The Efficacy of an Immersive Virtual Reality Exergame Incorporating an Adaptive Cable Resistance System on Fitness and Cardiometabolic Measures: A 12-Week Randomized Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Interventions
2.4. Study Groups
2.4.1. Intervention Group: BlackBox Immersive Virtual Reality (IVR)
2.4.2. Control Group: Self-Directed (SELF)
2.5. Experimental Procedures: Baseline and Post-Measures
2.5.1. Cardiometabolic Measures
2.5.2. Fitness Measures
2.6. Questionnaires
2.7. Adherence and Compliance
2.8. Statistical Analysis
3. Results
3.1. Anthropometric, Fitness, and Cardiometabolic Results
3.1.1. Anthropometric Measures
3.1.2. Fitness
3.1.3. Cardiometabolic
3.2. Questionnaires
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonetti, A.J.; Drury, D.G.; Danoff, J.V.; Miller, T.A. Comparison of Acute Exercise Responses between Conventional Video Gaming and Isometric Resistance Exergaming. J. Strength Cond. Res. 2010, 24, 1799–1803. [Google Scholar] [CrossRef] [PubMed]
- Bronner, S.; Pinsker, R.; Naik, R.; Noah, J.A. Physiological and Psychophysiological Responses to an Exer-Game Training Protocol. J. Sci. Med. Sport 2016, 19, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.R.; Bredin, S.S.D.; Horita, L.T.L.; Zbogar, D.; Scott, J.M.; Esch, B.T.A.; Rhodes, R.E. The Health Benefits of Interactive Video Game Exercise. Appl. Physiol. Nutr. Metab. 2007, 32, 655–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faric, N.; Potts, H.W.W.; Hon, A.; Smith, L.; Newby, K.; Steptoe, A.; Fisher, A. What Players of Virtual Reality Exercise Games Want: Thematic Analysis of Web-Based Reviews. J. Med. Internet Res. 2019, 21, e13833. [Google Scholar] [CrossRef]
- McClure, C.; Schofield, D. Running Virtual: The Effect of Virtual Reality on Exercise. J. Hum. Sport Exerc. 2020, 15, 861–870. [Google Scholar] [CrossRef]
- Zeng, N.; Pope, Z.; Lee, J.E.; Gao, Z. A Systematic Review of Active Video Games on Rehabilitative Outcomes among Older Patients. J. Sport Health Sci. 2017, 6, 33–43. [Google Scholar] [CrossRef]
- Dębska, M.; Polechoński, J.; Mynarski, A.; Polechoński, P. Enjoyment and Intensity of Physical Activity in Immersive Virtual Reality Performed on Innovative Training Devices in Compliance with Recommendations for Health. Int. J. Environ. Res. Public Health 2019, 16, 3673. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Browne, J.D.; Arnold, M.T.; Robinson, A.; Heacock, M.F.; Ku, R.; Mologne, M.; Baum, G.R.; Ikemiya, K.A.; Neufeld, E.V.; et al. Physiological and Metabolic Requirements, and User-Perceived Exertion of Immersive Virtual Reality Exergaming Incorporating an Adaptive Cable Resistance System: An Exploratory Study. Games Health J. 2021, 10, 361–369. [Google Scholar] [CrossRef]
- Gomez, D.; Browne, J.; Almalouhi, A.; Abundex, M.; Hu, J.; Nason, S.; Kull, N.; Mills, C.; Harris, Q.; Ku, R.; et al. Muscle Activity and User-Perceived Exertion During Immersive Virtual Reality Exergaming Incorporating an Adaptive Cable Resistance System. Int. J. Exerc. Sci. 2022, 15, 261–275. [Google Scholar]
- Borodulin, K.; Sipilä, N.; Rahkonen, O.; Leino-Arjas, P.; Kestilä, L.; Jousilahti, P.; Prättälä, R. Socio-Demographic and Behavioral Variation in Barriers to Leisure-Time Physical Activity. Scand. J. Public Health 2016, 44, 62–69. [Google Scholar] [CrossRef]
- Hoare, E.; Stavreski, B.; Jennings, G.L.; Kingwell, B.A. Exploring Motivation and Barriers to Physical Activity among Active and Inactive Australian Adults. Sports 2017, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Cerin, E.; Leslie, E.; Sugiyama, T.; Owen, N. Perceived Barriers to Leisure-Time Physical Activity in Adults: An Ecological Perspective. J. Phys. Act. Health 2010, 7, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Joseph, R.P.; Ainsworth, B.E.; Keller, C.; Dodgson, J.E. Barriers to Physical Activity Among African American Women: An Integrative Review of the Literature. Women Health 2015, 55, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Perrin, A. 5 Facts about Americans and Video Games; Pew Research Center: Washington, DC, USA, 2018. [Google Scholar]
