.G.; Pulendran, U.P.; Lin, B.J.; Thomas-Uribe, M.; Wang, C.J. Influence of Health Beliefs on Adherence to COVID-19 Preventative Practices: International, Social Media-Based Survey Study. J. Med. Internet Res. 2021, 23, e23720. [Google Scholar] [CrossRef] [PubMed]
- Jose, R.; Narendran, M.; Bindu, A.; Beevi, N.; Manju, L.; Benny, P.V. Public perception and preparedness for the pandemic COVID 19: A Health Belief Model approach. Clin. Epidemiol. Glob. Health 2021, 9, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Shahnazi, H.; Ahmadi-Livani, M.; Pahlavanzadeh, B.; Rajabi, A.; Hamrah, M.S.; Charkazi, A. Assessing preventive health behaviors from COVID-19: A cross sectional study with health belief model in Golestan Province, Northern of Iran. Infect. Dis. Poverty 2020, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Nourmoradi, H.; Mirzaei, A.; Kazembeigi, F.; Kakaei, H.; Jalilian, M.; Mazloomi, S. Application of health belief model to predict COVID-19-preventive behaviors among a sample of Iranian adult population. J. Educ. Health Promot. 2021, 10, 69. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, T.; Alemu, T.; Amogne, G.; Endazenaw, G.; Mamo, E. Predictors of Coronavirus Disease 2019 (COVID-19) Prevention Practices Using Health Belief Model Among Employees in Addis Ababa, Ethiopia, 2020. Infect. Drug Resist. 2020, 13, 3751–3761. [Google Scholar] [CrossRef]
- Shewasinad Yehualashet, S.; Asefa, K.K.; Mekonnen, A.G.; Gemeda, B.N.; Shiferaw, W.S.; Aynalem, Y.A.; Bilchut, A.H.; Derseh, B.T.; Mekuria, A.D.; Mekonnen, W.N.; et al. Predictors of adherence to COVID-19 prevention measure among communities in North Shoa Zone, Ethiopia based on health belief model: A cross-sectional study. PLoS ONE 2021, 16, e0246006. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S. Analysis of the Impact of Health Beliefs and Resource Factors on Preventive Behaviors against the COVID-19 Pandemic. Int. J. Env. Res. Public Health 2020, 17, 8666. [Google Scholar] [CrossRef] [PubMed]
- Barakat, A.M.; Kasemy, Z.A. Preventive health behaviours during coronavirus disease 2019 pandemic based on health belief model among Egyptians. Middle East Curr. Psychiatry 2020, 27, 43. [Google Scholar] [CrossRef]
- Bechard, L.E.; Bergelt, M.; Neudorf, B.; DeSouza, T.C.; Middleton, L.E. Using the Health Belief Model to Understand Age Differences in Perceptions and Responses to the COVID-19 Pandemic. Front. Psychol. 2021, 12, 609893. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Zhao, Q.; Alias, H.; Danaee, M.; Wong, L.P. Understanding COVID-19 vaccine demand and hesitancy: A nationwide online survey in China. PLoS Negl. Trop. Dis. 2020, 14, e0008961. [Google Scholar] [CrossRef] [PubMed]
- Sebri, V.; Cincidda, C.; Savioni, L.; Ongaro, G.; Pravettoni, G. Worry during the initial height of the COVID-19 crisis in an Italian sample. J. Gen. Psychol. 2021, 148, 327–359. [Google Scholar] [CrossRef]
- Ravert, R.D.; Fu, L.Y.; Zimet, G.D. Young Adults’ COVID-19 Testing Intentions: The Role of Health Beliefs and Anticipated Regret. J. Adolesc. Health 2021, 68, 460–463. [Google Scholar] [CrossRef]
- Guidry, J.P.D.; Laestadius, L.I.; Vraga, E.K.; Miller, C.A.; Perrin, P.B.; Burton, C.W.; Ryan, M.; Fuemmeler, B.F.; Carlyle, K.E. Willingness to get the COVID-19 vaccine with and without emergency use authorization. Am. J. Infect. Control 2021, 49, 137–142. [Google Scholar] [CrossRef]
- Taylor, S.; Landry, C.A.; Paluszek, M.M.; Rachor, G.S.; Asmundson, G.J.G. Worry, avoidance, and coping during the COVID-19 pandemic: A comprehensive network analysis. J. Anxiety Disord. 2020, 76, 102327. [Google Scholar] [CrossRef] [PubMed]
