Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Telemedicine Platforms
2.2. Signaling Theory
3. Hypotheses
3.1. Need Fulfillment and Online Patient Consultation
3.2. Security and Online Patient Consultation
3.3. Responsiveness and Online Patient Consultation
4. Methodology
4.1. Data and Measures
4.2. Model Specification
5. Result
6. Discussion
7. Contribution
7.1. Theoretical Contribution
7.2. Practical Contribution
8. Limitations and Future Research
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dubowicz, A.; Schulz, P.J. Medical Information on the Internet: A Tool for Measuring Consumer Perception of Quality Aspects. Interact. J. Med. Res. 2015, 4, e8. [Google Scholar] [CrossRef]
- Yan, L.; Tan, Y. Feeling Blue? Go Online: An Empirical Study of Social Support among Patients. Inf. Syst. Res. 2014, 25, 690–709. [Google Scholar] [CrossRef]
- Smith, A.C.; Thomas, E.; Snoswell, C.L.; Haydon, H.; Mehrotra, A.; Clemensen, J.; Caffery, L.J. Telehealth for Global Emergencies: Implications for Coronavirus Disease 2019 (COVID-19). J. Telemed. Telecare 2020, 26, 309–313. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X.; Wu, T.; Ju, X. Exploring the Online Doctor-Patient Interaction on Patient Satisfaction Based on Text Mining and Empirical Analysis. Inf. Process. Manag. 2020, 57, 102253. [Google Scholar] [CrossRef]
- Dulleck, U.; Kerschbamer, R. On Doctors, Mechanics, and Computer Specialists: The Economics of Credence Goods. J. Econ. Lit. 2006, 44, 5–42. [Google Scholar] [CrossRef]
- Connelly, B.L.; Certo, S.; Ireland, R.D.; Reutzel, C.R. Signaling Theory: A Review and Assessment. J. Manag. 2011, 37, 39–67. [Google Scholar] [CrossRef]
- Schlosser, A.E.; White, T.B.; Lloyd, S.M. Converting Web Site Visitors into Buyers: How Web Site Investment Increases Consumer Trusting Beliefs and Online Purchase Intentions. J. Mark. 2006, 70, 133–148. [Google Scholar] [CrossRef]
- Zeithaml, V.A. Defining and Relating Price, Perceived Quality, and Perceived Value; Report/Marketing Science Institute: Cambridge, MA, USA, 1987. [Google Scholar]
- Parasuraman, A.; Zeithaml, V.A.; Berry, L.L. A Conceptual Model of Service Quality and Its Implications for Future Research. J. Mark. 1985, 49, 41–50. [Google Scholar] [CrossRef]
- Chen, Q.; Jin, J.; Yan, X. Understanding Online Review Behaviors of Patients in Online Health Communities: An Expectation-Disconfirmation Perspective. ITP, 2021; ahead-of-print. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Y.; Zhu, Z.; Hu, J.; Chen, X. Online Selection of a Physician by Patients: Empirical Study from Elaboration Likelihood Perspective. Comput. Hum. Behav. 2017, 73, 403–412. [Google Scholar] [CrossRef]
- Wu, B. Patient Continued Use of Online Health Care Communities: Web Mining of Patient-Doctor Communication. J. Med. Internet Res. 2018, 20, e126. [Google Scholar] [CrossRef] [PubMed]
- Gummerus, J.; Liljander, V.; Pura, M.; van Riel, A. Customer Loyalty to Content-based Web Sites: The Case of an Online Health-care Service. J. Serv. Mark. 2004, 18, 175–186. [Google Scholar] [CrossRef]
- Akter, S.; D’Ambra, J.; Ray, P. Development and Validation of an Instrument to Measure User Perceived Service Quality of MHealth. Inf. Manag. 2013, 50, 181–195. [Google Scholar] [CrossRef]
