Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Report and Protocol Design
2.2. Bibliographical Search
2.3. Study Selection: Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Outcome Measures
2.6. Risk of Bias and Quality of Evidence Assessment
2.7. Statistical Analysis and Additional Analyses
3. Results
3.1. Study Selection
3.2. Characteristics of the Studies Included in the Review
3.3. Risk of Bias Assessment
3.4. Findings in Meta-Analyses
3.4.1. Grip Strength
3.4.2. Tip Grip Strength
3.4.3. Grasping Ability
3.4.4. Functional Capacity in Daily Living Activities and Self-Care
3.4.5. Upper Extremity Dissociated Movements
3.4.6. Gross Manual Dexterity
3.4.7. Fine Manual Dexterity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- Christine, C.; Dolk, H.; Platt, M.J.; Colver, A.; Prasauskiene, A.; Krägeloh-Mann, I. Recommendations from the SCPE collaborative group for defining and classifying cerebral palsy. Dev. Med. Child Neurol. Suppl. 2007, 109, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S.; et al. Cerebral palsy. Nat. Rev. Dis. Prim. 2016, 2, 15082. [Google Scholar] [CrossRef]
- Şahin, S.; Köse, B.; Aran, O.T.; Bahadır Ağce, Z.; Kayıhan, H. The Effects of Virtual Reality on Motor Functions and Daily Life Activities in Unilateral Spastic Cerebral Palsy: A Single-Blind Randomized Controlled Trial. Games Health J. 2020, 9, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurol. 2007, 49, 8–14. [Google Scholar]
- Oskoui, M.; Coutinho, F.; Dykeman, J.; Jetté, N.; Pringsheim, T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2013, 55, 509–519. [Google Scholar] [CrossRef]
- Findlay, B.; Switzer, L.; Narayanan, U.; Chen, S.; Fehlings, D. Investigating the impact of pain, age, Gross Motor Function Classification System, and sex on health-related quality of life in children with cerebral palsy. Dev. Med. Child Neurol. 2016, 58, 292–297. [Google Scholar] [CrossRef]
- Russo, R.N.; Skuza, P.P.; Sandelance, M.; Flett, P. Upper limb impairments, process skills, and outcome in children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2019, 61, 1080–1086. [Google Scholar] [CrossRef]
- Jones, M.W.; Morgan, E.; Shelton, J.E.; Thorogood, C. Cerebral Palsy: Introduction and Diagnosis (Part I). J. Pediatr. Health Care 2007, 21, 146–152. [Google Scholar] [CrossRef]
- Tonmukayakul, U.; Imms, C.; Mihalopoulos, C.; Reddihough, D.; Carter, R.; Mulhern, B.; Chen, G. Health-related quality of life and upper-limb impairment in children with cerebral palsy: Developing a mapping algorithm. Dev. Med. Child Neurol. 2020, 62, 854–860. [Google Scholar] [CrossRef]
- Makki, D.; Duodu, J.; Nixon, M. Prevalence and pattern of upper limb involvement in cerebral palsy. J. Child. Orthop. 2014, 8, 215–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouyang, R.-G.; Yang, C.-N.; Qu, Y.-L.; Koduri, M.P.; Chien, C.-W. Effectiveness of hand-arm bimanual intensive training on upper extremity function in children with cerebral palsy: A systematic review. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 2020, 25, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-P.; Howard, A.M. Effects of robotic therapy on upper-extremity function in children with cerebral palsy: A systematic review. Dev. Neurorehabil. 2016, 19, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Pomeroy, V.; Aglioti, S.M.; Mark, V.W.; McFarland, D.; Stinear, C.; Wolf, S.L.; Corbetta, M.; Fitzpatrick, S.M. Neurological principles and rehabilitation of action disorders: Rehabilitation interventions. Neurorehabil. Neural Repair 2011, 25, 33S–43S. [Google Scholar] [CrossRef]