- Maxfield, M.; Pituch, K.A. COVID-19 worry, mental health indicators, and preparedness for future care needs across the adult lifespan. Aging Ment. Health 2021, 25, 1273–1280. [Google Scholar] [CrossRef]
- Barber, S.J.; Kim, H. COVID-19 Worries and Behavior Changes in Older and Younger Men and Women. J. Gerontol. B Psychol. Sci. Soc. Sci. 2021, 76, e17–e23. [Google Scholar] [CrossRef] [PubMed]
- Litam, S.D.A.; Oh, S. Ethnic Identity and Coping Strategies as Moderators of COVID-19 Racial Discrimination Experiences Among Chinese Americans. Couns. Outcome Res. Eval. 2020, 1–15. [Google Scholar] [CrossRef]
- Cheah, C.S.L.; Wang, C.; Ren, H.; Zong, X.; Cho, H.S.; Xue, X. COVID-19 Racism and Mental Health in Chinese American Families. Pediatrics 2020, 146, e2020021816. [Google Scholar] [CrossRef] [PubMed]
- Brewis, A.; Wutich, A.; Mahdavi, P. Stigma, pandemics, and human biology: Looking back, looking forward. Am. J. Hum. Biol. 2020, 32, e23480. [Google Scholar] [CrossRef] [PubMed]
- Hatzenbuehler, M.L.; Phelan, J.C.; Link, B.G. Stigma as a fundamental cause of population health inequalities. Am. J. Public Health 2013, 103, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Bologna, L.; Stamidis, K.V.; Paige, S.; Solomon, R.; Bisrat, F.; Kisanga, A.; Usman, S.; Arale, A. Why Communities Should Be the Focus to Reduce Stigma Attached to COVID-19. Am. J. Trop. Med. Hyg. 2021, 104, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Fischer, L.S.; Mansergh, G.; Lynch, J.; Santibanez, S. Addressing Disease-Related Stigma During Infectious Disease Outbreaks. Disaster Med. Public Health Prep. 2019, 13, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Perry, P.; Donini-Lenhoff, F. Stigmatization complicates infectious disease management. AMA J. Ethics 2010, 12, 225–230. [Google Scholar]
- Stangl, A.L.; Earnshaw, V.A.; Logie, C.H.; van Brakel, W.; Simbayi, L.C.; Barré, I.; Dovidio, J.F. The Health Stigma and Discrimination Framework: A global, crosscutting framework to inform research, intervention development, and policy on health-related stigmas. BMC Med. 2019, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation. Managing the COVID-19 Infodemic: Promoting Healthy Behaviours and Mitigating the Harm from Misinformation and Disinformation; World Health Organisation: Geneva, Switzerland, 2020. [Google Scholar]
- Piltch-Loeb, R.; Merdjanoff, A.; Meltzer, G. Anticipated mental health consequences of COVID-19 in a nationally-representative sample: Context, coverage, and economic consequences. Prev. Med. 2021, 145, 106441. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Ahn, J.; Atkinson, L.; Kahlor, L.A. Effects of COVID-19 Misinformation on Information Seeking, Avoidance, and Processing: A Multicountry Comparative Study. Sci. Commun. 2020, 42, 586–615. [Google Scholar] [CrossRef]
- Earnshaw, V.A.; Katz, I.T. Educate, Amplify, and Focus to Address COVID-19 Misinformation. JAMA Health Forum 2020, 1, e200460. [Google Scholar] [CrossRef]
- Simonov, A.; Sacher, S.K.; Dubé, J.-P.H.; Biswas, S. The Persuasive Effect of Fox News: Non-Compliance with Social Distancing during the COVID-19 Pandemic; National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Ash, E.; Galletta, S.; Hangartner, D.; Margalit, Y.; Pinna, M. The effect of Fox News on health behavior during COVID-19. Available at SSRN 3636762. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3636762 (accessed on 27 September 2021).