- Shim, M.; Jo, H.S. What Quality Factors Matter in Enhancing the Perceived Benefits of Online Health Information Sites? Application of the Updated DeLone and McLean Information Systems Success Model. Int. J. Med. Inform. 2020, 137, 104093. [Google Scholar] [CrossRef]
- Kaium, M.A.; Bao, Y.; Alam, M.Z.; Hoque, R. Understanding Continuance Usage Intention of MHealth in a Developing Country. IJPHM 2020, 14, 251–272. [Google Scholar] [CrossRef]
- Wu, H.; Lu, N. Online Written Consultation, Telephone Consultation and Offline Appointment: An Examination of the Channel Effect in Online Health Communities. Int. J. Med. Inform. 2017, 107, 107–119. [Google Scholar] [CrossRef]
- Gong, K.; Xu, Z.; Cai, Z.; Chen, Y.; Wang, Z. Internet Hospitals Help Prevent and Control the Epidemic of COVID-19 in China: Multicenter User Profiling Study. J. Med. Internet Res. 2020, 22, e18908. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Xu, X.; Guo, J.; Guo, F. What Influences Physicians’ Online Knowledge Sharing? A Stimulus-Response Perspective. Front. Psychol. 2022, 12, 808432. [Google Scholar] [CrossRef]
- Ellis, L.A.; Lee, M.D.; Ijaz, K.; Smith, J.; Braithwaite, J.; Yin, K. COVID-19 as ‘Game Changer’ for the Physical Activity and Mental Well-Being of Augmented Reality Game Players During the Pandemic: Mixed Methods Survey Study. J. Med. Internet Res. 2020, 22, e25117. [Google Scholar] [CrossRef]
- Coronavirus. Available online: https://www.who.int/health-topics/coronavirus (accessed on 21 April 2022).
- Figueiras, A.; Hajizadeh, A. The Role of Telehealth during COVID-19 Outbreak: A Systematic Review Based on Current Evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef]
- Akçura, M.T.; Ozdemir, Z.D. A Strategic Analysis of Multi-Channel Expert Services. J. Manag. Inf. Syst. 2017, 34, 206–231. [Google Scholar] [CrossRef]
- Bani Issa, W.; Al Akour, I.; Ibrahim, A.; Almarzouqi, A.; Abbas, S.; Hisham, F.; Griffiths, J. Privacy, Confidentiality, Security and Patient Safety Concerns about Electronic Health Records. Int. Nurs. Rev. 2020, 67, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, Y.; Ju, X. Exploring Patients’ Consultation Behaviors in the Online Health Community: The Role of Disease Risk. Telemed. e-Health 2019, 25, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Wang, H.; Xia, Q.; Zheng, L.; Shi, Y. Factors That Determine a Patient’s Willingness to Physician Selection in Online Healthcare Communities: A Trust Theory Perspective. Technol. Soc. 2021, 64, 101510. [Google Scholar] [CrossRef]
- Ouyang, P.; Wang, J.-J.; Jasmine Chang, A.-C. Patients Need Emotional Support: Managing Physician Disclosure Information to Attract More Patients. Int. J. Med. Inform. 2022, 158, 104674. [Google Scholar] [CrossRef]
- LIGHTNER, N.J. What Users Want in E-Commerce Design: Effects of Age, Education and Income. Ergonomics 2003, 46, 153–168. [Google Scholar] [CrossRef]
- Kromidha, E.; Li, M.C. Determinants of Leadership in Online Social Trading: A Signaling Theory Perspective. J. Bus. Res. 2019, 97, 184–197. [Google Scholar] [CrossRef]
- Wells, J.D.; Valacich, J.S.; Hess , T.J. Wells; Valacich; Hess What Signal Are You Sending? How Website Quality Influences Perceptions of Product Quality and Purchase Intentions. MIS Q. 2011, 35, 373. [Google Scholar] [CrossRef]