- Levac, D.; Glegg, S.; Colquhoun, H.; Miller, P.; Noubary, F. Virtual Reality and Active Videogame-Based Practice, Learning Needs, and Preferences: A Cross-Canada Survey of Physical Therapists and Occupational Therapists. Games Health J. 2017, 6, 217–228. [Google Scholar] [CrossRef]
- Buccino, G.; Arisi, D.; Gough, P.; Aprile, D.; Ferri, C.; Serotti, L.; Tiberti, A.; Fazzi, E. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy. Dev. Med. Child Neurol. 2012, 54, 822–828. [Google Scholar] [CrossRef]
- da Silva Ribeiro, N.M.; Ferraz, D.D.; Pedreira, É.; Pinheiro, Í.; da Silva Pinto, A.C.; Neto, M.G.; dos Santos, L.R.A.; Pozzato, M.G.G.; Pinho, R.S.; Masruha, M.R. Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Top. Stroke Rehabil. 2015, 22, 299–305. [Google Scholar] [CrossRef]
- El-Shamy, S.M. Efficacy of Armeo® Robotic Therapy Versus Conventional Therapy on Upper Limb Function in Children with Hemiplegic Cerebral Palsy. Am. J. Phys. Med. Rehabil. 2018, 97, 164–169. [Google Scholar] [CrossRef]
- Voinescu, A.; Sui, J.; Stanton Fraser, D. Virtual Reality in Neurorehabilitation: An Umbrella Review of Meta-Analyses. J. Clin. Med. 2021, 10, 1478. [Google Scholar] [CrossRef]
- Amirthalingam, J.; Paidi, G.; Alshowaikh, K.; Iroshani Jayarathna, A.; Salibindla, D.B.A.M.R.; Karpinska-Leydier, K.; Ergin, H.E. Virtual Reality Intervention to Help Improve Motor Function in Patients Undergoing Rehabilitation for Cerebral Palsy, Parkinson’s Disease, or Stroke: A Systematic Review of Randomized Controlled Trials. Cureus 2021, 13, 16763. [Google Scholar] [CrossRef]
- Warnier, N.; Lambregts, S.; Port, I. Van De Effect of Virtual Reality Therapy on Balance and Walking in Children with Cerebral Palsy: A Systematic Review. Dev. Neurorehabil. 2019, 23, 502–518. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.; Strøm, V.; Simic, J.; Rike, P. Effectiveness of training with motion-controlled commercial video games for hand and arm function in people with cerebral palsy: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, 10. [Google Scholar] [CrossRef] [PubMed]
- Fong, K.N.K.; Tang, Y.M.; Sie, K.; Yu, A.K.H.; Lo, C.C.W.; Ma, Y.W.T. Task-specific virtual reality training on hemiparetic upper extremity in patients with stroke. Virtual Real. 2022, 26, 453–464. [Google Scholar] [CrossRef]
- Massetti, T.; da Silva, T.D.; Crocetta, T.B.; Guarnieri, R.; de Freitas, B.L.; Bianchi Lopes, P.; Watson, S.; Tonks, J.; de Mello Monteiro, C.B. The Clinical Utility of Virtual Reality in Neurorehabilitation: A Systematic Review. J. Cent. Nerv. Syst. Dis. 2018, 10, 117957351881354. [Google Scholar] [CrossRef] [PubMed]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; Zagalaz-Anula, N.; Osuna-Pérez, M.C.; Obrero-Gaitán, E.; Lomas-Vega, R. Nintendo Wii Balance Board therapy for postural control in children with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2021, 63, 1262–1275. [Google Scholar] [CrossRef]
- Plow, M.; Finlayson, M. A Qualitative Study Exploring the Usability of Nintendo Wii Fit among Persons with Multiple Sclerosis. Occup. Ther. Int. 2014, 21, 21–32. [Google Scholar] [CrossRef]
- Glännfjord, F.; Hemmingsson, H.; Larsson Ranada, Å. Elderly people’s perceptions of using Wii sports bowling–A qualitative study. Scand. J. Occup. Ther. 2017, 24, 329–338. [Google Scholar] [CrossRef]