- Zhao, E.; Wu, Q.; Crimmins, E.M.; Ailshire, J.A. Media trust and infection mitigating behaviours during the COVID-19 pandemic in the USA. BMJ Glob. Health 2020, 5, e003323. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, B.; Sehgal, R.; Cook, M. Why Is All COVID-19 News Bad News? National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Garfin, D.R.; Silver, R.C.; Holman, E.A. The novel coronavirus (COVID-2019) outbreak: Amplification of public health consequences by media exposure. Health Psychol. 2020, 39, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, K.N.; Apostolidou, M.K.; Atsiova, M.B.; Filippidou, A.K.; Florou, A.K.; Gousiou, D.S.; Katsara, A.R.; Mantzari, S.N.; Padouva-Markoulaki, M.; Papatriantafyllou, E.I.; et al. Self-reported changes in anxiety, depression and suicidality during the COVID-19 lockdown in Greece. J. Affect. Disord. 2021, 279, 624–629. [Google Scholar] [CrossRef]
- Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Glob. Health 2020, 16, 57. [Google Scholar] [CrossRef] [PubMed]
- Ettman, C.K.; Abdalla, S.M.; Cohen, G.H.; Sampson, L.; Vivier, P.M.; Galea, S. Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2019686. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Notivol, J.; Gracia-García, P.; Olaya, B.; Lasheras, I.; López-Antón, R.; Santabárbara, J. Prevalence of depression during the COVID-19 outbreak: A meta-analysis of community-based studies. Int. J. Clin. Health Psychol. 2021, 21, 100196. [Google Scholar] [CrossRef]
- Khademian, F.; Delavari, S.; Koohjani, Z.; Khademian, Z. An investigation of depression, anxiety, and stress and its relating factors during COVID-19 pandemic in Iran. BMC Public Health 2021, 21, 275. [Google Scholar] [CrossRef] [PubMed]
- Bäuerle, A.; Teufel, M.; Musche, V.; Weismüller, B.; Kohler, H.; Hetkamp, M.; Dörrie, N.; Schweda, A.; Skoda, E.-M. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: A cross-sectional study in Germany. J. Public Health 2020, 42, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Ustun, G. Determining depression and related factors in a society affected by COVID-19 pandemic. Int. J. Soc. Psychiatry 2021, 67, 54–63. [Google Scholar] [CrossRef]
- Zhou, J.; Zogan, H.; Yang, S.; Jameel, S.; Xu, G.; Chen, F. Detecting Community Depression Dynamics Due to COVID-19 Pandemic in Australia. IEEE Trans. Comput. Soc. Syst. 2021, 8, 982–991. [Google Scholar] [CrossRef]
- Rehman, U.; Shahnawaz, M.G.; Khan, N.H.; Kharshiing, K.D.; Khursheed, M.; Gupta, K.; Kashyap, D.; Uniyal, R. Depression, Anxiety and Stress Among Indians in Times of Covid-19 Lockdown. Community Ment. Health J. 2021, 57, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.P.H.; Hui, B.P.H.; Wan, E.Y.F. Depression and Anxiety in Hong Kong during COVID-19. Int. J. Env. Res. Public Health 2020, 17, 3740. [Google Scholar] [CrossRef] [PubMed]
- Alyami, H.S.; Naser, A.Y.; Dahmash, E.Z.; Alyami, M.H.; Alyami, M.S. Depression and anxiety during the COVID-19 pandemic in Saudi Arabia: A cross-sectional study. Int. J. Clin. Pract. 2021, 75, e14244. [Google Scholar] [CrossRef] [PubMed]
- Shevlin, M.; McBride, O.; Murphy, J.; Miller, J.G.; Hartman, T.K.; Levita, L.; Mason, L.; Martinez, A.P.; McKay, R.; Stocks, T.V.A.; et al. Anxiety, depression, traumatic stress and COVID-19-related anxiety in the UK general population during the COVID-19 pandemic. BJPsych Open 2020, 6, e125. [Google Scholar] [CrossRef]
- Hyland, P.; Shevlin, M.; McBride, O.; Murphy, J.; Karatzias, T.; Bentall, R.P.; Martinez, A.; Vallières, F. Anxiety and depression in the Republic of Ireland during the COVID-19 pandemic. Acta Psychiatr. Scand. 2020, 142, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Dozois, D.J.A. Anxiety and depression in Canada during the COVID-19 pandemic: A national survey. Can. Psychol. Psychol. Can. 2021, 62, 136–142. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Qiu, H.; Wang, Y.; Jian, L.; Ji, J.; Li, K. Anxiety and depression among general population in China at the peak of the COVID-19 epidemic. World Psychiatry 2020, 19, 249–250. [Google Scholar] [CrossRef]
- Fitzpatrick, K.M.; Drawve, G.; Harris, C. Facing new fears during the COVID-19 pandemic: The State of America’s mental health. J. Anxiety Disord. 2020, 75, 102291. [Google Scholar] [CrossRef] [PubMed]
- Silvana, C.; Kim, N. Conducting Survey Research Using MTurk. In Crowdsourcing: Concepts, Methodologies, Tools, and Applications; Information Resources Management Association, Ed.; IGI Global: Hershey, PA, USA, 2019; pp. 410–439. [Google Scholar]
- Grivel, M.M.; Lieff, S.A.; Meltzer, G.; Chang, V.W.; Yang, L.H.; Des Jarlais, D. Sociodemographic and Behavioral Factors associated with COVID-19 Stigmatizing Attitudes in the U.S. Stigma Health. in press.
