Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Motion Tracking
2.2.1. Manual Digitisation
2.2.2. Markerless System
2.3. Data Treatment and Measures
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunter, A.H.; Angilletta, M.J.; Wilson, R.S. Behaviors of Shooter and Goalkeeper Interact to Determine the Outcome of Soccer Penalties. Scand. J. Med. Sci. Sports 2018, 28, 2751–2759. [Google Scholar] [CrossRef]
- Liu, H.; Hopkins, W.G.; Gómez, M.-A. Modelling Relationships between Match Events and Match Outcome in Elite Football. Eur. J. Sport. Sci. 2016, 16, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Palucci Vieira, L.H.; Santinelli, F.B.; Carling, C.; Kellis, E.; Santiago, P.R.P.; Barbieri, F.A. Acute Effects of Warm-Up, Exercise and Recovery-Related Strategies on Assessments of Soccer Kicking Performance: A Critical and Systematic Review. Sports Med. 2021, 51, 661–705. [Google Scholar] [CrossRef]
- Shan, G.; Zhang, X.; Wan, B.; Yu, D.; Wilde, B.; Visentin, P. Biomechanics of Coaching Maximal Instep Soccer Kick for Practitioners. Interdiscip. Sci. Rev. 2019, 44, 12–20. [Google Scholar] [CrossRef]
- Marqués-Bruna, P.; Lees, A.; Grimshaw, P. Structural Principal Components Analysis of the Kinematics of the Soccer Kick Using Different Types of Rating Scales. Int. J. Sports Sci. Coach. 2008, 3, 73–85. [Google Scholar] [CrossRef]
- Kulyukin, V.; Mukherjee, S. On Video Analysis of Omnidirectional Bee Traffic: Counting Bee Motions with Motion Detection and Image Classification. Appl. Sci. 2019, 9, 3743. [Google Scholar] [CrossRef] [Green Version]
- Velázquez, J.S.; Iznaga-Benítez, A.M.; Robau-Porrúa, A.; Sáez-Gutiérrez, F.L.; Cavas, F. New Affordable Method for Measuring Angular Variations Caused by High Heels on the Sagittal Plane of Feet Joints during Gait. Appl. Sci. 2021, 11, 5605. [Google Scholar] [CrossRef]
- Amara, S.; Chortane, O.G.; Negra, Y.; Hammami, R.; Khalifa, R.; Chortane, S.G.; van den Tillaar, R. Relationship between Swimming Performance, Biomechanical Variables and the Calculated Predicted 1-RM Push-up in Competitive Swimmers. Int. J. Environ. Res. Public Health 2021, 18, 11395. [Google Scholar] [CrossRef]
- Castro-Luna, G.; Jiménez-Rodríguez, D. Relative and Absolute Reliability of a Motor Assessment System Using KINECT® Camera. Int. J. Environ. Res. Public Health 2020, 17, 5807. [Google Scholar] [CrossRef]
- Ferro, A.; Pérez-Tejero, J.; Garrido, G.; Villacieros, J. Relationship between Sprint Capacity and Acceleration of Wrists in Wheelchair Basketball Players: Design and Reliability of a New Protocol. Int. J. Environ. Res. Public Health 2021, 18, 10380. [Google Scholar] [CrossRef]
- Yu, C.; Wang, F.; Wang, B.; Li, G.; Li, F. A Computational Biomechanics Human Body Model Coupling Finite Element and Multibody Segments for Assessment of Head/Brain Injuries in Car-To-Pedestrian Collisions. Int. J. Environ. Res. Public Health 2020, 17, 492. [Google Scholar] [CrossRef] [Green Version]
- Camp, N.; Lewis, M.; Hunter, K.; Johnston, J.; Zecca, M.; Di Nuovo, A.; Magistro, D. Technology Used to Recognize Activities of Daily Living in Community-Dwelling Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 163. [Google Scholar] [CrossRef]
- Barris, S.; Button, C. A Review of Vision-Based Motion Analysis in Sport. Sports Med. 2008, 38, 1025–1043. [Google Scholar] [CrossRef]
- Baca, A.; Dabnichki, P.; Heller, M.; Kornfeind, P. Ubiquitous Computing in Sports: A Review and Analysis. J. Sports Sci. 2009, 27, 1335–1346. [Google Scholar] [CrossRef]