- Warburton, D.E.R.; Jamnik, V.K.; Bredin, S.S.D.; McKenzie, D.C.; Stone, J.; Shephard, R.J.; Gledhill, N. Evidence-Based Risk Assessment and Recommendations for Physical Activity Clearance: An Introduction. Appl. Physiol. Nutr. Metab. 2011, 36 (Suppl. S1), S1–S2. [Google Scholar] [CrossRef] [Green Version]
- Tsekouras, Y.E.; Tambalis, K.D.; Sarras, S.E.; Antoniou, A.K.; Kokkinos, P.; Sidossis, L.S. Validity and Reliability of the New Portable Metabolic Analyzer PNOE. Front. Sports Act. Living 2019, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Jarchi, D.; Salvi, D.; Velardo, C.; Mahdi, A.; Tarassenko, L.; Clifton, D. Estimation of HRV and SpO2 from Wrist-Worn Commercial Sensors for Clinical Settings. In Proceedings of the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA, 4–7 March 2018; pp. 144–147. [Google Scholar] [CrossRef]
- Dolezal, B.; Lau, M.J.; Abrazado, M.; Storer, T.; Cooper, C. Validity of Two Commercial Grade Bioelectrical Impedance Analyzers for Measurement of Body Fat Percentage. J. Exerc. Physiol. Online 2013, 16, 74–83. [Google Scholar]
- Heyward, V. ASEP methods recommendation: Body composition assessment. J. Exerc. Physiol. 2001, 4, 12. [Google Scholar]
- Baechle, T.; Earle, R. Essentials of Strength Training and Conditioning/National Strength and Conditioning Association, 3rd ed.; Human Kinetcs: Champaign, IL, USA, 2008. [Google Scholar]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of Human Power Output from Vertical Jump. J. Strength Cond. Res. 1991, 5, 116–120. [Google Scholar]
- Leard, J.S.; Cirillo, M.A.; Katsnelson, E.; Kimiatek, D.A.; Miller, T.W.; Trebincevic, K.; Garbalosa, J.C. Validity of Two Alternative Systems for Measuring Vertical Jump Height. J. Strength Cond. Res. 2007, 21, 1296–1299. [Google Scholar] [CrossRef]
- Balady, G.J.; Arena, R.; Sietsema, K.; Myers, J.; Coke, L.; Fletcher, G.F.; Forman, D.; Franklin, B.; Guazzi, M.; Gulati, M.; et al. Clinician’s Guide to Cardiopulmonary Exercise Testing in Adults: A Scientific Statement from the American Heart Association. Circulation 2010, 122, 191–225. [Google Scholar] [CrossRef] [Green Version]
- Lemmink, K.A.P.M.; Kemper, H.C.G.; de Greef, M.H.G.; Rispens, P.; Stevens, M. The Validity of the Sit-and-Reach Test and the Modified Sit-and-Reach Test in Middle-Aged to Older Men and Women. Res. Q. Exerc. Sport 2003, 74, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical Bases of Perceived Exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Kendzierski, D.; DeCarlo, K.J. Physical Activity Enjoyment Scale: Two Validation Studies. J. Sport Exerc. Psychol. 1991, 13, 50–64. [Google Scholar] [CrossRef]
- Biernacki, M.P.; Kennedy, R.S.; Dziuda, Ł. Simulator sickness and its measurement with Simulator Sickness Questionnaire (SSQ). Med. Pr. 2016, 67, 545–555. [Google Scholar] [CrossRef]
- Ruegsegger, G.N.; Booth, F.W. Health Benefits of Exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef] [Green Version]