- Des Jarlais, D.C.; Galea, S.; Tracy, M.; Tross, S.; Vlahov, D. Stigmatization of newly emerging infectious diseases: AIDS and SARS. Am. J. Public Health 2006, 96, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Jones, C.J.; Smith, H.; Llewellyn, C. Evaluating the effectiveness of health belief model interventions in improving adherence: A systematic review. Health Psychol. Rev. 2014, 8, 253–269. [Google Scholar] [CrossRef] [PubMed]
- StataCorp. Stata Statistical Software: Release 15; StataCorp LLC: College Station, TX, USA, 2017. [Google Scholar]
- Solinas-Saunders, M. The U.S. Federal Response to COVID-19 During the First 3 Months of the Outbreak: Was an Evidence-Based Approach an Option? Am. Rev. Public Adm. 2020, 50, 713–719. [Google Scholar] [CrossRef]
- Lohiniva, A.-L.; Dub, T.; Hagberg, L.; Nohynek, H. Learning about COVID-19-related stigma, quarantine and isolation experiences in Finland. PLoS ONE 2021, 16, e0247962. [Google Scholar] [CrossRef]
- Ferree, K.E.; Harris, A.S.; Dulani, B.; Kao, K.; Lust, E.; Metheney, E. Stigma, Trust, and procedural integrity: Covid-19 testing in Malawi. World Dev. 2021, 141, 105351. [Google Scholar] [CrossRef] [PubMed]
- Horse, A.J.Y.; Jeung, R.; Lim, R.; Tang, B.; Im, M.; Higashiyama, L.; Schweng, L.; Chen, M. Stop AAPI Hate National Report; Stop AAPI Hate: San Francisco, CA, USA, 2021. [Google Scholar]
- Colson, P.W.; Franks, J.; Sondengam, R.; Hirsch-Moverman, Y.; El-Sadr, W. Tuberculosis Knowledge, Attitudes, and Beliefs in Foreign-born and US-born Patients with Latent Tuberculosis Infection. J. Immigr. Minority Health 2010, 12, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Serino, L.; Meleleo, C.; Maurici, M.; Bagnato, B.; Sorbara, D.; Zaratti, L.; Franco, E. Knowledge and worry as basis for different behaviors among university students: The case of pandemic flu H1N1v. J. Prev. Med. Hyg. 2011, 52, 144–147. [Google Scholar]
- Pelullo, C.P.; Di Giuseppe, G.; Angelillo, I.F. Human Papillomavirus Infection: Knowledge, Attitudes, and Behaviors among Lesbian, Gay Men, and Bisexual in Italy. PLoS ONE 2012, 7, e42856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toennies, L.M.; Zagumny, M.J.; Sorokin, G.; Tesch, B. Association of Demographic Characteristics, Knowledge, and Worry about HIV Infection with Occupational and Nonoccupational Behaviors of Medical Students. Psychol. Rep. 1994, 74, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Stainback, K.; Hearne, B.N.; Trieu, M.M. COVID-19 and the 24/7 News Cycle: Does COVID-19 News Exposure Affect Mental Health? Socius 2020, 6, 2378023120969339. [Google Scholar] [CrossRef]
- Kim, E.; Shepherd, M.E.; Clinton, J.D. The effect of big-city news on rural America during the COVID-19 pandemic. Proc. Natl. Acad. Sci. USA 2020, 117, 22009–22014. [Google Scholar] [CrossRef]
- Papageorgiou, C. Worry and rumination: Styles of persistent negative thinking in anxiety and depression. In Worry and its Psychological Disorders: Theory, Assessment and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2006; pp. 21–40. [Google Scholar]