- Meldrum, D.; Glennon, A.; Herdman, S.; Murray, D.; McConn-Walsh, R. Virtual reality rehabilitation of balance: Assessment of the usability of the Nintendo Wii® Fit Plus. Disabil. Rehabil. Assist. Technol. 2012, 7, 205–210. [Google Scholar] [CrossRef]
- Wardani, R.; Salsabila, S.; Novrianto Rahman, A.; Rakhmatiar, R. Effectivity of Nintendo Wii as rehabilitation therapy in post stroke patients: A systematic review. Malang. Neurol. J. 2021, 7, 56–59. [Google Scholar] [CrossRef]
- Guerrero Cuevas, B.; Valero Aguayo, L. Efectos secundarios tras el uso de realidad virtual inmersiva en un videojuego. Int. J. Psychol. Psychol. Ther. 2013, 13, 163–178. [Google Scholar]
- Gatica-Rojas, V.; Méndez-Rebolledo, G. Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases. Neural Regen. Res. 2014, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Deutsch, J.E.; Borbely, M.; Filler, J.; Huhn, K.; Guarrera-Bowlby, P. Use of a low-cost, commercially available gaming console (Wii) for rehabilitation of an adolescent with cerebral palsy. Phys. Ther. 2008, 88, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
- Tarakci, D.; Ozdincler, A.R.; Tarakci, E.; Tutuncuoglu, F.; Ozmen, M. Wii-based Balance Therapy to Improve Balance Function of Children with Cerebral Palsy: A Pilot Study. J. Phys. Ther. Sci. 2013, 25, 1123–1127. [Google Scholar] [CrossRef] [PubMed]
- Fandim, J.V.; Saragiotto, B.T.; Porfírio, G.J.M.; Santana, R.F. Effectiveness of virtual reality in children and young adults with cerebral palsy: A systematic review of randomized controlled trial. Brazilian J. Phys. Ther. 2021, 25, 369–386. [Google Scholar] [CrossRef] [PubMed]
- Alrashidi, M.; Wadey, C.A.; Tomlinson, R.J.; Buckingham, G.; Williams, C.A. The efficacy of virtual reality interventions compared with conventional physiotherapy in improving the upper limb motor function of children with cerebral palsy: A systematic review of randomised controlled trials. Disabil. Rehabil. 2022, 1–11. [Google Scholar] [CrossRef]
- Rathinam, C.; Mohan, V.; Peirson, J.; Skinner, J.; Nethaji, K.S.; Kuhn, I. Effectiveness of virtual reality in the treatment of hand function in children with cerebral palsy: A systematic review. J. Hand Ther. 2019, 32, 426–434.e1. [Google Scholar] [CrossRef]
- Chesser, B.T.; Blythe, S.A.; Ridge, L.D.; Tomaszewski, R.E.R.; Kinne, B.L. Effectiveness of the Wii for pediatric rehabilitation in individuals with cerebral palsy: A systematic review. Phys. Ther. Rev. 2020, 25, 106–117. [Google Scholar] [CrossRef]
- Santos, P.; Machado, T.; Santos, L.; Ribeiro, N.; Melo, A. Efficacy of the Nintendo Wii combination with Conventional Exercises in the rehabilitation of individuals with Parkinson’s disease: A randomized clinical trial. NeuroRehabilitation 2019, 45, 255–263. [Google Scholar] [CrossRef]
- Marotta, N.; Demeco, A.; Indino, A.; de Scorpio, G.; Moggio, L.; Ammendolia, A. Nintendo Wii TM versus Xbox Kinect TM for functional locomotion in people with Parkinson’s disease: A systematic review and network meta-analysis. Disabil. Rehabil. 2022, 44, 331–336. [Google Scholar] [CrossRef]
