Factors Associated with Telehealth Utilization among Older African Americans in South Los Angeles during the COVID-19 Pandemic
Abstract
:1. Background
Aims
2. Materials and Methods
2.1. Design and Setting
2.2. Institutional Review Board (IRB)
2.3. Recruitment and Sampling
2.4. Measurement
2.4.1. Demographics Characteristics
2.4.2. Financial Strain
2.4.3. Number of Major Chronic Diseases
2.4.4. COVID-Related Constructs
2.4.5. Attitudes toward COVID-19 Vaccination
2.4.6. Perceived Threat of Infection (Risk) of COVID-19
2.4.7. Knowledge of COVID-19
2.4.8. Telehealth-Related Utilization
2.5. Data Analysis
3. Results
3.1. Descriptive Analysis
3.2. Bivariate Analysis
3.3. Multivariable Analysis
4. Discussion
4.1. Implications for Programs, Practice, and Research
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harju, A.; Neufeld, J. Telehealth Utilization during the COVID-19 Pandemic: A Preliminary Selective Review. Telemed. Rep. 2022, 3, 38–47. [Google Scholar] [CrossRef]
- Friedman, A.B.; Gervasi, S.; Song, H.; Bond, A.M.; Chen, A.T.; Bergman, A.; David, G.; Bailey, J.M.; Brooks, R.; Smith-McLallen, A. Telemedicine catches on: Changes in the utilization of telemedicine services during the COVID-19 pandemic. Am. J. Manag. Care 2022, 28, e1–e6. [Google Scholar] [PubMed]
- Chang, M.-H.; Moonesinghe, R.; Truman, B.I. Telehealth Availability and Usage among Medicare Beneficiaries during the COVID-19 Pandemic, October and November 2020. J. Public Health Manag. Pract. 2022, 28, 77–85. [Google Scholar] [CrossRef] [PubMed]
- White-Williams, C.; Liu, X.; Shang, D.; Santiago, J. Use of telehealth among racial and ethnic minority groups in the United States before and during the COVID-19 pandemic. Public Health Rep. 2023, 138, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Andersen, J.A.; Felix, H.C.; Su, D.; Selig, J.P.; Ratcliff, S.; McElfish, P.A. Factors Associated with Arkansans’ First Use of Telehealth during the COVID-19 Pandemic. Int. J. Telemed. Appl. 2022, 2022, 5953027. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Lee, E.C.; Couture, S.J.; Gonzales, A.; Grigorescu, V.; Smith, S.R.; De Lew, N.; Sommers, B.D. National Survey Trends in Telehealth Use in 2021: Disparities in Utilization and Audio vs. Video Services; Department of Health and Human Services, Office of the Assistant Secretary: Washington, DC, USA, 2022. [Google Scholar]
- Broffman, L.; Harrison, S.; Zhao, M.; Goldman, A.; Patnaik, I.; Zhou, M. The relationship between broadband speeds, device type, demographic characteristics, and care-seeking via telehealth. Telemed. J. e-Health 2022. ahead of print. [Google Scholar] [CrossRef]
- Adepoju, O.E.; Chae, M.; Ojinnaka, C.O.; Shetty, S.; Angelocci, T. Utilization Gaps During the COVID-19 Pandemic: Racial and Ethnic Disparities in Telemedicine Uptake in Federally Qualified Health Center Clinics. J. Gen. Intern. Med. 2022, 37, 1191–1197. [Google Scholar] [CrossRef]
- Friedman, E.E.; Devlin, S.A.; Gilson, S.F.; Ridgway, J.P. Age and Racial Disparities in Telehealth Use among People with HIV during the COVID-19 Pandemic. AIDS Behav. 2022, 26, 2686–2691. [Google Scholar] [CrossRef]
- Ho, F.K.; Petermann-Rocha, F.; Gray, S.R.; Jani, B.D.; Katikireddi, S.V.; Niedzwiedz, C.L.; Foster, H.; Hastie, C.E.; Mackay, D.F.; Gill, J.M. Is older age associated with COVID-19 mortality in the absence of other risk factors? General population cohort study of 470,034 participants. PLoS ONE 2020, 15, e0241824. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.; Henley, S.J.; Mattocks, L.; Fernando, R.; Lansky, A.; Ahmad, F.B.; Adjemian, J.; Anderson, R.N.; Binder, A.M.; Carey, K. Decreases in COVID-19 cases, emergency department visits, hospital admissions, and deaths among older adults following the introduction of COVID-19 vaccine—United States, September 6, 2020–May 1, 2021. Morb. Mortal. Wkly. Rep. 2021, 70, 858. [Google Scholar] [CrossRef]