- Muris, P.; Roelofs, J.; Rassin, E.; Franken, I.; Mayer, B. Mediating effects of rumination and worry on the links between neuroticism, anxiety and depression. Personal. Individ. Differ. 2005, 39, 1105–1111. [Google Scholar] [CrossRef]
- Dugas, M.J.; Schwartz, A.; Francis, K. Brief Report: Intolerance of Uncertainty, Worry, and Depression. Cogn. Ther. Res. 2004, 28, 835–842. [Google Scholar] [CrossRef]
- Biviá-Roig, G.; La Rosa, V.L.; Gómez-Tébar, M.; Serrano-Raya, L.; Amer-Cuenca, J.J.; Caruso, S.; Commodari, E.; Barrasa-Shaw, A.; Lisón, J.F. Analysis of the Impact of the Confinement Resulting from COVID-19 on the Lifestyle and Psychological Wellbeing of Spanish Pregnant Women: An Internet-Based Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2020, 17, 5933. [Google Scholar] [CrossRef] [PubMed]
- Commodari, E.; La Rosa, V.L. Adolescents in Quarantine During COVID-19 Pandemic in Italy: Perceived Health Risk, Beliefs, Psychological Experiences and Expectations for the Future. Front. Psychol. 2020, 11, 559951. [Google Scholar] [CrossRef] [PubMed]
- Ceri, V.; Cicek, I. Psychological Well-Being, Depression and Stress During COVID-19 Pandemic in Turkey: A Comparative Study of Healthcare Professionals and Non-Healthcare Professionals. Psychol. Health Med. 2021, 26, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wilkes, R.; Qian, Y.; Kennedy, E.B. Acute discrimination and East Asian-white mental health gap during COVID-19 in Canada. Available at SSRN 3626460. 2020. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3626460 (accessed on 27 September 2021).
- van der Vegt, I.; Kleinberg, B. Women Worry About Family, Men About the Economy: Gender Differences in Emotional Responses to COVID-19. In Proceedings of the International Conference on Social Informatics, Barcelona, Spain, 26–27 February 2020; Springer: Cham, Switzerland; pp. 397–409. [Google Scholar]
- Zhou, M.; Guo, W. Social factors and worry associated with COVID-19: Evidence from a large survey in China. Soc. Sci. Med. 2021, 277, 113934. [Google Scholar] [CrossRef]
Total | COVID-19 Worry | ||||
---|---|---|---|---|---|
N (%) N = 547 | Not at All n (%) n = 74 | Somewhat n (%) n = 274 | Very n (%) n = 199 | p-Value 1 | |
COVID-19 Stigma | |||||
No | 329 (60.15) | 46 (62.16) | 185 (67.25) | 98 (49.25) | |
Yes | 218 (39.85) | 28 (37.84) | 89 (32.48) | 101 (50.75) | <0.001 |
Race/Ethnicity | |||||
Non-Hispanic White | 375 (68.56) | 51 (68.92) | 193 (70.44) | 131 (65.83) | |
Non-Hispanic Black | 55 (9.05) | 10 (13.51) | 27 (9.85) | 18 (9.05) | |
Hispanic | 57 (10.42) | 9 (12.16) | 24 (8.76) | 24 (12.06) | 0.447 |
Asian | 60 (10.97) | 4 (5.41) | 30 (10.95) | 26 (13.07) | |
Sex 2 | |||||
Male | 244 (45.27) | 35 (47.95) | 121 (44.98) | 88 (44.67) | |
Female | 295 (54.73) | 38 (52.05) | 148 (55.02) | 109 (55.33) | 0.883 |
Age | |||||