- Cheok, G.; Tan, D.; Low, A.; Hewitt, J. Is Nintendo Wii an Effective Intervention for Individuals with Stroke? A Systematic Review and Meta-Analysis. J. Am. Med. Dir. Assoc. 2015, 16, 923–932. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; Wiley Blackwell & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Cortés-Pérez, I.; Sánchez-Alcalá, M.; Nieto-Escámez, F.A.; Castellote-Caballero, Y.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Virtual Reality-Based Therapy Improves Fatigue, Impact, and Quality of Life in Patients with Multiple Sclerosis. A Systematic Review with a Meta-Analysis. Sensors 2021, 21, 7389. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Pérez, I.; Zagalaz-Anula, N.; Del Rocío Ibancos-Losada, M.; Nieto-Escámez, F.A.; Obrero-Gaitán, E.; Catalina Osuna-Pérez, M.; Godinho, C.; Fernandes, J.B. Virtual Reality-Based Therapy Reduces the Disabling Impact of Fibromyalgia Syndrome in Women: Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Pers. Med. 2021, 11, 1167. [Google Scholar] [CrossRef]
- Higgins, J.; Altman, D.; Gotzsche, P.; Juni, P.; Moher, D.; Oxman, A.; Savovic, J.; Schulz, K.; Weeks, L.; Sterne, J. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [PubMed]
- Atkins, D.; Best, D.; Briss, P.A.; Eccles, M.; Falck-Ytter, Y.; Flottorp, S.; Guyatt, G.H.; Harbour, R.T. Grading quality of evidence and strength of recommendations. BMJ 2004, 328, 1490. [Google Scholar] [CrossRef] [PubMed]
- Meader, N.; King, K.; Llewellyn, A.; Norman, G.; Brown, J.; Rodgers, M.; Moe-Byrne, T.; Higgins, J.P.; Sowden, A.; Stewart, G. A checklist designed to aid consistency and reproducibility of GRADE assessments: Development and pilot validation. Syst. Rev. 2014, 3, 82. [Google Scholar] [CrossRef]
- Borenstein, M.; Hedges, L.; Higgins, J.; Rothstein, H. Comprehensive Meta-Analysis Software Version 3; Biostat Inc.: Englewood, NJ, USA, 2020. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Faraone, S.V. Interpreting estimates of treatment effects: Implications for managed care. Pharm. Ther. 2008, 33, 700–711. [Google Scholar]
- Rücker, G.; Schwarzer, G. Beyond the forest plot: The drapery plot. Res. Synth. Methods 2020, 12, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Egger, M. Funnel plots for detecting bias in meta-analysis: Guidelines on choice of axis. J. Clin. Epidemiol. 2001, 54, 1046–1055. [Google Scholar] [CrossRef]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test measures of funnel plot asymmetry. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thompson, S.; Deeks, J.; Altman, D. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Thompson, S.; Deeks, J.; Altman, D. Statistical heterogeneity in systematic reviews of clinical trials: A critical appraisal of guidelines and practice. J. Health Serv. Res. Policy 2002, 7, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Acar, G.; Altun, G.P.; Yurdalan, S.; Polat, M.G. Efficacy of neurodevelopmental treatment combined with the Nintendo(®) Wii in patients with cerebral palsy. J. Phys. Ther. Sci. 2016, 28, 774–780. [Google Scholar] [CrossRef] [PubMed]
- AlSaif, A.A.; Alsenany, S. Effects of interactive games on motor performance in children with spastic cerebral palsy. J. Phys. Ther. Sci. 2015, 27, 2001–2003. [Google Scholar] [CrossRef]
- Atasavun Uysal, S.; Baltaci, G. Effects of Nintendo Wii(TM) Training on Occupational Performance, Balance, and Daily Living Activities in Children with Spastic Hemiplegic Cerebral Palsy: A Single-Blind and Randomized Trial. Games Health J. 2016, 5, 311–317. [Google Scholar] [CrossRef]
- Avcil, E.; Tarakci, D.; Arman, N.; Tarakci, E. Upper extremity rehabilitation using video games in cerebral palsy: A randomized clinical trial. Acta Neurol. Belg. 2020, 121, 1053–1060. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Ada, L.; Lee, H.-M. Upper limb training using Wii Sports Resort TM for children with hemiplegic cerebral palsy: A randomized, single-blind trial. Clin. Rehabil. 2014, 28, 1015–1024. [Google Scholar] [CrossRef]