- Qin, W. Technology Learning and the Adoption of Telehealth among Community-Dwelling Older Adults during the COVID-19 Outbreak. J. Appl. Gerontol. 2022, 41, 1651–1656. [Google Scholar] [CrossRef]
- Choi, N.G.; DiNitto, D.M.; Marti, C.N.; Choi, B.Y. Telehealth use among older adults during COVID-19: Associations with sociodemographic and health characteristics, technology device ownership, and technology learning. J. Appl. Gerontol. 2022, 41, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Ng, B.P.; Park, C.; Silverman, C.L.; Eckhoff, D.O.; Guest, J.C.; Díaz, D.A. Accessibility and utilisation of telehealth services among older adults during COVID-19 pandemic in the United States. Health Soc. Care Community 2022, 30, e2657–e2669. [Google Scholar] [CrossRef] [PubMed]
- Nedeljko, A.M.; Bogataj, D.D.; Perović, A.P.D.B.T.; Kaučič, A.P.D.B.M. Digital literacy during the coronavirus pandemic in older adults: Literature Review and Research Agenda. IFAC-Pap. 2022, 55, 153–158. [Google Scholar] [CrossRef]
- Walker, D.M.; Hefner, J.L.; Fareed, N.; Huerta, T.R.; McAlearney, A.S. Exploring the digital divide: Age and race disparities in use of an inpatient portal. Telemed. J. e-Health 2020, 26, 603–613. [Google Scholar] [CrossRef]
- Eberly, L.A.; Kallan, M.J.; Julien, H.M.; Haynes, N.; Khatana, S.A.M.; Nathan, A.S.; Snider, C.; Chokshi, N.P.; Eneanya, N.D.; Takvorian, S.U.; et al. Patient Characteristics Associated with Telemedicine Access for Primary and Specialty Ambulatory Care During the COVID-19 Pandemic. JAMA Netw. Open 2020, 3, e2031640. [Google Scholar] [CrossRef]
- Ward, B.W.; Schiller, J.S. Peer reviewed: Prevalence of multiple chronic conditions among US adults: Estimates from the National Health Interview Survey, 2010. Prev. Chronic Dis. 2013, 10, E65. [Google Scholar] [CrossRef]
- Quiñones, A.R.; Botoseneanu, A.; Markwardt, S.; Nagel, C.L.; Newsom, J.T.; Dorr, D.A.; Allore, H.G. Racial/ethnic differences in multimorbidity development and chronic disease accumulation for middle-aged adults. PLoS ONE 2019, 14, e0218462. [Google Scholar] [CrossRef]
- St Sauver, J.L.; Boyd, C.M.; Grossardt, B.R.; Bobo, W.V.; Rutten, L.J.F.; Roger, V.L.; Ebbert, J.O.; Therneau, T.M.; Yawn, B.P.; Rocca, W.A. Risk of developing multimorbidity across all ages in an historical cohort study: Differences by sex and ethnicity. BMJ Open 2015, 5, e006413. [Google Scholar] [CrossRef]
- Odlum, M.; Moise, N.; Kronish, I.M.; Broadwell, P.; Alcántara, C.; Davis, N.J.; Cheung, Y.K.K.; Perotte, A.; Yoon, S. Trends in poor health indicators among black and hispanic middle-aged and older adults in the United States, 1999–2018. JAMA Netw. Open 2020, 3, e2025134. [Google Scholar] [CrossRef]
- Shah, D.A.; Sall, D.; Peng, W.; Sharer, R.; Essary, A.C.; Radhakrishnan, P. Exploring the role of telehealth in providing equitable healthcare to the vulnerable patient population during COVID-19. J. Telemed. Telecare 2022, 1357633X221113711. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.A.; Homan, P.A.; García, C.; Brown, T.H. The color of COVID-19: Structural racism and the disproportionate impact of the pandemic on older Black and Latinx adults. J. Gerontol. Ser. B 2021, 76, e75–e80. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, V.M.; Song, G.; Ojamaa, L.S.; Blodgett, R.P.; Rocchio, C.M.; Pennock, J.N. The COVID-19 pandemic and access to selected ambulatory care services among populations with severely uncontrolled diabetes and hypertension in Massachusetts. Public Health Rep. 2022, 137, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Chai, S.J.; Kirley, P.D.; Alden, N.B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-Confirmed Coronavirus Disease 2019—COVID-NET, 14 States, March 1–30, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 458–464. [Google Scholar] [CrossRef]