18–24 | 52 (9.51) | 4 (5.41) | 29 (10.58) | 19 (9.55) | |
25–34 | 217 (39.67) | 34 (45.95) | 98 (35.77) | 85 (42.71) | |
35–44 | 148 (27.06) | 16 (21.62) | 82 (29.93) | 50 (25.13) | 0.101 |
45–54 | 69 (12.61) | 12 (16.22) | 27 (9.85) | 30 (15.08) | |
55+ | 61 (11.15) | 8 (10.81) | 38 (13.87) | 15 (7.54) | |
Education Level | |||||
High school | 179 (32.72) | 33 (44.59) | 87 (31.75) | 59 (29.65) | |
College degree or greater | 368 (67.28) | 41 (55.41) | 187 (68.25) | 140 (70.35) | 0.058 |
Employment Status | |||||
Not Employed | 117 (21.39) | 17 (22.97) | 58 (21.17) | 42 (21.11) | |
Part-time Employment | 99 (18.10) | 8 (10.81) | 51 (18.61) | 40 (20.10) | 0.517 |
Full-time Employment | 331 (60.51) | 49 (66.22) | 165 (60.22) | 117 (58.79) | |
Probable Depression2 | |||||
No Probable Depression | 247 (45.40) | 46 (62.16) | 142 (52.40) | 59 (29.65) | |
Probable Depression | 297 (54.60) | 28 (37.84) | 129 (47.60) | 140 (70.35) | <0.001 |
News Source | |||||
Commercial News 2 | |||||
No | 169 (30.95) | 36 (48.65) | 90 (32.97) | 43 (21.61) | |
Yes | 377 (69.05) | 38 (51.35) | 183 (67.03) | 156 (78.39) | <0.001 |
New York Times 2 | |||||
No | 282 (51.65) | 52 (70.27) | 139 (50.92) | 91 (45.73) | |
Yes | 264 (48.35) | 22 (29.73) | 134 (49.08) | 108 (54.27) | 0.001 |
Social Media 2 | |||||
No | 249 (45.60) | 36 (48.65) | 124 (45.42) | 89 (44.72) | |
Yes | 297 (54.40) | 38 (51.35) | 149 (54.58) | 110 (55.28) | 0.843 |
Publicly Funded 2 | |||||
No | 310 (56.78) | 42 (56.76) | 150 (54.95) | 118 (59.30) | |
Yes | 236 (43.22) | 32 (43.24) | 123 (45.05) | 81 (40.70) | 0.641 |
Fox News 2 | |||||
No | 425 (77.84) | 49 (66.22) | 223 (81.68) | 153 (76.88) | |
Yes | 121 (22.16) | 25 (33.78) | 50 (18.32) | 46 (23.12) | 0.016 |
COVID-19 Knowledge | |||||
A great deal | 520 (95.06) | 69 (93.24) | 259 (94.53) | 192 (96.48) | |
Some/not much | 27 (4.94) | 5 (6.76) | 15 (5.47) | 7 (3.52) | 0.462 |
Total | COVID-19 Worry | ||||
---|---|---|---|---|---|
N (%) N = 504 | Not at All n (%) n = 57 | Somewhat n (%) n = 219 | Very n (%) n = 228 | p-Value 1 | |
COVID-19 Stigma | |||||
No | 173 (34.33) | 28 (49.12) | 91 (41.55) | 54 (23.68) | |
Yes | 331 (65.67) | 29 (50.88) | 128 (58.45) | 174 (76.32) | <0.001 |
Race/Ethnicity | |||||
Non-Hispanic White | 288 (57.14) | 41 (71.93) | 131 (59.82) | 116 (50.88) | |
Non-Hispanic Black | 68 (13.49) | 6 (10.53) | 31 (14.16) | 31 (13.60) | |
Hispanic | 133 (26.39) | 7 (12.28) | 51 (23.29) | 75 (32.89) | 0.026 |
Asian | 15 (2.98) | 3 (5.26) | 6 (2.74) | 6 (2.63) | |
Sex2 | |||||
Male | 321 (63.94) | 36 (63.16) | 142 (65.44) | 143 (62.72) | |
Female | 181 (36.06) | 21 (36.84) | 75 (34.56) | 85 (37.28) | 0.830 |
Age | |||||
18–24 | 26 (5.16) | 5 (8.77) | 7 (3.20) | 14 (6.14) | |
25–34 | 233 (46.23) | 19 (33.33) | 100 (45.66) | 114 (50.00) | |
35–44 | 147 (29.17) | 17 (29.82) | 69 (31.51) | 61 (26.75) | 0.181 |
45–54 | 54 (10.71) | 10 (17.54) | 21 (9.59) | 23 (10.09) | |
55+ | 44 (8.73) | 6 (10.53) | 22 (10.05) | 16 (7.02) | |