- Bernardina, G.R.D.; Monnet, T.; Pinto, H.T.; de Barros, R.M.L.; Cerveri, P.; Silvatti, A.P. Are Action Sport Cameras Accurate Enough for 3D Motion Analysis? A Comparison with a Commercial Motion Capture System. J. Appl. Biomech. 2018, 35, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Carling, C.; Bloomfield, J.; Nelsen, L.; Reilly, T. The Role of Motion Analysis in Elite Soccer: Contemporary Performance Measurement Techniques and Work Rate Data. Sports Med. 2008, 38, 839–862. [Google Scholar] [CrossRef]
- Lees, A.; Kershaw, L.; Moura, F. The Three-Dimensional Nature of the Maximal Instep Kick in Soccer; Routledge: London, UK, 2005; p. 65. [Google Scholar]
- De Witt, J.K.; Hinrichs, R.N. Mechanical Factors Associated with the Development of High Ball Velocity during an Instep Soccer Kick. Sports Biomech. 2012, 11, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Nunome, H.; Asai, T.; Ikegami, Y.; Sakurai, S. Three-Dimensional Kinetic Analysis of Side-Foot and Instep Soccer Kicks. Med. Sci. Sports Exerc. 2002, 34, 2028–2036. [Google Scholar] [CrossRef] [PubMed]
- Paulucci Vieira, L.H.; de Souza Serenza, F.; de Andrade, V.L.; de Paula Oliveira, L.; Mariano, F.P.; Santana, J.E.; Santiago, P.R.P. Kicking Performance and Muscular Strength Parameters with Dominant and Nondominant Lower Limbs in Brazilian Elite Professional Futsal Players. J. Appl. Biomech. 2016, 32, 578–585. [Google Scholar] [CrossRef]
- Palucci Vieira, L.H.; Barbieri, F.A.; Kellis, E.; Oliveira, L.; Aquino, R.; Cunha, S.; Bedo, B.; Manechini, J.; Santiago, P. Organisation of Instep Kicking in Young U11 to U20 Soccer Players. Sci. Med. Footb. 2021, 5, 111–120. [Google Scholar] [CrossRef]
- Ceseracciu, E.; Sawacha, Z.; Fantozzi, S.; Cortesi, M.; Gatta, G.; Corazza, S.; Cobelli, C. Markerless Analysis of Front Crawl Swimming. J. Biomech. 2011, 44, 2236–2242. [Google Scholar] [CrossRef]
- Melton, C.; Mullineaux, D.R.; Mattacola, C.G.; Mair, S.D.; Uhl, T.L. Reliability of Video Motion-Analysis Systems to Measure Amplitude and Velocity of Shoulder Elevation. J. Sport Rehabil. 2011, 20, 393–405. [Google Scholar] [CrossRef] [Green Version]
- Peikon, I.D.; Fitzsimmons, N.A.; Lebedev, M.A.; Nicolelis, M.A.L. Three-Dimensional, Automated, Real-Time Video System for Tracking Limb Motion in Brain–Machine Interface Studies. J. Neurosci. Methods 2009, 180, 224–233. [Google Scholar] [CrossRef]
- Varley, M.C.; Gregson, W.; McMillan, K.; Bonanno, D.; Stafford, K.; Modonutti, M.; Di Salvo, V. Physical and Technical Performance of Elite Youth Soccer Players during International Tournaments: Influence of Playing Position and Team Success and Opponent Quality. Sci. Med. Footb. 2017, 1, 18–29. [Google Scholar] [CrossRef]
- Blair, S.; Duthie, G.; Robertson, S.; Hopkins, W.; Ball, K. Concurrent Validation of an Inertial Measurement System to Quantify Kicking Biomechanics in Four Football Codes. J. Biomech. 2018, 73, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Needham, L.; Evans, M.; Cosker, D.P.; Colyer, S.L. Can Markerless Pose Estimation Algorithms Estimate 3D Mass Centre Positions and Velocities during Linear Sprinting Activities? Sensors 2021, 21, 2889. [Google Scholar] [CrossRef]
- van der Kruk, E.; Reijne, M.M. Accuracy of Human Motion Capture Systems for Sport Applications; State-of-the-Art Review. Eur. J. Sport Sci. 2018, 18, 806–819. [Google Scholar] [CrossRef]