- Kirby, T. Evidence mounts on the disproportionate effect of COVID-19 on ethnic minorities. Lancet Respir. Med. 2020, 8, 547–548. [Google Scholar] [CrossRef]
- Nikolich-Zugich, J.; Knox, K.S.; Rios, C.T.; Natt, B.; Bhattacharya, D.; Fain, M.J. SARS-CoV-2 and COVID-19 in older adults: What we may expect regarding pathogenesis, immune responses, and outcomes. Geroscience 2020, 42, 505–514. [Google Scholar] [CrossRef]
- Mude, W.; Oguoma, V.M.; Nyanhanda, T.; Mwanri, L.; Njue, C. Racial disparities in COVID-19 pandemic cases, hospitalisations, and deaths: A systematic review and meta-analysis. J. Glob. Health 2021, 11, 05015. [Google Scholar] [CrossRef]
- Peckham, A.; Pituch, K.A.; Maxfield, M.; Guest, M.A.; Sivanandam, S.; Doebbeling, B.N. Aging through the time of COVID-19: A survey of self-reported healthcare access. BMC Health Serv. Res. 2021, 21, 1355. [Google Scholar] [CrossRef] [PubMed]
- Pekmezaris, R.; Kozikowski, A.; Pascarelli, B.; Wolf-Klein, G.; Boye-Codjoe, E.; Jacome, S.; Madera, D.; Tsang, D.; Guerrero, B.; Medina, R. A telehealth-delivered pulmonary rehabilitation intervention in underserved Hispanic and African American patients with chronic obstructive pulmonary disease: A community-based participatory research approach. JMIR Form. Res. 2020, 4, e13197. [Google Scholar] [CrossRef]
- McCall, T.; Bolton, C.S., III; McCall, R.; Khairat, S. The use of culturally-tailored telehealth interventions in managing anxiety and depression in African American adults: A systematic review. In MEDINFO 2019: Health and Wellbeing e-Networks for All; ISO Press: Amsterdam, The Netherlands, 2019; pp. 1728–1729. [Google Scholar]
- McCall, T.; Bolton III, C.S.; Carlson, R.; Khairat, S. A systematic review of telehealth interventions for managing anxiety and depression in African American adults. mHealth 2021, 7, 31. [Google Scholar] [CrossRef]
- Ryskina, K.L.; Shultz, K.; Zhou, Y.; Lautenbach, G.; Brown, R.T. Older adults’ access to primary care: Gender, racial, and ethnic disparities in telemedicine. J. Am. Geriatr. Soc. 2021, 69, 2732–2740. [Google Scholar] [CrossRef]
- Los Angeles County of Public Health, Office of Health Assessment and Epidemilogy. Key Indicators of Health by Service Planning Area; Los Angeles County of Public Health: Los Angeles, CA, USA, 2017. [Google Scholar]
- Laaksonen, E.; Lallukka, T.; Lahelma, E.; Ferrie, J.E.; Rahkonen, O.; Head, J.; Marmot, M.G.; Martikainen, P. Economic difficulties and physical functioning in Finnish and British employees: Contribution of social and behavioural factors. Eur. J. Public Health 2011, 21, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Krzyzanowski, M.C.; Terry, I.; Williams, D.; West, P.; Gridley, L.N.; Hamilton, C.M. The PhenX Toolkit: Establishing standard measures for COVID-19 research. Curr. Protoc. 2021, 1, e111. [Google Scholar] [CrossRef]
- Cox, L.A.; Hwang, S.; Haines, J.; Ramos, E.M.; McCarty, C.A.; Marazita, M.L.; Engle, M.L.; Hendershot, T.; Pan, H.; Hamilton, C.M. Using the PhenX Toolkit to Select Standard Measurement Protocols for Your Research Study. Curr. Protoc. 2021, 1, e149. [Google Scholar] [CrossRef]