Education Level | |||||
High school | 127 (25.20) | 26 (45.61) | 59 (26.94) | 42 (18.42) | |
College degree or greater | 377 (74.80) | 31 (54.39) | 160 (73.06) | 186 (81.58) | <0.001 |
Employment Status | |||||
Not Employed | 43 (8.53) | 11 (19.30) | 19 (8.68) | 13 (5.70) | |
Part-time Employment | 59 (11.71) | 9 (15.79) | 29 (13.24) | 21 (9.21) | 0.005 |
Full-time Employment | 402 (79.76) | 37 (64.91) | 171 (78.08) | 194 (85.09) | |
Probable Depression | |||||
No Probable Depression | 173 (34.33) | 36 (63.13) | 93 (42.47) | 44 (19.30) | |
Probable Depression | 331 (65.67) | 21 (36.84) | 126 (57.53) | 184 (80.70) | <0.001 |
News Source | |||||
Commercial News | |||||
No | 167 (33.13) | 37 (64.91) | 73 (33.33) | 57 (25.00) | |
Yes | 337 (66.87) | 20 (35.09) | 146 (66.67) | 171 (75.00) | <0.001 |
New York Times | |||||
No | 303 (60.12) | 46 (80.70) | 140 (63.93) | 117 (51.32) | |
Yes | 201 (39.88) | 11 (19.30) | 79 (36.07) | 111 (48.68) | <0.001 |
Social Media | |||||
No | 136 (26.98) | 22 (38.60) | 63 (28.77) | 51 (22.37) | |
Yes | 368 (73.02) | 35 (61.40) | 156 (71.23) | 177 (77.63) | 0.035 |
Publicly Funded | |||||
No | 360 (71.43) | 35 (61.40) | 156 (71.23) | 169 (74.12) | |
Yes | 144 (28.57) | 22 (38.60) | 63 (28.77) | 59 (25.88) | 0.163 |
Fox News | |||||
No | 309 (61.31) | 41 (71.93) | 138 (63.01) | 130 (57.02) | |
Yes | 195 (38.69) | 16 (28.07) | 81 (36.99) | 98 (42.98) | 0.093 |
COVID-19 Knowledge2 | |||||
A great deal | 418 (83.10) | 47 (82.46) | 165 (75.69) | 206 (90.35) | |
Some/not much | 85 (16.90) | 10 (17.54) | 53 (24.31) | 22 (9.65) | <0.001 |
Crude Odds Ratios (95% CI) | Multivariate Odds Ratio (95% CI) | |
---|---|---|
COVID-19 Stigma | ||
No | 1.00 | 1.00 |
Yes | 2.03 (1.43, 2.90) *** | 1.96 (1.31, 2.92) ** |
Race/Ethnicity | ||
Non-Hispanic White | 1.00 | 1.00 |
Non-Hispanic Black | 0.91 (0.50, 1.65) | 0.94 (0.49, 1.81) |
Hispanic | 1.35 (0.77, 2.39) | 1.20 (0.64, 2.26) |
Asian | 1.42 (0.82, 2.48) | 1.31 (0.70, 2.43) |
Sex | ||
Male | 1.00 | 1.00 |
Female | 1.04 (0.73, 1.48) | 0.98 (0.66, 1.46) |
Age | ||
18–24 | 1.00 | 1.00 |
25–34 | 1.12 (0.60, 2.09) | 1.40 (0.70, 2.79) |
35–44 | 0.89 (0.46, 1.71) | 1.13 (0.54, 2.35) |
45–54 | 1.34 (0.64, 2.80) | 2.09 (0.91, 4.82) |
55+ | 0.57 (0.25, 1.27) | 0.81 (0.33, 1.98) |
Education Level | ||
High school degree | 1.00 | 1.00 |
College degree or greater | 1.25 (0.86, 1.82) | 1.14 (0.74, 1.75) |
Employment Status | ||
Not employed | 1.00 | 1.00 |
Part-time employment | 1.21 (0.70, 2.10) | 1.29 (0.71, 2.38) |
Full-time employment | 0.98 (0.63, 1.52) | 1.00 (0.60, 1.68) |
Probable Depression | ||
No probable depression | 1.00 | 1.00 |
Probable depression | 2.84 (1.96, 4.12) *** | 2.66 (1.77, 4.00) *** |
News Source | ||
Commercial news | 2.07 (1.38, 3.09) *** | 1.89 (1.21, 2.96) ** |
New York Times | 1.45 (1.02, 2.06) * | 1.20 (0.81, 1.80) |
Social media | 1.06 (0.75, 1.50) | 0.80 (0.54, 1.19) |
Publicly funded | 0.85 (0.60, 1.21) | 0.98 (0.65, 1.48) |
