Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation
Abstract
:1. Introduction
2. TBI: A Complex and Chronic Disorder
3. Translational Challenges and Strengthening Preclinical Support
- Failure to appreciate the complexity and diversity of secondary injury mechanisms;
- Inadequate attention to such potential confounding factors as species, strains, gender and age in drug evaluation;
- Use of anesthetics in animal models;
- Inability of the drugs to adequately cross the blood-brain barrier and reach therapeutic concentrations in the brain;
- Failure to assess clinically relevant therapeutic windows or clinically-relevant behavioral outcomes;
- Pharmacogenetic/epigenetic variability of heterogeneous patient populations;
- Lack of predictive biomarkers;
- Inadequate sample sizes and/or failure to utilize the most effective experimental design to increase power.
4. Advances in Clinical Trials Design
5. Selective versus Multipotential Neuroprotective Strategies
5.1. Recent Advances in Neuroprotective Strategies for TBI
5.1.1. Diketopiperazines
5.1.2. SUR1-Regulated NCCa-ATP Channel Inhibitors
5.1.3. Statins
5.1.4. Cyclosporin A
5.1.5. Substance P (SP) Antagonists
5.1.6. Cell Cycle Inhibitors
5.1.7. Metabotropic Glutamate Receptor-5 Agonists
5.1.8. Novel Strategies for Targeting Multiple Cell Death Mechanisms
5.1.9. Non-Pharmacological Approaches Such As Physical Activity and Exercise
6. Conclusions
Conflicts of Interest
References
- French, L.M.; Parkinson, G.W. Assessing and treating veterans with traumatic brain injury. J. Clin. Psychol 2008, 64, 1004–1013. [Google Scholar]
- Hoge, C.W.; McGurk, D.; Thomas, J.L.; Cox, A.L.; Engel, C.C.; Castro, C.A. Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N. Engl. J. Med 2008, 358, 453–463. [Google Scholar]
- De Beaumont, L.; Tremblay, S.; Poirier, J.; Lassonde, M.; Théoret, H. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb. Cortex 2012, 22, 112–121. [Google Scholar]
- Shively, S.B.; Perl, D.P. Traumatic brain injury, shell shock, and posttraumatic stress disorder in the military—Past, present, and future. J. Head Trauma Rehabil 2012, 27, 234–239. [Google Scholar]
- Blennow, K.; Hardy, J.; Zetterberg, H. The neuropathology and neurobiology of traumatic brain injury. Neuron 2012, 76, 886–899. [Google Scholar]
- Maas, A.I.; Stocchetti, N.; Bullock, R. Moderate and severe traumatic brain injury in adults. Lancet Neurol 2008, 7, 728–741. [Google Scholar]
- Grotta, J. Neuroprotection is unlikely to be effective in humans using current trial designs. Stroke 2002, 33, 306–307. [Google Scholar]
- Faden, A.I. Neuroprotection and traumatic brain injury: Theoretical option or realistic proposition. Curr. Opin. Neurol 2002, 15, 707–712. [Google Scholar]
- Faden, A.I.; Stoica, B. Neuroprotection: Challenges and opportunities. Arch. Neurol 2007, 64, 794–800. [Google Scholar]
- Loane, D.J.; Faden, A.I. Neuroprotection for traumatic brain injury: Translational challenges and emerging therapeutic strategies. Trends Pharmacol. Sci 2010, 31, 596–604. [Google Scholar]
- Panter, S.S.; Faden, A.I. Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neurosci. Lett 1992, 136, 165–168. [Google Scholar]
- Bramlett, H.; Dietrich, W. Progressive damage after brain and spinal cord injury: Pathomechanisms and treatment strategies. Prog. Brain Res 2007, 161, 125–141. [Google Scholar]