- Elam, A.R.; Sidhom, D.; Ugoh, P.; Andrews, C.A.; De Lott, L.B.; Woodward, M.A.; Lee, P.P.; Newman-Casey, P.A. Disparities in Eye Care Utilization During the COVID-19 Pandemic. Am. J. Ophthalmol. 2022, 233, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Kurlander, J.E.; Kullgren, J.T.; Adams, M.A.; Malani, P.N.; Kirch, M.; Solway, E.; Singer, D.C.; Steppe, E.; Saini, S.D. Interest in and concerns about telehealth among adults aged 50 to 80 years. Am. J. Manag. Care 2021, 27, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E.; Vellas, B. Editorial: COVID-19 and Older Adults. J. Nutr. Health Aging. 2020, 24, 364–365. [Google Scholar] [CrossRef] [PubMed]
- CDC COVID-19 Response Team; Chow, N.; Fleming-Dutra, K.; Gierke, R.; Hall, A.; Hughes, M.; Pilishvili, T.; Ritchey, M.; Roguski, M.; Skoff, T.; et al. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019—United States, February 12–March 28, 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 382. [Google Scholar]
- Shortreed, S.M.; Gray, R.; Akosile, M.A.; Walker, R.L.; Fuller, S.; Temposky, L.; Fortmann, S.P.; Albertson-Junkans, L.; Floyd, J.S.; Bayliss, E.A. Increased COVID-19 infection risk drives racial and ethnic disparities in severe COVID-19 outcomes. J. Racial Ethn. Health Disparities 2023, 10, 149–159. [Google Scholar] [CrossRef]
- Holden, T.M.; Simon, M.A.; Arnold, D.T.; Halloway, V.; Gerardin, J. Structural racism and COVID-19 response: Higher risk of exposure drives disparate COVID-19 deaths among Black and Hispanic/Latinx residents of Illinois, USA. BMC Public Health 2022, 22, 312. [Google Scholar] [CrossRef]
- Vogels, E. Digital Divide Persists Even as Americans with Lower Incomes Make Gains in Tech Adoption. 2021. Available online: https://www.pewresearch.org/fact-tank/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/ (accessed on 11 December 2022).
- Smith, B.; Magnani, J.W. New technologies, new disparities: The intersection of electronic health and digital health literacy. Int. J. Cardiol. 2019, 292, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Rovner, B.W.; Casten, R.J.; Chang, A.M.; Hollander, J.E.; Rising, K. Mistrust, Neighborhood Deprivation, and Telehealth Use in African Americans with Diabetes. Popul. Health Manag. 2021, 24, 699–700. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, A.V.; Ojeaga, M.; Espinoza, V.; Hensler, B.; Honrubia, V. Telemedicine in Minority and Socioeconomically Disadvantaged Communities Amidst COVID-19 Pandemic. Otolaryngol. Head Neck Surg. 2021, 164, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Webber, E.C.; McMillen, B.D.; Willis, D.R. Health Care Disparities and Access to Video Visits before and after the COVID-19 Pandemic: Findings from a Patient Survey in Primary Care. Telemed. J. e-Health 2021, 28, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Neeman, E.; Lyon, L.; Sun, H.; Conell, C.; Reed, M.; Kumar, D.; Kolevska, T.; Kotak, D.; Sundaresan, T.; Liu, R. Future of Teleoncology: Trends and Disparities in Telehealth and Secure Message Utilization in the COVID-19 Era. JCO Clin. Cancer Inform. 2022, 6, e2100160. [Google Scholar] [CrossRef] [PubMed]
- Hamadi, H.Y.; Zhao, M.; Haley, D.R.; Dunn, A.; Paryani, S.; Spaulding, A. Medicare and telehealth: The impact of COVID-19 pandemic. J. Eval. Clin. Pract. 2022, 28, 43–48. [Google Scholar] [CrossRef]
- Lama, Y.; Davidoff, A.J.; Vanderpool, R.C.; Jensen, R.E. Telehealth Availability and Use of Related Technologies among Medicare-Enrolled Cancer Survivors: Cross-sectional Findings from the Onset of the COVID-19 Pandemic. J. Med. Internet Res. 2022, 24, e34616. [Google Scholar] [CrossRef]