- Miller, T.; Mull, S.; Aragon, A.A.; Krieger, J.; Schoenfeld, B.J. Resistance Training Combined with Diet Decreases Body Fat While Preserving Lean Mass Independent of Resting Metabolic Rate: A Randomized Trial. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 46–54. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Dias, S.; Strasser, B.; Hoffmann, G. Impact of Different Training Modalities on Anthropometric and Metabolic Characteristics in Overweight/Obese Subjects: A Systematic Review and Network Meta-Analysis. PLoS ONE 2013, 8, e82853. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. Appropriate Physical Activity Intervention Strategies for Weight Loss and Prevention of Weight Regain for Adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- Villanueva, M.G.; Lane, C.J.; Schroeder, E.T. Short Rest Interval Lengths between Sets Optimally Enhance Body Composition and Performance with 8 Weeks of Strength Resistance Training in Older Men. Eur. J. Appl. Physiol. 2015, 115, 295–308. [Google Scholar] [CrossRef]
- Cornelissen, V.; Fagard, R.; Coeckelberghs, E.; Vanhess, L. Impact of Resistance Training on Blood Pressure and Other Cardiovascular Risk Factors. Hypertenesion 2011, 58, 950–958. [Google Scholar] [CrossRef]
- Ozaki, H.; Loenneke, J.; Thiebaud, R.; Abe, T. Resistance training induced increase in VO2max in young and older subjects. Eur. Rev. Aging Phys. Act. 2013, 10, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Aristizabal, J.C.; Freidenreich, D.J.; Volk, B.M.; Kupchak, B.R.; Saenz, C.; Maresh, C.M.; Kraemer, W.J.; Volek, J.S. Effect of Resistance Training on Resting Metabolic Rate and Its Estimation by a Dual-Energy X-ray Absorptiometry Metabolic Map. Eur. J. Clin. Nutr. 2015, 69, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Pratley, R.; Nicklas, B.; Rubin, M.; Miller, J.; Smith, A.; Smith, M.; Hurley, B.; Goldberg, A. Strength Training Increases Resting Metabolic Rate and Norepinephrine Levels in Healthy 50- to 65-Yr-Old Men. J. Appl. Physiol. 1994, 76, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Wing, R.R.; Lang, W.; Wadden, T.A.; Safford, M.; Knowler, W.C.; Bertoni, A.G.; Hill, J.O.; Brancati, F.L.; Peters, A.; Wagenknecht, L.; et al. Benefits of Modest Weight Loss in Improving Cardiovascular Risk Factors in Overweight and Obese Individuals with Type 2 Diabetes. Diabetes Care 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Santanielo, N.; Nóbrega, S.R.; Scarpelli, M.C.; Alvarez, I.F.; Otoboni, G.B.; Pintanel, L.; Libardi, C.A. Effect of Resistance Training to Muscle Failure vs Non-Failure on Strength, Hypertrophy and Muscle Architecture in Trained Individuals. Biol. Sport 2020, 37, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Storer, T.W.; Dolezal, B.A.; Berenc, M.N.; Timmins, J.E.; Cooper, C.B. Effect of Supervised, Periodized Exercise Training vs. Self-Directed Training on Lean Body Mass and Other Fitness Variables in Health Club Members. J. Strength Cond. Res. 2014, 28, 1995–2006. [Google Scholar] [CrossRef] [PubMed]
- Hamarsland, H.; Moen, H.; Skaar, O.J.; Jorang, P.W.; Rødahl, H.S.; Rønnestad, B.R. Equal-Volume Strength Training with Different Training Frequencies Induces Similar Muscle Hypertrophy and Strength Improvement in Trained Participants. Front. Physiol. 2021, 12, 789403. [Google Scholar] [CrossRef] [PubMed]
- Wenger, H.A.; Bell, G.J. The Interactions of Intensity, Frequency and Duration of Exercise Training in Altering Cardiorespiratory Fitness. Sports Med. 1986, 3, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Decker, E.S.; Ekkekakis, P. More Efficient, Perhaps, but at What Price? Pleasure and Enjoyment Responses to High-Intensity Interval Exercise in Low-Active Women with Obesity. Psychol. Sport Exerc. 2017, 28, 1–10. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.N.; Yu, K.; Baghaei, N. Effect of Resolution on Gameplay Experience, Performance, and Simulator Sickness in Virtual Reality Games. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; Volume 439, pp. 1–14. [Google Scholar] [CrossRef]
Measures | SELF (n = 16; 7 Females) | BBIVR (n = 16; 7 Females) | p-between | ||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | 12 Weeks | Change | p-within | Baseline | 12 Weeks | Change | p-within | ||