- Shah, A.M.; Naqvi, R.A.; Jeong, O.-R. The Impact of Signals Transmission on Patients’ Choice through E-Consultation Websites: An Econometric Analysis of Secondary Datasets. IJERPH 2021, 18, 5192. [Google Scholar] [CrossRef]
- Laugesen, J.; Hassanein, K.; Yuan, Y. The Impact of Internet Health Information on Patient Compliance: A Research Model and an Empirical Study. J. Med. Internet Res. 2015, 17, e143. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-T.; Wei, C.-L. Effects of Outsourced Service Providers’ Experiences on Perceived Service Quality: A Signaling Theory Framework. IMDS 2016, 116, 1656–1677. [Google Scholar] [CrossRef]
- Chen, L.; Baird, A.; Straub, D. A Linguistic Signaling Model of Social Support Exchange in Online Health Communities. Decis. Support Syst. 2020, 130, 113233. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, R.; Zhu, X.; Chen, Q.; Jin, J.; Zhang, T.; Yan, X. The Effects of Login Behaviors and Online Reviews on Patient Consultation in Online Health Communities: A Longitudinal Study (Preprint). J. Med. Internet Res. 2021, 23, e25367. [Google Scholar] [CrossRef]
- Ren, D.; Ma, B. Effectiveness of Interactive Tools in Online Health Care Communities: Social Exchange Theory Perspective. J. Med. Internet Res. 2021, 23, e21892. [Google Scholar] [CrossRef]
- Yang, H.; Guo, X.; Wu, T.; Ju, X. Exploring the Effects of Patient-Generated and System-Generated Information on Patients’ Online Search, Evaluation and Decision. Electron. Commer. Res. Appl. 2015, 14, 192–203. [Google Scholar] [CrossRef]
- Liu, X.; Guo, X.; Wu, H.; Wu, T. The Impact of Individual and Organizational Reputation on Physicians’ Appointments Online. Int. J. Electron. Commer. 2016, 20, 551–577. [Google Scholar] [CrossRef]
- Lewis, R.C.; Booms, B.H. The Marketing Aspects of Service Quality. Emerg. Perspect. Serv. Mark. 1983, 65, 99–107. [Google Scholar]
- Wu, H.; Deng, Z.; Wang, B.; Wu, T. Online Service Qualities in the Multistage Process and Patients’ Compliments: A Transaction Cycle Perspective. Inf. Manag. 2020, 57, 103230. [Google Scholar] [CrossRef]
- Carlsson, M. Cancer Patients Seeking Information from Sources Outside the Health Care System. Support. Care Cancer 2000, 8, 453–457. Available online: https://link.springer.com/article/10.1007/s005200000166 (accessed on 23 April 2022). [CrossRef]
- Vlahovic, T.A.; Wang, Y.-C.; Kraut, R.E.; Levine, J.M. Support Matching and Satisfaction in an Online Breast Cancer Support Community. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; ACM: Toronto, ON, Canada, 2014; Volume 26, pp. 1625–1634. [Google Scholar]
- Zhang, X.; Liu, S.; Deng, Z.; Chen, X. Knowledge Sharing Motivations in Online Health Communities: A Comparative Study of Health Professionals and Normal Users. Comput. Hum. Behav. 2017, 75, 797–810. [Google Scholar] [CrossRef]
- Nicholas, D.; Huntington, P.; Williams, P.; Jordan, M. NHS Direct Online: Its Users and Their Concerns. J. Inf. Sci. 2002, 28, 305–319. [Google Scholar] [CrossRef]
- McMullan, M. Patients Using the Internet to Obtain Health Information: How This Affects the Patient–Health Professional Relationship. Patient Educ. Couns. 2006, 63, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Nambisan, P. Information Seeking and Social Support in Online Health Communities: Impact on Patients’ Perceived Empathy. J. Am. Med. Inform. Assoc. 2011, 18, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Nakikj, D.; Mamykina, L. A Park or A Highway. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing; ACM: Portland, OR, USA, 2017; Volume 25, pp. 1304–1319. [Google Scholar]