- Ng, B.P.; Park, C. Accessibility of Telehealth Services During the COVID-19 Pandemic: A Cross-Sectional Survey of Medicare Beneficiaries. Prev. Chronic Dis. 2021, 18, E65. [Google Scholar] [CrossRef]
- Wardlow, L.; Roberts, C.; Archbald-Pannone, L.; Collaborative for Telehealth and Aging. Perceptions and Uses of Telehealth in the Care of Older Adults. Telemed. J. e-Health 2022. ahead of print. [Google Scholar] [CrossRef]
- Anderson, A.; O’Connell, S.S.; Thomas, C.; Chimmanamada, R. Telehealth Interventions to Improve Diabetes Management among Black and Hispanic Patients: A Systematic Review and Meta-Analysis. J. Racial Ethn. Health Disparities 2022, 9, 2375–2386. [Google Scholar] [CrossRef]
- Hayrapetian, L.; Zepp, M.; Rao, S.; Hennessey, M.; Houle, M.; Atienza, M.; Belfaqeeh, O.A.; Dharia, I.; Khan, A.; Borum, M.L. Expanding telehealth options during the COVID pandemic eliminated racial and age disparities in electronic communication by inflammatory bowel disease patients. J. Natl. Med. Assoc. 2021, 113, 474–477. [Google Scholar] [CrossRef]
- McCall, T.; Schwartz, T.; Khairat, S. Acceptability of Telemedicine to Help African American Women Manage Anxiety and Depression. Stud. Health Technol. Inform. 2019, 264, 699–703. [Google Scholar] [CrossRef] [PubMed]
- Puzzitiello, R.N.; Moverman, M.A.; Pagani, N.R.; Ryan, S.P.; Salzler, M.J.; Jawa, A.; Menendez, M.E. Public perceptions and disparities in access to telehealth orthopaedic services in the COVID-19 era. J. Natl. Med. Assoc. 2021, 113, 405–413. [Google Scholar] [CrossRef]
- George, S.; Hamilton, A.; Baker, R.S. How Do Low-Income Urban African Americans and Latinos Feel about Telemedicine? A Diffusion of Innovation Analysis. Int. J. Telemed. Appl. 2012, 2012, 715194. [Google Scholar] [CrossRef] [PubMed]
- Wegermann, K.; Patel, Y.; Wilder, J. Health Equity and Telemedicine in Gastroenterology and Hepatology. Clin. Gastroenterol. Hepatol. 2021, 19, 1516–1519. [Google Scholar] [CrossRef]
- Lew, S.Q.; Wallace, E.L.; Srivatana, V.; Warady, B.A.; Watnick, S.; Hood, J.; White, D.L.; Aggarwal, V.; Wilkie, C.; Naljayan, M.V.; et al. Telehealth for Home Dialysis in COVID-19 and Beyond: A Perspective from the American Society of Nephrology COVID-19 Home Dialysis Subcommittee. Am. J. Kidney Dis. 2021, 77, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Shelton, R.L.; Hall, M.; Ford, S.; Cosby, R.L. Telehealth in a Washington, DC African American religious community at the onset of COVID-19: Showcasing a virtual health ministry project. Soc. Work. Health Care 2021, 60, 208–223. [Google Scholar] [CrossRef]
- Bazargan, M.; Loeza, M.; Ekwegh, T.; Adinkrah, E.K.; Kibe, L.W.; Cobb, S.; Assari, S.; Bazargan-Hejazi, S. Multi-Dimensional Impact of Chronic Low Back Pain among Underserved African American and Latino Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 7246. [Google Scholar] [CrossRef]
- Derose, K.P.; Williams, M.V.; Branch, C.A.; Flórez, K.R.; Hawes-Dawson, J.; Mata, M.A.; Oden, C.W.; Wong, E.C. A Community-Partnered Approach to Developing Church-Based Interventions to Reduce Health Disparities among African-Americans and Latinos. J. Racial Ethn. Health Disparities 2019, 6, 254–264. [Google Scholar] [CrossRef] [PubMed]
- Cobb, S.; Bazargan, M.; Assari, S.; Barkley, L.; Bazargan-Hejazi, S. Emergency Department Utilization, Hospital Admissions, and Office-Based Physician Visits among Under-Resourced African American and Latino Older Adults. J. Racial Ethn. Health Disparities 2023, 10, 205–218. [Google Scholar] [CrossRef]