- El-Shamy, S.M.; El-Banna, M.F. Effect of Wii training on hand function in children with hemiplegic cerebral palsy. Physiother. Theory Pract. 2020, 36, 38–44. [Google Scholar] [CrossRef]
- Sajan, J.E.; John, J.A.; Grace, P.; Sabu, S.S.; Tharion, G. Wii-based interactive video games as a supplement to conventional therapy for rehabilitation of children with cerebral palsy: A pilot, randomized controlled trial. Dev. Neurorehabil. 2017, 20, 361–367. [Google Scholar] [CrossRef]
- Shin, J.-W.; Song, G.-B.; Hwangbo, G. Effects of conventional neurological treatment and a virtual reality training program on eye-hand coordination in children with cerebral palsy. J. Phys. Ther. Sci. 2015, 27, 2151–2154. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-N.; Chen, Y.-L.; Shieh, J.-Y.; Chen, H.-L. Commercial Exergaming in Home-Based Pediatric Constraint-Induced Therapy: A Randomized Trial. OTJR Occup. Particip. Health 2021, 41, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lee, S.-Y.; Howard, A.M. Effect of virtual reality on upper extremity function in children with cerebral palsy: A meta-analysis. Pediatr. Phys. Ther. Off. Publ. Sect. Pediatr. Am. Phys. Ther. Assoc. 2014, 26, 289–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassee, C.; Hunt, C.; Holmes, M.W.R.; Lloyd, M. Home-based Nintendo Wii training to improve upper-limb function in children ages 7 to 12 with spastic hemiplegic cerebral palsy. J. Pediatr. Rehabil. Med. 2017, 10, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Pérez, I.; Zagalaz-Anula, N.; Montoro-Cárdenas, D.; Lomas-Vega, R.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Leap Motion Controller Video Game-Based Therapy for Upper Extremity Motor Recovery in Patients with Central Nervous System Diseases. A Systematic Review with Meta-Analysis. Sensors 2021, 21, 2065. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I. Virtual Reality Enhances Gait in Cerebral Palsy: A Training Dose-Response Meta-Analysis. Front. Neurol. 2019, 10, 236. [Google Scholar] [CrossRef]
- Elliott, K.C.; Bundy, D.T.; Guggenmos, D.J.; Nudo, R.J. Physiological basis of neuromotor recovery. In Rehabilitation Robotics; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–13. [Google Scholar]
- Kleim, J.A.; Jones, T.A. Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage. J. Speech. Lang. Hear. Res. 2008, 51, S225–S239. [Google Scholar] [CrossRef]
- Bryanton, C.; Bossé, J.; Brien, M.; Mclean, J.; McCormick, A.; Sveistrup, H. Feasibility, Motivation, and Selective Motor Control: Virtual Reality Compared to Conventional Home Exercise in Children with Cerebral Palsy. CyberPsychology Behav. 2006, 9, 123–128. [Google Scholar] [CrossRef]
- Weiss, P.L.; Tirosh, E.; Fehlings, D. Role of Virtual Reality for Cerebral Palsy Management. J. Child Neurol. 2014, 29, 1119–1124. [Google Scholar] [CrossRef]
- Adamovich, S.V.; Fluet, G.G.; Tunik, E.; Merians, A.S. Sensorimotor training in virtual reality: A review. NeuroRehabilitation 2009, 25, 29–44. [Google Scholar] [CrossRef]