- Evans, R.G. Supplier-Induced Demand: Some Empirical Evidence and Implications. In The Economics of Health and Medical Care; Perlman, M., Ed.; Palgrave Macmillan: London, UK, 1974; pp. 162–173. ISBN 978-1-349-63662-4. [Google Scholar]
- Marx, G.T. Soft Surveillence: A Growth of Mandatory Volunteerism in Collecting Personal Information—“Hey Buddy Can You Spare a DNA? ” FC 2006, 2, 33–46. [Google Scholar] [CrossRef]
- Fichman, R.G.; Kohli, R.; Krishnan, R. Editorial Overview—The Role of Information Systems in Healthcare: Current Research and Future Trends. Inf. Syst. Res. 2011, 22, 419–428. [Google Scholar] [CrossRef]
- Deng, Z.; Hong, Z.; Zhang, W.; Evans, R.; Chen, Y. The Effect of Online Effort and Reputation of Physicians on Patients’ Choice: 3-Wave Data Analysis of China’s Good Doctor Website. J. Med. Internet Res. 2019, 21, e10170. [Google Scholar] [CrossRef]
- Ba, S.; Wang, L. Digital Health Communities: The Effect of Their Motivation Mechanisms. Decis. Support Syst. 2013, 55, 941–947. [Google Scholar] [CrossRef]
- Grönroos, C. Service Management and Marketing: A Customer Relationship Management Approach, 2nd ed.; Wiley: Chichester, UK; New York, NY, USA, 2000; ISBN 978-0-471-72034-8. [Google Scholar]
- Wan, Y.; Zhang, Y.; Yan, M. What Influences Patients’ Willingness to Choose in Online Health Consultation? An Empirical Study with PLS–SEM. IMDS 2020, 120, 2423–2446. [Google Scholar] [CrossRef]
- Forman, C.; Ghose, A.; Wiesenfeld, B. Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets. Inf. Syst. Res. 2008, 19, 291–313. [Google Scholar] [CrossRef]
- Hargreaves, A.; Fullan, M. The Power of Professional Capital. Learn. Prof. 2013, 34, 36. [Google Scholar]
- Schattner, A.; Rudin, D.; Jellin, N. Good Physicians from the Perspective of Their Patients. BMC Health Serv. Res. 2004, 4, 26. [Google Scholar] [CrossRef]
- Zeithaml, V.A.; Parasuraman, A.; Malhotra, A. A Conceptual Framework for Understanding E-Service Quality: Implications for Future Research and Managerial Practice; Marketing Science Institute: Cambridge, MA, USA, 2000; Volume 115. [Google Scholar]
- Voss, C. Developing an EService Strategy. Bus. Strategy Rev. 2000, 11, 21–34. [Google Scholar] [CrossRef]
- Li, Y.; Ma, X.; Song, J.; Yang, Y.; Ju, X. Exploring the Effects of Online Rating and the Activeness of Physicians on the Number of Patients in an Online Health Community. Telemed. e-Health 2019, 25, 1090–1098. [Google Scholar] [CrossRef] [PubMed]
- Holwerda, N.; Sanderman, R.; Pool, G.; Hinnen, C.; Langendijk, J.A.; Bemelman, W.A.; Hagedoorn, M.; Sprangers, M.A.G. Do Patients Trust Their Physician? The Role of Attachment Style in the Patient-Physician Relationship within One Year after a Cancer Diagnosis. Acta Oncol. 2013, 52, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Caruana, A. Service Loyalty. Eur. J. Mark. 2002, 36, 811–828. [Google Scholar] [CrossRef]
- Tannenbaum, J.C.; Naylor, R.D.; Pritchard, D.R. Ilgen: A Theory of Behavior in Organizations; Academic Press: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- Good Doctor Online. Available online: https://www.haodf.com/info/aboutus.php (accessed on 29 April 2022).