Fox News | 1.09 (0.72, 1.65) | 0.97 (0.61, 1.55) |
COVID-19 Knowledge | ||
A great deal | 1.00 | 1.00 |
Some/not much | 0.60 (0.25, 1.44) | 0.53 (0.20, 1.36) |
Crude Odds Ratios (95% CI) | Multivariate Odds Ratio (95% CI) | |
---|---|---|
COVID-19 Stigma | ||
No | 1.00 | 1.00 |
Yes | 2.44 (0.66, 3.60) *** | 1.80 (1.06, 3.08) * |
Race/Ethnicity | ||
Non-Hispanic White | 1.00 | 1.00 |
Non-Hispanic Black | 1.24 (0.73, 2.12) | 0.93 (0.51, 1.72) |
Hispanic | 1.92 (1.27, 2.91) ** | 1.41 (0.85, 2.36) |
Asian | 0.99 (0.34, 2.85) | 1.34 (0.42, 4.26) |
Sex | ||
Male | 1.00 | 1.00 |
Female | 1.10 (0.76, 1.59) | 1.13 (0.74, 1.72) |
Age | ||
18–24 | 1.00 | 1.00 |
25–34 | 0.82 (0.36, 1.85) | 0.87 (0.35, 2.21) |
35–44 | 0.61 (0.26, 1.41) | 0.83 (0.32, 2.18) |
45–54 | 0.64 (0.25, 1.63) | 0.95 (0.33, 2.78) |
55+ | 0.49 (0.18, 1.31) | 0.79 (0.26, 2.39) |
Education Level | ||
High school degree | 1.00 | 1.00 |
College degree or greater | 1.97 (1.29, 3.00) ** | 1.21 (0.73, 2.00) |
Employment Status | ||
Not employed | 1.00 | 1.00 |
Part-time employment | 1.28 (0.55, 2.96) | 0.85 (0.33, 2.18) |
Full-time employment | 2.15 (1.09, 4.25) * | 1.43 (0.65, 3.14) |
Probable Depression | ||
No probable depression | 1.00 | 1.00 |
Probable depression | 3.67 (2.45, 5.50) *** | 3.17 (1.95, 5.16) *** |
News Source | ||
Commercial news | 1.99 (1.35, 2.92) *** | 1.93 (1.24, 3.00) ** |
New York Times | 1.96 (0.37, 2.81) *** | 1.52 (1.00, 2.29) * |
Social media | 1.54 (1.03, 2.31) * | 1.13 (0.70, 1.83) |
Publicly funded | 0.78 (0.53, 1.16) | 1.20 (0.73, 1.96) |
Fox News | 1.39 (0.97, 1.99) | 1.03 (0.66, 1.59) |
COVID-19 Knowledge | ||
A great deal | 1.00 | 1.00 |
Some/not much | 0.36 (0.21, 0.61) *** | 0.24 (0.13, 0.43) *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meltzer, G.Y.; Chang, V.W.; Lieff, S.A.; Grivel, M.M.; Yang, L.H.; Des Jarlais, D.C. Behavioral Correlates of COVID-19 Worry: Stigma, Knowledge, and News Source. Int. J. Environ. Res. Public Health 2021, 18, 11436. https://doi.org/10.3390/ijerph182111436
Meltzer GY, Chang VW, Lieff SA, Grivel MM, Yang LH, Des Jarlais DC. Behavioral Correlates of COVID-19 Worry: Stigma, Knowledge, and News Source. International Journal of Environmental Research and Public Health. 2021; 18(21):11436. https://doi.org/10.3390/ijerph182111436
Chicago/Turabian StyleMeltzer, Gabriella Y., Virginia W. Chang, Sarah A. Lieff, Margaux M. Grivel, Lawrence H. Yang, and Don C. Des Jarlais. 2021. "Behavioral Correlates of COVID-19 Worry: Stigma, Knowledge, and News Source" International Journal of Environmental Research and Public Health 18, no. 21: 11436. https://doi.org/10.3390/ijerph182111436
APA StyleMeltzer, G. Y., Chang, V. W., Lieff, S. A., Grivel, M. M., Yang, L. H., & Des Jarlais, D. C. (2021). Behavioral Correlates of COVID-19 Worry: Stigma, Knowledge, and News Source. International Journal of Environmental Research and Public Health, 18(21), 11436. https://doi.org/10.3390/ijerph182111436