- You, S.H.; Jang, S.H.; Kim, Y.-H.; Kwon, Y.-H.; Barrow, I.; Hallett, M. Cortical reorganization induced by virtual reality therapy in a child with hemiparetic cerebral palsy. Dev. Med. Child Neurol. 2005, 47, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Kleim, J.A. Neural plasticity and neurorehabilitation: Teaching the new brain old tricks. J. Commun. Disord. 2011, 44, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Inguaggiato, E.; Sgandurra, G.; Perazza, S.; Guzzetta, A.; Cioni, G. Brain reorganization following intervention in children with congenital hemiplegia: A systematic review. Neural Plast. 2013, 2013, 356275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keller, J.; Štětkářová, I.; Macri, V.; Kühn, S.; Pětioký, J.; Gualeni, S.; Simmons, C.D.; Arthanat, S.; Zilber, P. Virtual reality-based treatment for regaining upper extremity function induces cortex grey matter changes in persons with acquired brain injury. J. Neuroeng. Rehabil. 2020, 17, 127. [Google Scholar] [CrossRef] [PubMed]
- Simkins, M.; Byl, N.; Kim, H.; Abrams, G.; Rosen, J. Upper limb bilateral symmetric training with robotic assistance and clinical outcomes for stroke. Int. J. Intell. Comput. Cybern. 2016, 9, 83–104. [Google Scholar] [CrossRef]
- Hodapp, M.; Klisch, C.; Mall, V.; Vry, J.; Berger, W.; Faist, M. Modulation of Soleus H-Reflexes During Gait in Children with Cerebral Palsy. J. Neurophysiol. 2007, 98, 3263–3268. [Google Scholar] [CrossRef]
- de Mello Monteiro, C.B.; da Silva, T.D.; de Abreu, L.C.; Fregni, F.; de Araujo, L.V.; Ferreira, F.H.I.B.; Leone, C. Short-term motor learning through non-immersive virtual reality task in individuals with down syndrome. BMC Neurol. 2017, 17, 71. [Google Scholar] [CrossRef]
- Şimşek, T.T.; Çekok, K. The effects of Nintendo Wii(TM)-based balance and upper extremity training on activities of daily living and quality of life in patients with sub-acute stroke: A randomized controlled study. Int. J. Neurosci. 2016, 126, 1061–1070. [Google Scholar] [CrossRef]
Databases | Search Strategy |
---|---|
PubMed MEDLINE | (cerebral palsy[mh] OR cerebral palsy[tiab]) AND (virtual reality[mh] OR virtual reality[tiab] OR nintendo wii[tiab] OR wii[tiab] OR wii fit[tiab] OR wii balance board[tiab]) AND (upper extremity[mh] OR arm[mh] OR hand[mh] OR elbow[mh] OR wrist[mh] OR shoulder[mh] OR upper extremity[tiab] OR upper limb[tiab] OR arm[tiab] OR hand[tiab] OR elbow[tiab] OR shoulder[tiab] OR wrist[tiab]) |
Scopus | (TITLE-ABS-KEY (“cerebral palsy”) AND TITLE-ABS-KEY (“nintendo wii” OR “wii” OR “wii fit” OR “wii balance board” OR “virtual reality”) AND TITLE-ABS-KEY (“upper extremity” OR “upper limb” OR “arm” OR “hand” OR “elbow” OR “shoulder” OR “wrist”)) |
Web of Science | TOPIC:((cerebral palsy)) AND TOPIC:((nintendo wii OR wii OR wii fit OR wii balance board OR virtual reality)) AND TOPIC:((upper limb OR upper extremity OR arm OR hand OR elbow OR shoulder OR wrist)) |
PEDro | cerebral palsy, virtual reality |
CINHAL Complete | (AB cerebral palsy) AND (AB virtual reality OR nintendo wii OR wii OR wii fit OR wii balance board) AND (AB upper extremity OR upper limb OR arm OR hand OR elbow OR shoulder OR wrist) |
Outcome | Definition | Measurements Used in each Selected Study |
---|---|---|
Grip strength (GS) | GS and tip GS refer to the maximum concentric force possessed by the hand muscles, as well as the force necessary to grasp small objects with the thumb and index finger, respectively | Manual or hydraulic dynamometer, measured in kilograms (kg) or Newton |
Tip grip strength | ||
Functional capacity in daily living activities (dla) and self-care | Ability of an individual to perform DLAs and self-care tasks without the need for supervision, direction or assistance from other people | ABILHAND-kids |
“Self-care” domain of Pediatric Evaluation of Disability Index (PEDI) | ||
Children Health Assessment Questionnaire (CHAQ) | ||