Anthropometric | |||||||||
Height (cm) | 172 (9.7) | - | - | - | 168 (8.9) | - | - | - | 0.873 |
Body mass (kg) | 69.8 (8.2) | 70.3 (8.1) | 0.5 (1.1) | 0.430 | 68.8 (12.7) | 69.7 (12.3) | 0.9 (1.2) | 0.211 | 0.118 |
Body fat (%) | 18.3 (2.9) | 16.4 (2.8) | −1.9 (1.0) | <0.001 | 19.9 (3.4) | 16.1 (3.0) | −3.8 (1.2) | <0.001 | <0.001 |
Fat mass (kg) | 12.8 (2.8) | 11.6 (2.4) | −1.2 (0.8) | 0.004 | 13.7 (3.7) | 11.3 (3) | −2.4 (1.1) | <0.001 | <0.001 |
Fat-free mass (kg) | 57.0 (6.3) | 58.8 (6.8) | 1.8 (1.2) | 0.003 | 55.1 (10.1) | 58.5 (10.4) | 3.4 (0.9) | <0.001 | <0.001 |
Fitness | |||||||||
CP 1-RM (kg) | 50.5 (15.5) | 60.5 (15.5) | 10.0 (2.8) | <0.001 | 51.7 (17.8) | 66.0 (18.7) | 14.3 (2.0) | <0.001 | <0.001 |
SP 1-RM (kg) | 63.7 (17.7) | 86.2 (19.3) | 22.5 (5.7) | <0.001 | 64.3 (15.3) | 92.9 (20.0) | 28.6 (7.3) | <0.001 | <0.001 |
CP 85% 1-RM (reps) | 3.6 (0.8) | 5.4 (1.1) | 1.9 (0.7) | <0.001 | 3.5 (0.7) | 6.1 (1.1) | 2.6 (0.8) | <0.001 | <0.001 |
SP 85% 1-RM (reps) | 7.2 (2.6) | 9.2 (4.1) | 2.0 (3.7) | <0.001 | 4.1 (1.0) | 6.8 (1.1) | 2.7 (0.7) | <0.001 | <0.001 |
Leg powerpeak (W) | 4945 (385) | 5810 (447) | 865 (194) | <0.001 | 4987 (469) | 6411 (314) | 1424 (326) | <0.001 | <0.001 |
VO2max (L/min) | 2.73 (0.19) | 2.82 (0.22) | 0.08 (0.09) | 0.789 | 2.60 (0.36) | 2.87 (0.35) | 0.27 (0.10) | <0.001 | <0.001 |
rVO2max (mL/min/kg) | 39.38 (3.52) | 40.26 (3.54) | 0.89 (1.33) | 0.552 | 38.38 (5.22) | 41.66 (4.88) | 3.28 (1.24) | <0.001 | <0.001 |
* Sit-in-reach (cm) | 33 (4.8) | 36 (5.2) | 3.0 (1.1) | 0.008 | 32 (4.9) | 37 (5.3) | 5.0 (0.8) | <0.001 | <0.001 |
Cardiometabolic | |||||||||
Systolic-BP (mmHg) | 121.6 (2.7) | 121.2 (2.7) | −0.4 (1.4) | 0.422 | 122.2 (3.8) | 119.9 (2.7) | −2.3 (1.7) | 0.005 | <0.001 |
Diastolic-BP (mmHg) | 80.7 (2.3) | 80.3 (2.0) | −0.4 (1.6) | 0.732 | 80.3 (3.3) | 80.3 (2.2) | 0.0 (1.6) | 0.798 | 0.843 |
RMR (kcal) | 2028 (129) | 2130 (125) | 102 (68) | 0.005 | 2044 (138) | 2176 (143) | 132 (64) | 0.005 | 0.006 |
HRV-rMSSD (ms) | 37.9 (2.7) | 39.7 (2.4) | 1.8 (1.1) | 0.008 | 38.7 (3.2) | 43.0 (3.5) | 4.3 (1.7) | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mologne, M.S.; Hu, J.; Carrillo, E.; Gomez, D.; Yamamoto, T.; Lu, S.; Browne, J.D.; Dolezal, B.A. The Efficacy of an Immersive Virtual Reality Exergame Incorporating an Adaptive Cable Resistance System on Fitness and Cardiometabolic Measures: A 12-Week Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2023, 20, 210. https://doi.org/10.3390/ijerph20010210
Mologne MS, Hu J, Carrillo E, Gomez D, Yamamoto T, Lu S, Browne JD, Dolezal BA. The Efficacy of an Immersive Virtual Reality Exergame Incorporating an Adaptive Cable Resistance System on Fitness and Cardiometabolic Measures: A 12-Week Randomized Controlled Trial. International Journal of Environmental Research and Public Health. 2023; 20(1):210. https://doi.org/10.3390/ijerph20010210
Chicago/Turabian StyleMologne, Mitchell S., Jonathan Hu, Erik Carrillo, David Gomez, Trent Yamamoto, Stevin Lu, Jonathan D. Browne, and Brett A. Dolezal. 2023. "The Efficacy of an Immersive Virtual Reality Exergame Incorporating an Adaptive Cable Resistance System on Fitness and Cardiometabolic Measures: A 12-Week Randomized Controlled Trial" International Journal of Environmental Research and Public Health 20, no. 1: 210. https://doi.org/10.3390/ijerph20010210
APA StyleMologne, M. S., Hu, J., Carrillo, E., Gomez, D., Yamamoto, T., Lu, S., Browne, J. D., & Dolezal, B. A. (2023). The Efficacy of an Immersive Virtual Reality Exergame Incorporating an Adaptive Cable Resistance System on Fitness and Cardiometabolic Measures: A 12-Week Randomized Controlled Trial. International Journal of Environmental Research and Public Health, 20(1), 210. https://doi.org/10.3390/ijerph20010210