- Fischer, S.H.; Ray, K.N.; Mehrotra, A.; Bloom, E.L.; Uscher-Pines, L. Prevalence and Characteristics of Telehealth Utilization in the United States. JAMA Netw. Open 2020, 3, e2022302. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Sy, L.S.; Hong, V.; Glenn, S.C.; Ryan, D.S.; Morrissette, K.; Jacobsen, S.J.; Xu, S. Disparities in Outpatient and Telehealth Visits during the COVID-19 Pandemic in a Large Integrated Health Care Organization: Retrospective Cohort Study. J. Med. Internet Res. 2021, 23, e29959. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, J.A.; Betancourt, J.R.; Sequist, T.D.; Ganguli, I. Differences in the use of telephone and video telemedicine visits during the COVID-19 pandemic. Am. J. Manag. Care 2021, 27, 21–26. [Google Scholar] [CrossRef]
- George, M.D.; Danila, M.I.; Watrous, D.; Reddy, S.; Alper, J.; Xie, F.; Nowell, W.B.; Kallich, J.; Clinton, C.; Saag, K.G.; et al. Disruptions in Rheumatology Care and the Rise of Telehealth in Response to the COVID-19 Pandemic in a Community Practice-Based Network. Arthritis Care Res. 2021, 73, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.M.; Andoh, J.E.; Nwanyanwu, K. Socioeconomic and Demographic Disparities in the Use of Telemedicine for Ophthalmic Care during the COVID-19 Pandemic. Ophthalmology 2022, 129, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.C.; Cobb, S.; Smith, J.; Bazargan, M.; Assari, S. Depressive Symptoms among Economically Disadvantaged African American Older Adults in South Los Angeles. Brain Sci. 2019, 9, 246. [Google Scholar] [CrossRef]
- Mobasher, Z.; Baldwin, S.B.; Navarro, B.; Bressler-Montgomery, D.; King, J.; Family, L.; Smith, L.V.; Kuo, T. Knowledge and perceptions of human trafficking among community-based and faith-based organization members in South Los Angeles. Glob. Health Promot. 2022, 29, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Adinkrah, E.; Bazargan, M.; Wisseh, C.; Assari, S. Medication Complexity among Disadvantaged African American Seniors in Los Angeles. Pharmacy 2020, 8, 86. [Google Scholar] [CrossRef]
- Bazargan, M.; Smith, J.L.; Robinson, P.; Uyanne, J.; Abdulrahoof, R.; Chuku, C.; Assari, S. Chronic Respiratory Disease and Health-Related Quality of Life of African American Older Adults in an Economically Disadvantaged Area of Los Angeles. Int. J. Environ. Res. Public Health 2019, 16, 1756. [Google Scholar] [CrossRef]
- Dyer, O. Covid-19: Black people and other minorities are hardest hit in US. BMJ 2020, 369, m1483. [Google Scholar] [CrossRef]
- Khunti, K.; Singh, A.K.; Pareek, M.; Hanif, W. Is ethnicity linked to incidence or outcomes of covid-19? BMJ 2020, 369, m1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Röhr, S.; Müller, F.; Jung, F.; Apfelbacher, C.; Seidler, A.; Riedel-Heller, S.G. Psychosocial Impact of Quarantine Measures during Serious Coronavirus Outbreaks: A Rapid Review. Psychiatr. Prax. 2020, 47, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Assari, S.; Habibzadeh, P. The COVID-19 Emergency Response Should Include a Mental Health Component. Arch. Iran. Med. 2020, 23, 281–282. [Google Scholar] [CrossRef] [PubMed]
- Pareek, M.; Bangash, M.N.; Pareek, N.; Pan, D.; Sze, S.; Minhas, J.S.; Hanif, W.; Khunti, K. Ethnicity and COVID-19: An urgent public health research priority. Lancet 2020, 395, 1421–1422. [Google Scholar] [CrossRef]
N (%) | |
---|---|
Gender
| 45 (30) 105 (70) |
Age
| 48 (32) 68 (45) 34 (23) |
Education
| 19 (13) 40 (27) 91 (60) |
Medicare
| 78 (52) 72 (48) |
Telehealth use since COVID-19
| 47 (32) 102 (68) |
Type of Telehealth
| 73 (49) 29 (19) 47 (32) |
Cellular Network (Phone)