Upper extremity (ue) dissociated movements | Ability to move one part of the body (in this case the UE) independently of others | “Dissociated movements” domain of the Quality of Upper Extremity Skills Test (QUEST) |
Gross motor dexterity (gmd) | GMD involves the movement of large muscle groups where precision of movements is not as important as in fine motor dexterity | Jebsen-Taylor Hand Function Test (JTHFT) |
Minnesota Manual Dexterity Test (MMDT) | ||
Box and Block test | ||
Fine motor dexterity (fmd) | FMD involves the movement of small muscles that require eye-hand coordination to carry out very precise tasks | Movement Assessment Battery for Children-2 (MABC-2) |
Nine Hole Peg Test | ||
“Eye-hand coordination” of the Korean Developmental Test of Visual Perception (KDTVP) | ||
Grasping ability | Ability of the hand to effectively grasp objects and to maintain a stable grip when the arm is in motion and in the absence of external forces | “Grip” domain of the QUEST |
Experimental Group | Control Group | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample Characteristics | Experimental Intervention Characteristics | Sample Characteristics | Type Control Intervention | ||||||||||||||
Author and Year | Country | Design | K | N | Ne | Age (Range or Mean ± SD) | % Fem | Type of CP | GMFCS Level | Type | Dura- tion (weeks) | Session/Week | Minutes/Session | Nc | Age (Range or Mean ± SD) | % Fem | |
Acar, G et al. 2016 [57] | Turkey | RCT | 1 | 30 | 15 | 9.53 ± 3.04 | 46% | Spastic hemiparesis | I/II | NWT + CT | 6 | 2 | 15 | 15 | 9.73 ± 2.86 | 60 | CT |
Alsaif, A et al. 2015 [58] | Saudi Arabia | RCT | 4 | 40 | 20 | 6–10 y | NR | Spastic bilateral hemiparesis | III | NWT | 12 | 7 | 20 | 20 | 6–10 y | NR | NI |
Atasavun-Uysal, SA et al. 2016 [59] | Turkey | RCT | 1 | 24 | 12 | 9.13 ± 2.57 | 33% | Spastic unilateral | I/II | NWT + CT | 12 | 2 | 30 | 12 | NR | 83% | CT |
Avcil, E et al. 2020 [60] | Turkey | RCT | 4 | 30 | 15 | 10.93 ± 4.09 | 46% | NR | I/II/III/IV | NWT + LMC | 8 | 3 | 60 | 15 | 11.07 ± 3.24 | 40 | CT |
Chiu, HC et al. 2014 [61] | Australia | RCT | 3 | 57 | 30 | 9.4 ± 1.9 | 50% | Spastic hemiplejic | I/II/III/IV/IV | NWT + CT | 12 | 3 | 40 | 27 | 9.5 ± 1.9 | 59% | CT |
El-Shamy, SM et al. 2018 [62] | Saudi Arabia | RCT | 2 | 40 | 20 | 9.5 ± 1.2 | 40% | Spastic hemiplejic | NR | NWT + CT | 12 | 3 | 40 | 20 | 9.8 ± 1.2 | 30% | CT |
Sajan, JE et al. 2017 [63] | India | RCT | 3 | 18 | 9 | 10.6 ± 3.78 | 40% | Spastic bilateral | I/II/III/IV | NWT + CT | 3 | 6 | 45 | 9 | 12.4 ± 4.93 | 50% | CT |
Shin, JW et al. 2015 [64] | South Korea | RCT | 1 | 17 | 8 | 106.8 ± 2.5 months | 63% | Spastic bilateral | NR | NWT | 8 | 2 | 45 | 9 | 110.8 ± 16.1 months | 33% | CT |
Wang, TN et al. 2021 [65] | China | RCT | 1 | 18 | 9 | 102.67 ± 25.05 months | 66% | Spastic hemiplejic | NR | NWT + CT | 8 | 2 | 145 | 9 | 102.78 ± 25.84 months | 44% | CT |
Study | Random Sequence Generation | Concealment of Randomization Sequence | Blinding of Participants | Blinding of Outcomes Assessors | Incomplete Outcome Data | Selective Reporting | Anything Else, Ideally Pre-Specified |
---|---|---|---|---|---|---|---|
Acar, G et al. 2016 [57] | + | + | + | + | - | - | - |
Alsaif, A et al. 2015 [58] | - | + | + | + | ? | - | - |
Atasavun-Uysal, SA et al. 2016 [59] | - | - | + | + | - | - | - |
Avcil, E et al. 2020 [60] | - | + | - | + | - | - | - |
Chiu, HC et al. 2014 [61] | - | + | + | - | - | - | - |
El-Shamy, SM et al. 2018 [62] | - | - | + | - | - | - | - |