- Desmarais, Y.; Mottet, D.; Slangen, P.; Montesinos, P. A Review of 3D Human Pose Estimation Algorithms for Markerless Motion Capture. Comput. Vis. Image Underst. 2021, 212, 103275. [Google Scholar] [CrossRef]
- Cronin, N.J. Using Deep Neural Networks for Kinematic Analysis: Challenges and Opportunities. J. Biomech. 2021, 123, 110460. [Google Scholar] [CrossRef]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.-E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, I.; Yamada, A.; Onodera, H. Artificial Intelligence-Assisted Motion Capture for Medical Applications: A Comparative Study between Markerless and Passive Marker Motion Capture. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 864–873. [Google Scholar] [CrossRef]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Ichihashi, N. Verification of Validity of Gait Analysis Systems during Treadmill Walking and Running Using Human Pose Tracking Algorithm. Gait Posture 2021, 85, 290–297. [Google Scholar] [CrossRef]
- Webering, F.; Blume, H.; Allaham, I. Markerless Camera-Based Vertical Jump Height Measurement Using OpenPose. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 3868–3874. [Google Scholar]
- Nakano, N.; Sakura, T.; Ueda, K.; Omura, L.; Kimura, A.; Iino, Y.; Fukashiro, S.; Yoshioka, S. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose with Multiple Video Cameras. Front. Sports Act. Living 2020, 2, 50. [Google Scholar] [CrossRef]
- Ota, M.; Tateuchi, H.; Hashiguchi, T.; Kato, T.; Ogino, Y.; Yamagata, M.; Ichihashi, N. Verification of Reliability and Validity of Motion Analysis Systems during Bilateral Squat Using Human Pose Tracking Algorithm. Gait Posture 2020, 80, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Barros, R.M.L.; Menezes, R.P.; Russomanno, T.G.; Misuta, M.S.; Brandão, B.C.; Figueroa, P.J.; Leite, N.J.; Goldenstein, S.K. Measuring Handball Players Trajectories Using an Automatically Trained Boosting Algorithm. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Palucci Vieira, L.H.; Lastella, M.; da Silva, J.P.; Cesário, T.; Santinelli, F.B.; Moretto, G.F.; Santiago, P.R.P.; Barbieri, F.A. Low Sleep Quality and Morningness-Eveningness Scale Score May Impair Ball Placement but Not Kicking Velocity in Youth Academy Soccer Players. Sci. Med. Football 2021, in press. [Google Scholar] [CrossRef]
- Figueroa, P.J.; Leite, N.J.; Barros, R.M.L. A Flexible Software for Tracking of Markers Used in Human Motion Analysis. Comput. Methods Programs Biomed. 2003, 72, 155–165. [Google Scholar] [CrossRef]
- De Barros, R.M.L.; Guedes Russomanno, T.; Brenzikofer, R.; Jovino Figueroa, P. A Method to Synchronise Video Cameras Using the Audio Band. J. Biomech. 2006, 39, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, S. Least Squares Quantization in PCM. IEEE Trans. Inf. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Abdel-Aziz, Y.I.; Karara, H.M.; Hauck, M. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry. Photogramm. Eng. Remote Sens. 2015, 81, 103–107. [Google Scholar] [CrossRef]
- Rossi, M.M.; Silvatti, A.P.; Dias, F.A.S.; Barros, R.M.L. Improved Accuracy in 3D Analysis Using DLT after Lens Distortion Correction. Comput. Methods Biomech. Biomed. Eng. 2015, 18, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, F.A.; Gobbi, L.T.B.; Santiago, P.R.P.; Cunha, S.A. Dominant–Non-Dominant Asymmetry of Kicking a Stationary and Rolling Ball in a Futsal Context. J. Sports Sci. 2015, 33, 1411–1419. [Google Scholar] [CrossRef]