| 52 (38) 85 (62) |
Internet (Wi-Fi) at home
| 35 (25) 106 (75) |
Mean ± SD | |
Age | 68.5 ± 8.66 |
Financial Strains (1 = never to 4 = always)
| 1.72 ± 1.03 1.64 ± 1.06 1.77 ± 1.20 1.73 ± 1.15 1.75 ± 1.11 |
Number of Major Chronic Conditions | 1.22 ± 1.01 |
COVID-19 Knowledge (0: low to 2: high) | 1.52 ± 0.37 |
COVID-19 Perceived Threat and Stress (0: no stress to 7: significant stress) | 3.56 ± 2.21 |
COVID-19 Vaccination Attitude (1: very negative to 5: very positive) | 4.03 ± 0.74 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
| -- | ||||||||||
| −0.099 | -- | |||||||||
| 0.097 | −0.071 | -- | ||||||||
| 0.141 | −0.017 | −0.143 | -- | |||||||
| −0.095 | −0.105 | 0.347 ** | −0.050 | -- | ||||||
| −0.121 | −0.014 | −0.112 | −0.243 ** | −0.094 | -- | |||||
| 0.252 ** | 0.007 | 0.181 * | −0.037 | 0.143 | 0.022 | - | ||||
| 0.166 * | −0.090 | 0.048 | −0.021 | −0.022 | 0.034 | 0.162 | -- | |||
| 0.138 | −0.060 | −0.041 | 0.115 | 0.142 | −0.191 * | 0.147 | −0.012 | -- | ||
| 0.282 ** | −0.098 | 0.002 | 0.189 * | −0.028 | −0.087 | 0.156 | −0.014 | 0.103 | -- | |
| 0.207 * | −0.007 | −0.218 * | 0.062 | 0.069 | −0.175 * | −0.017 | 0.046 | 0.167 | 0.134 | - |
| 0.236 ** | 0.024 | −0.209 * | 0.294 ** | 0.013 | −0.071 | 0.037 | 0.008 | 0.156 | −0.026 | 0.229 ** |
Independent Variables | B | Wald | EXP(B) | 95% CI EXP(B) | Sig. |
---|---|---|---|---|---|
Gender | −0.193 | 0.116 | 0.825 | 0.273–2.494 | 0.733 |
Age | 0.121 | 7.274 | 1.129 | 1.034–1.233 | 0.007 |
Education | 0.062 | 0.053 | 1.064 | 0.629–1.799 | 0.818 |
Medicare | −1.682 | 6.648 | 0.186 | 0.052–0.668 | 0.010 |
Financial Strain | 0.111 | 0.134 | 1.117 | 0.617–2.023 | 0.714 |
Chronic Conditions | 0.309 | 2.214 | 1.363 | 0.906–2.048 | 0.137 |
Internet (at home) | 2.424 | 11.651 | 11.287 | 2.807–45.393 | 0.001 |
Cellular Network (on phone) | 1.441 | 5.093 | 4.225 | 1.209–14.767 | 0.024 |
Perceived Threat of COVID-19 | 0.274 | 4.483 | 1.315 | 1.021–1.694 | 0.034 |
Knowledge of COVID-19 | −0.588 | 0.728 | 0.556 | 0.144–2.144 | 0.394 |
Attitude Toward Vaccination | 0.872 | 4.389 | 2.391 | 1.058–5.404 | 0.036 |
Constant | −13.027 | 8.091 | 0.000 | N/A | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekwegh, T.; Cobb, S.; Adinkrah, E.K.; Vargas, R.; Kibe, L.W.; Sanchez, H.; Waller, J.; Ameli, H.; Bazargan, M. Factors Associated with Telehealth Utilization among Older African Americans in South Los Angeles during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2023, 20, 2675. https://doi.org/10.3390/ijerph20032675
Ekwegh T, Cobb S, Adinkrah EK, Vargas R, Kibe LW, Sanchez H, Waller J, Ameli H, Bazargan M. Factors Associated with Telehealth Utilization among Older African Americans in South Los Angeles during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health. 2023; 20(3):2675. https://doi.org/10.3390/ijerph20032675
Chicago/Turabian StyleEkwegh, Tavonia, Sharon Cobb, Edward K. Adinkrah, Roberto Vargas, Lucy W. Kibe, Humberto Sanchez, Joe Waller, Hoorolnesa Ameli, and Mohsen Bazargan. 2023. "Factors Associated with Telehealth Utilization among Older African Americans in South Los Angeles during the COVID-19 Pandemic" International Journal of Environmental Research and Public Health 20, no. 3: 2675. https://doi.org/10.3390/ijerph20032675
APA StyleEkwegh, T., Cobb, S., Adinkrah, E. K., Vargas, R., Kibe, L. W., Sanchez, H., Waller, J., Ameli, H., & Bazargan, M. (2023). Factors Associated with Telehealth Utilization among Older African Americans in South Los Angeles during the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 20(3), 2675. https://doi.org/10.3390/ijerph20032675