- Mason, C.H.; Perreault, W.D. Collinearity, Power, and Interpretation of Multiple Regression Analysis. J. Mark. Res. 1991, 28, 268–280. [Google Scholar] [CrossRef]
Variables | Description | Mean | S.D. | Min | Max |
---|---|---|---|---|---|
Dependent Variable | |||||
Consult | Total number of online patient consultations | 4581.30 | 5671.15 | 73.00 | 71,678.00 |
Independent Variable | |||||
Sharing | Number of shared health articles | 53.76 | 200.93 | 0.00 | 5720.00 |
Greeting | The length of the doctor’s greeting message | 113.94 | 202.95 | 0.00 | 3975.00 |
Free | Total number of free online consultations | 2.93 | 2.02 | 0.00 | 10.65 |
Aca_S | Academic title of physician titles was classified into four levels; 1 = teaching assistant, 2 = lecturer, 3 = associate professor, 4 = professor | 1.62 | 1.68 | 0.00 | 4.00 |
Pro_S | The medical titles of the physician were stratified into 4 stages; 1 = the resident physician, 2 = the attending physician, 3 = associate chief director, 4 = chief director. | 3.25 | 0.74 | 1.00 | 4.00 |
Exp | The number of years that a physician had conducted online consultation on the platform | 8.01 | 3.55 | 1.00 | 14.00 |
Login | Last online date; 1 = over 1 day ago, 2 = within a day, 3 = today | 2.37 | 0.59 | 1.00 | 3.00 |
Aval | The number of half-day consultations that a physician has available | 7.18 | 5.34 | 0.00 | 35.00 |
Reply | The average number of responses from doctors | 4.65 | 3.53 | 0.00 | 65.75 |
Control Variable | |||||
Gender | Dummy variable indicating physician gender; 0 = male, 1 = female | 0.34 | 0.47 | 0.00 | 1.00 |
H_type | Dummy variable indicating the hospital type; 0 = private, 1 = public | 0.99 | 0.08 | 0.00 | 1.00 |
H_level | Hospital level: the scale of 1 to 3, with 1 being the lowest (1A or 1B) and 3 the highest (3A or 3B hospitals) | 2.99 | 0.12 | 1.00 | 3.00 |
H_Special | Dummy variable indicating whether the hospital is a specialized hospital; 0 = specialized, 1 = general | 0.67 | 0.47 | 0.00 | 1.00 |
D_severity | Dummy variable indicating the mortality of the disease; 0 = low, 1 = high | 0.37 | 0.48 | 0.00 | 1.00 |
D_Privacy | Dummy variable indicating the privacy level of the disease; 0 = low, 1 = high | 0.22 | 0.42 | 0.00 | 1.00 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Consult | 1.000 | |||||||||||||||
logSharing | 0.403 *** | 1.000 | ||||||||||||||
(0.000) | ||||||||||||||||
logGreeting | 0.246 *** | 0.435 *** | 1.000 | |||||||||||||
(0.000) | (0.000) | |||||||||||||||
Free | 0.407 *** | 0.344 *** | 0.195 *** | 1.000 | ||||||||||||
(0.000) | (0.000) | (0.000) | ||||||||||||||
Login | 0.095 *** | 0.037 * | 0.015 * | 0.070 *** | 1.000 | |||||||||||
(0.000) | (0.044) | (0.423) | (0.000) | |||||||||||||
Aval | 0.237 *** | 0.121 *** | 0.046 * | 0.112 *** | −0.038 * | 1.000 | ||||||||||
(0.000) | (0.000) | (0.011) | (0.000) | (0.040) | ||||||||||||
Reply | 0.097 *** | 0.117 *** | 0.053 ** | 0.085 *** | 0.065 *** | 0.018 * | 1.000 | |||||||||
(0.000) | (0.000) | (0.004) | (0.000) | (0.000) | (0.329) | |||||||||||
Aca_S | 0.186 *** | 0.159 *** | 0.136 *** | 0.101 *** | −0.002 | 0.028 * | −0.065 *** | 1.000 | ||||||||