- Cunha, S.A.; Lima Filho, E.C. Metodologia Para Suavização de Dados Biomecânicos Por Função Não Paramétrica Ponderada Local Robusta [Methodology for the Smooth of Biomechanics Data for Functions Distribution Free]. Braz. J. Biomech. 2003, 1, 23–28. [Google Scholar]
- Palucci Vieira, L.H.; Carling, C.; da Silva, J.P.; Santinelli, F.B.; Polastri, P.F.; Santiago, P.R.P.; Barbieri, F.A. Modelling the Relationships between EEG Signals, Movement Kinematics and Outcome in Soccer Kicking. Cogn. Neurodyn. 2022. submitted. [Google Scholar]
- Mcgill, R.; Tukey, J.W.; Larsen, W.A. Variations of Box Plots. Am. Stat. 1978, 32, 12–16. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Nevill, A.M.; Atkinson, G. Assessing Agreement between Measurements Recorded on a Ratio Scale in Sports Medicine and Sports Science. Br. J. Sports Med. 1997, 31, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Hillsdale, NJ, USA, 1988; ISBN 978-0-8058-0283-2. [Google Scholar]
- Palucci Vieira, L.H.; Cunha, S.A.; Moraes, R.; Barbieri, F.A.; Aquino, R.; de Oliveira, L.P.; Navarro, M.; Bedo, B.L.S.; Santiago, P.R.P. Kicking Performance in Young U9 to U20 Soccer Players: Assessment of Velocity and Accuracy Simultaneously. Res. Q. Exerc. Sport 2018, 89, 210–220. [Google Scholar] [CrossRef]
- Amiri-Khorasani, M.; Abu Osman, N.A.; Yusof, A. Acute Effect of Static and Dynamic Stretching on Hip Dynamic Range of Motion during Instep Kicking in Professional Soccer Players. J. Strength Cond. Res. 2011, 25, 1647–1652. [Google Scholar] [CrossRef]
- Apriantono, T.; Nunome, H.; Ikegami, Y.; Sano, S. The Effect of Muscle Fatigue on Instep Kicking Kinetics and Kinematics in Association Football. J. Sports Sci. 2006, 24, 951–960. [Google Scholar] [CrossRef]
- Tol, J.L.; Slim, E.; van Soest, A.J.; van Dijk, C.N. The Relationship of the Kicking Action in Soccer and Anterior Ankle Impingement Syndrome. A Biomechanical Analysis. Am. J. Sports Med. 2002, 30, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zago, M.; Luzzago, M.; Marangoni, T.; De Cecco, M.; Tarabini, M.; Galli, M. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Front. Bioeng. Biotechnol. 2020, 8, 181. [Google Scholar] [CrossRef]
- Buchheit, M.; Simpson, B.M. Player-Tracking Technology: Half-Full or Half-Empty Glass? Int. J. Sports Physiol. Perform. 2017, 12, S235–S241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, M.; Benton, D.; Kingsley, M. Reliability and Construct Validity of Soccer Skills Tests That Measure Passing, Shooting, and Dribbling. J. Sports Sci. 2010, 28, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Williams, C.; Hulse, M.; Strudwick, A.; Reddin, J.; Howarth, L.; Eldred, J.; Hirst, M.; McGregor, S. Reliability and Validity of Two Tests of Soccer Skill. J. Sports Sci. 2007, 25, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Levanon, J.; Dapena, J. Comparison of the Kinematics of the Full-Instep and Pass Kicks in Soccer. Med. Sci. Sports Exerc. 1998, 30, 917–927. [Google Scholar]
- Büker, L.C.; Zuber, F.; Hein, A.; Fudickar, S. HRDepthNet: Depth Image-Based Marker-Less Tracking of Body Joints. Sensors 2021, 21, 1356. [Google Scholar] [CrossRef]
- Fani, H.; Mirlohi, A.; Hosseini, H.; Herperst, R. Swim Stroke Analytic: Front Crawl Pulling Pose Classification. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 4068–4072. [Google Scholar]
- D’Antonio, E.; Taborri, J.; Mileti, I.; Rossi, S.; Patané, F. Validation of a 3D Markerless System for Gait Analysis Based on OpenPose and Two RGB Webcams. IEEE Sens. J. 2021, 21, 17064–17075. [Google Scholar] [CrossRef]