Sajan, JE et al. 2017 [63] | - | - | + | - | - | - | - |
Shin, JW et al. 2015 [64] | - | + | + | + | ? | - | - |
Wang, TN et al. 2021 [65] | - | - | + | - | - | - | - |
Summary of Findings | Quality of Evidence (GRADE) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pooled Effect | Publication Bias | |||||||||||||||
K | N | Ns | SMD | 95% CI | I2 | Funnel plot (Egger Test p-Value) | Trim and Fill | Risk of Bias | Incons | Indirect | Imprec | Pub. Bias | Quality | |||
Adj SMD | % of Change | |||||||||||||||
GRIP STRENGTH | ||||||||||||||||
Specific NWT subgroups | NWT vs. CT | 2 | 30 | 35 | 0.16 | −0.56; 0.88 | 28.8% | NP | NP | NP | High | Possible | No | Yes | Possible | Very Low |
NWT + CT vs. CT | 1 | 97 | 48.5 | 0.5 | 0.08; 0.91 | 52% | NP | NP | NP | Medium | Yes | No | Yes | Possible | Very Low | |
TIP GRIP STRENGTH | ||||||||||||||||
Specific NWT subgroups | NWT vs. CT | 1 | 30 | 30 | 0.8 | 0.01; 1.49 | 0% | NP | NP | NP | Low | No | No | Yes | Possible | Very Low |
NWT + CT vs. CT | 1 | 40 | 40 | 0.95 | 0.3; 1.61 | 0% | NP | NP | NP | Medium | No | No | Yes | Possible | Very Low | |
FUNCTIONAL CAPACITY IN DLA AND SELF-CARE | ||||||||||||||||
Specific NWT subgroups | NWT vs. CT | 1 | 30 | 30 | 0.82 | 0.07;1.56 | 0% | NP | NP | NP | Medium | No | No | Yes | Possible | Very Low |
NWT + CT vs. CT | 3 | 72 | 24 | 0.43 | −0.04; 0.91 | 26% | 0.66 | 0.43 | 0% | High | Possible | No | Yes | No | Low | |
UE DISSOCIATED MOVEMENTS | ||||||||||||||||
Specific NWT subgroups | NWT + CT vs. CT | 2 | 48 | 24 | 0.73 | 0.16; 1.3 | 0% | NP | NP | NP | High | No | No | Yes | Possible | Very Low |
GROSS MANUAL DEXTERITY | ||||||||||||||||
Specific NWT subgroups | NWT vs. CT | 1 | 30 | 30 | −0.12 | −0.84; 0.6 | 0% | NP | NP | NP | Medium | No | No | Yes | Possible | Very Low |
NWT + CT vs. CT | 3 | 105 | 35 | −0.28 | −0.67; 0.1 | 0% | 0.88 | −0.28 | 0% | High | No | No | Yes | No | Low | |
FINE MANUAL DEXTERITY | ||||||||||||||||
Specific NWT subgroups | NWT vs. NI | 1 | 40 | 40 | 3.12 | 1.53; 4.7 | 0% | NP | NP | NP | High | No | No | Yes | Possible | Very Low |
NWT + CT vs. CT | 2 | 68 | 34 | −0.05 | −0.51; 0.41 | 0% | NP | NP | NP | Medium | No | No | Yes | Possible | Very Low | |
GRASPING ABILITY | ||||||||||||||||
Specific NWT subgroups | NWT + CT vs. CT | 2 | 48 | 24 | 0.72 | 0.14; 1.3 | 0% | NP | NP | NP | High | No | No | Yes | Possible | Very Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoro-Cárdenas, D.; Cortés-Pérez, I.; Ibancos-Losada, M.d.R.; Zagalaz-Anula, N.; Obrero-Gaitán, E.; Osuna-Pérez, M.C. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12343. https://doi.org/10.3390/ijerph191912343
Montoro-Cárdenas D, Cortés-Pérez I, Ibancos-Losada MdR, Zagalaz-Anula N, Obrero-Gaitán E, Osuna-Pérez MC. Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(19):12343. https://doi.org/10.3390/ijerph191912343
Chicago/Turabian StyleMontoro-Cárdenas, Desirée, Irene Cortés-Pérez, María del Rocío Ibancos-Losada, Noelia Zagalaz-Anula, Esteban Obrero-Gaitán, and María Catalina Osuna-Pérez. 2022. "Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 19: 12343. https://doi.org/10.3390/ijerph191912343
APA StyleMontoro-Cárdenas, D., Cortés-Pérez, I., Ibancos-Losada, M. d. R., Zagalaz-Anula, N., Obrero-Gaitán, E., & Osuna-Pérez, M. C. (2022). Nintendo® Wii Therapy Improves Upper Extremity Motor Function in Children with Cerebral Palsy: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 19(19), 12343. https://doi.org/10.3390/ijerph191912343