(0.000) | (0.000) | (0.000) | (0.000) | (0.912) | (0.128) | (0.000) | ||||||||||
Pro_S | 0.182 *** | 0.140 *** | 0.124 *** | 0.075 *** | −0.014 * | 0.067 *** | −0.111 *** | 0.448 *** | 1.000 | |||||||
(0.000) | (0.000) | (0.000) | (0.000) | (0.435) | (0.000) | (0.000) | (0.000) | |||||||||
Expertise | 0.367 *** | 0.358 *** | 0.274 *** | 0.124 *** | −0.017 * | 0.097 *** | −0.074 *** | 0.352 *** | 0.419 *** | 1.000 | ||||||
(0.000) | (0.000) | (0.000) | (0.000) | (0.341) | (0.000) | (0.000) | (0.000) | (0.000) | ||||||||
D_severity | −0.111 *** | −0.009 | 0.019 * | −0.064 *** | −0.005 | −0.218 *** | −0.005 | 0.068 *** | 0.081 *** | 0.021 * | 1.000 | |||||
(0.000) | (0.632) | (0.290) | (0.000) | (0.771) | (0.000) | (0.793) | (0.000) | (0.000) | (0.252) | |||||||
D_privacy | 0.075 *** | −0.015 * | −0.047 ** | 0.039 * | −0.078 *** | 0.256 *** | −0.000 | −0.059 ** | −0.027 * | −0.020 * | −0.407 *** | 1.000 | ||||
(0.000) | (0.407) | (0.010) | (0.031) | (0.000) | (0.000) | (0.993) | (0.001) | (0.142) | (0.278) | (0.000) | ||||||
Gender | −0.085 *** | −0.184 *** | −0.124 *** | −0.093 *** | −0.030 * | 0.180 *** | 0.022 * | −0.074 *** | 0.054 ** | −0.135 *** | −0.160 *** | 0.230 *** | 1.000 | |||
(0.000) | (0.000) | (0.000) | (0.000) | (0.105) | (0.000) | (0.238) | (0.000) | (0.003) | (0.000) | (0.000) | (0.000) | |||||
H_type | −0.014 * | −0.065 *** | −0.016 * | −0.024 * | 0.005 | −0.087 *** | −0.018 * | 0.022 * | 0.002 | 0.035 * | 0.039 * | −0.090 *** | −0.033 * | 1.000 | ||
(0.453) | (0.000) | (0.389) | (0.196) | (0.796) | (0.000) | (0.314) | (0.238) | (0.926) | (0.054) | (0.033) | (0.000) | (0.070) | ||||
H_level | 0.021 * | −0.028 * | −0.002 | −0.022 * | 0.003 | −0.045 * | 0.004 | 0.064 *** | 0.001 | 0.067 *** | 0.049 ** | −0.077 *** | −0.061 *** | 0.385 *** | 1.000 | |
(0.245) | (0.129) | (0.930) | (0.233) | (0.887) | (0.014) | (0.815) | (0.001) | (0.941) | (0.000) | (0.008) | (0.000) | (0.001) | (0.000) | |||
H_special | −0.032 * | 0.038 * | 0.018 * | 0.016 * | −0.013 * | −0.059** | −0.022 * | 0.175 *** | 0.024 * | 0.006 | 0.095 *** | −0.028 * | −0.063 *** | 0.061 *** | 0.029 * | 1.000 |
(0.080) | (0.036) | (0.331) | (0.380) | (0.493) | (0.001) | (0.235) | (0.000) | (0.184) | (0.760) | (0.000) | (0.125) | (0.001) | (0.001) | (0.115) |
Main Models | Robustness Models | ||||||
---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | |
Constant | 7.898 *** | 5.535 *** | 7.422 *** | 6.988 *** | 4.887 *** | 4.722 *** | 8.988 *** |
(0.51) | (0.31) | (0.53) | (0.52) | (0.29) | (0.31) | (0.40) | |
D_severity | −0.280 *** | −0.283 *** | −0.354 *** | −0.226 *** | −0.291 *** | −0.259 *** | −0.250 *** |
(0.05) | (0.04) | (0.04) | (0.05) | (0.04) | (0.03) | (0.05) | |
D_privacy | 0.152** | 0.075 * | 0.132 * | 0.077 * | 0.025 | 0.085* | 0.145 ** |
(0.06) | (0.05) | (0.06) | (0.05) | (0.04) | (0.04) | (0.05) | |
Gender | −0.301 *** | −0.008 | −0.184 *** | −0.332 *** | −0.022 | −0.037 * | −0.027 |
(0.05) | (0.04) | (0.04) | (0.04) | (0.04) | (0.03) | (0.04) | |
H_type | −0.232 * | 0.222 * | −0.170 | −0.077 | 0.213 * | 0.246 * | 0.511 * |
(0.34) | (0.21) | (0.34) | (0.36) | (0.18) | (0.20) | (0.20) | |