- Papic, C.; Sanders, R.H.; Naemi, R.; Elipot, M.; Andersen, J. Improving Data Acquisition Speed and Accuracy in Sport Using Neural Networks. J. Sports Sci. 2021, 39, 513–522. [Google Scholar] [CrossRef]
Marker | Position | Velocity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
X-Axis | Y-Axis | Z-Axis | ||||||||||
Overall | Min | Max | Overall | Min | Max | Overall | Min | Max | Overall | Min | Max | |
Non-dominant hip | 0.01 | −0.14 | 0.15 | −0.10 | −0.29 | 0.11 | −0.77 | −5.03 | 4.22 | −0.08 | −0.25 | 0.00 |
Dominant hip | −0.19 | −0.34 | 0.44 | −0.32 | −0.63 | −0.16 | 1.40 | −3.99 | 6.33 | −0.01 | −0.11 | 0.08 |
Knee | −0.04 | −0.39 | 0.45 | −0.15 | −0.23 | 0.00 | −6.40 | −12.32 | −2.78 | −0.02 | −0.13 | 0.12 |
Ankle | −0.39 | −0.84 | −0.17 | −0.15 | −0.38 | 0.05 | 0.88 | −4.71 | 4.12 | 0.00 | −0.07 | 0.05 |
Calcaneus | 0.29 | −1.07 | 0.96 | 0.06 | −0.08 | 0.22 | 0.75 | −4.57 | 5.50 | −0.05 | −0.21 | 0.05 |
5th metatarsal head | −0.19 | −1.71 | 0.15 | −0.10 | −0.39 | 0.05 | −0.34 | −6.22 | 1.85 | −0.02 | −0.11 | 0.04 |
CMfoot | −0.11 | −1.23 | 0.26 | −0.07 | −0.23 | 0.10 | 0.61 | −3.76 | 2.36 | −0.02 | −0.11 | 0.05 |
Marker | Support Phase | Contact Phase | Whole Kick Cycle | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | Y | Z | All | VEL | X | Y | Z | All | VEL | X | Y | Z | All | VEL | |
Non-dominant hip | 2.76 | 1.86 | 6.54 | 3.72 | 1.42 | 3.11 | 2.82 | 7.03 | 4.32 | 1.66 | 2.88 | 2.20 | 6.71 | 3.93 | 1.50 |
Dominant hip | 2.65 | 2.49 | 5.88 | 3.67 | 1.06 | 3.04 | 2.91 | 8.98 | 4.98 | 1.29 | 2.79 | 2.63 | 6.96 | 4.13 | 1.14 |
Knee | 1.91 | 2.45 | 4.40 | 2.92 | 0.84 | 1.91 | 3.19 | 3.31 | 2.80 | 1.14 | 1.91 | 2.71 | 4.02 | 2.88 | 0.95 |
Ankle | 3.29 | 2.09 | 5.48 | 3.62 | 1.54 | 3.02 | 1.99 | 4.68 | 3.23 | 1.06 | 3.19 | 2.05 | 5.20 | 3.48 | 1.37 |
Calcaneus | 4.44 | 2.22 | 5.47 | 4.04 | 1.10 | 4.62 | 2.59 | 3.84 | 3.68 | 2.12 | 4.50 | 2.35 | 4.90 | 3.92 | 1.45 |
5th metatarsal head | 2.60 | 1.98 | 5.59 | 3.39 | 1.23 | 3.40 | 2.13 | 3.70 | 3.08 | 1.81 | 2.88 | 2.03 | 4.93 | 3.28 | 1.43 |
CMfoot | 2.50 | 1.41 | 4.87 | 2.93 | 1.14 | 2.93 | 1.41 | 3.18 | 2.51 | 1.24 | 2.65 | 1.41 | 4.28 | 2.78 | 1.17 |
Overall | 2.88 | 2.07 | 5.46 | 3.47 | 1.19 | 3.15 | 2.43 | 4.96 | 3.51 | 1.47 | 2.97 | 2.20 | 5.29 | 3.49 | 1.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palucci Vieira, L.H.; Santiago, P.R.P.; Pinto, A.; Aquino, R.; Torres, R.d.S.; Barbieri, F.A. Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context. Int. J. Environ. Res. Public Health 2022, 19, 1179. https://doi.org/10.3390/ijerph19031179
Palucci Vieira LH, Santiago PRP, Pinto A, Aquino R, Torres RdS, Barbieri FA. Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context. International Journal of Environmental Research and Public Health. 2022; 19(3):1179. https://doi.org/10.3390/ijerph19031179
Chicago/Turabian StylePalucci Vieira, Luiz H., Paulo R. P. Santiago, Allan Pinto, Rodrigo Aquino, Ricardo da S. Torres, and Fabio A. Barbieri. 2022. "Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context" International Journal of Environmental Research and Public Health 19, no. 3: 1179. https://doi.org/10.3390/ijerph19031179
APA StylePalucci Vieira, L. H., Santiago, P. R. P., Pinto, A., Aquino, R., Torres, R. d. S., & Barbieri, F. A. (2022). Automatic Markerless Motion Detector Method against Traditional Digitisation for 3-Dimensional Movement Kinematic Analysis of Ball Kicking in Soccer Field Context. International Journal of Environmental Research and Public Health, 19(3), 1179. https://doi.org/10.3390/ijerph19031179