H_level | 0.341 * | 0.388 *** | 0.025 | 0.218 * | 0.154 * | 0.041 | −0.019 |
(0.17) | (0.12) | (0.19) | (0.19) | (0.11) | (0.11) | (0.15) | |
H_special | −0.071 * | −0.092 * | −0.096 * | −0.042 * | −0.081 * | −0.082 * | −0.114 ** |
(0.05) | (0.04) | (0.04) | (0.04) | (0.04) | (0.03) | (0.04) | |
logSharing | 0.208 *** | 0.135 *** | 0.127 *** | 0.238 *** | |||
(0.01) | (0.01) | (0.01) | (0.02) | ||||
logGreeting | 0.059 *** | 0.029 ** | 0.044 *** | 0.038 *** | |||
(0.01) | (0.01) | (0.01) | (0.01) | ||||
Free | 0.167 *** | 0.152 *** | 0.166 *** | 0.154 *** | |||
(0.01) | (0.01) | (0.01) | (0.01) | ||||
Aca_S | 0.044*** | 0.029 ** | 0.034** | 0.043 ** | |||
(0.01) | (0.01) | (0.01) | (0.01) | ||||
Pro_S | 0.071* | 0.086 ** | 0.108 *** | 0.136 *** | |||
(0.03) | (0.03) | (0.03) | (0.03) | ||||
Exp | 0.130*** | 0.092 *** | 0.097 *** | 0.255 *** | |||
(0.01) | (0.01) | (0.01) | (0.01) | ||||
Login | 0.213 *** | 0.174 *** | 0.164 *** | 0.148 *** | |||
(0.04) | (0.03) | (0.03) | (0.03) | ||||
Aval | 0.050 *** | 0.029 *** | 0.026 *** | 0.027 *** | |||
(0.00) | (0.00) | (0.00) | (0.00) | ||||
Reply | 0.017 *** | 0.010 ** | 0.015 *** | 0.024 *** | |||
(0.00) | (0.00) | (0.00) | (0.01) | ||||
City dummies | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Wald chi-square (p) | 0 | 0 | 0 | 0 | 0 | 0 | |
N | 2982 | 2982 | 2982 | 2982 | 2982 | 2982 | 2982 |
Hypotheses | Results |
---|---|
H1. Knowledge sharing positively impacts online patient consultation. | Supported |
H2. Free consultation positively impacts online patient consultation. | Supported |
H3. Greeting message positively impacts online patient consultation. | Supported |
H4. Academic title positively impacts online patient consultation. | Supported |
H5. Professional title positively impacts online patient consultation. | Supported |
H6. Experience positively impacts online patient consultation. | Supported |
H7. Active log-in positively impacts online patient consultation. | Supported |
H8. Availability positively impacts online patient consultation. | Supported |
H9. Reply effort positively impacts online patient consultation. | Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Xu, Z.; Yu, X.; Oda, T. Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation. Int. J. Environ. Res. Public Health 2022, 19, 12384. https://doi.org/10.3390/ijerph191912384
Liu X, Xu Z, Yu X, Oda T. Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation. International Journal of Environmental Research and Public Health. 2022; 19(19):12384. https://doi.org/10.3390/ijerph191912384
Chicago/Turabian StyleLiu, Xiaochen, Zhen Xu, Xintao Yu, and Tetsuaki Oda. 2022. "Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation" International Journal of Environmental Research and Public Health 19, no. 19: 12384. https://doi.org/10.3390/ijerph191912384
APA StyleLiu, X., Xu, Z., Yu, X., & Oda, T. (2022). Using Telemedicine during the COVID-19 Pandemic: How Service Quality Affects Patients’ Consultation. International Journal of Environmental Research and Public Health, 19(19), 12384. https://doi.org/10.3390/ijerph191912384