- Adams, J.H.; Graham, D.I.; Gennarelli, T.A. Head injury in man and experimental animals: Neuropathology. Acta Neurochir. Suppl. (Wien) 1983, 32, 15–30. [Google Scholar]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Workshop Scientific Team and Advisory Panel Members. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar]
- McIntosh, T.K.; Smith, D.H.; Meaney, D.F.; Kotapka, M.J.; Gennarelli, T.A.; Graham, D.I. Neuropathological sequelae of traumatic brain injury: Relationship to neurochemical and biomechanical mechanisms. Lab. Investig 1996, 74, 315–342. [Google Scholar]
- Nandoe, R. Head trauma and Alzheimer’s disease. J. Alzheimer’s Dis 2002, 4, 303–308. [Google Scholar]
- Byrnes, K.; Stoica, B.A.; Fricke, S.; di Giovanni, S.; Faden, A.I. Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 2007, 130, 2977–2992. [Google Scholar]
- Byrnes, K.R.; Loane, D.J.; Stoica, B.A.; Zhang, J.; Faden, A.I. Delayed mGluR5 activation limits neuroinflammation and neurodegeneration after traumatic brain injury. J. Neuroinflamm 2012, 9, 43. [Google Scholar]
- Davis, E.; Foster, T.; Thomas, W. Cellular forms and functions of brain microglia. Brain Res. Bull 1994, 34, 73–78. [Google Scholar]
- Sołtys, Z.; Ziaja, M.; Pawliński, R.; Setkowicz, Z.; Janeczko, K. Morphology of reactive microglia in the injured cerebral cortex. Fractal analysis and complementary quantitative methods. J. Neurosci. Res 2001, 63, 90–97. [Google Scholar]
- Loane, D.J.; Byrnes, K.R. Role of microglia in neurotrauma. Neurotherapeutics 2010, 7, 366–377. [Google Scholar]
- Eikelenboom, P.; Bate, C.; van Gool, W.A.; Hoozemans, J.J.M.; Rozemuller, J.M.; Veerhuis, R.; Williams, A. Neuroinflammation in Alzheimer’s disease and prion disease. Glia 2002, 40, 232–239. [Google Scholar]
- Byrnes, K.; Faden, A. Role of cell cycle proteins in CNS injury. Neurochem. Res 2007, 32, 1799–1807. [Google Scholar]
- Maas, A.I.; Roozenbeek, B.; Manley, G.T. Clinical trials in traumatic brain injury: Past experience and current developments. Neurotherapeutics 2010, 7, 115–126. [Google Scholar]
- Schouten, J.W. Neuroprotection in traumatic brain injury: A complex struggle against the biology of nature. Curr. Opin. Crit. Care 2007, 13, 134–142. [Google Scholar]
- Narayan, R.K.; Michel, M.E.; Ansell, B.; Baethmann, A.; Biegon, A.; Bracken, M.B.; Bullock, M.R.; Choi, S.C.; Clifton, G.L.; Contant, C.F.; et al. Clinical trials in head injury. J. Neurotrauma 2002, 19, 503–557. [Google Scholar]
- Cernak, I. Animal models of head trauma. NeuroRx 2005, 2, 410–422. [Google Scholar]
- David, S.; Aguayo, A.J. Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts. J. Neurocytol 1985, 14, 1–12. [Google Scholar]
- Park, H.J.; Kim, H.N.; Kim, K.M. Redistribution of facial nerve motor neurons after recovery from nerve crushing injury in the gerbil. Acta Otolaryngol 1995, 115, 273–275. [Google Scholar]
- Statler, K.D.; Alexander, H.; Vagni, V.; Dixon, C.E.; Clark, R.S.B.; Jenkins, L.; Kochanek, P.M. Comparison of seven anesthetic agents on outcome after experimental traumatic brain injury in adult, male rats. J. Neurotrauma 2006, 23, 97–108. [Google Scholar]
- Statler, K.D.; Kochanek, P.M.; Dixon, C.E.; Alexander, H.L.; Warner, D.S.; Clark, R.S.B.; Wisniewski, S.R.; Graham, S.H.; Jenkins, L.W.; Marion, D.W.; et al. Isoflurane improves long-term neurologic outcome versus fentanyl after traumatic brain injury in rats. J. Neurotrauma 2000, 17, 1179–1189. [Google Scholar]
- Fox, G.B.; LeVasseur, R.A.; Faden, A.I. Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: Implications for gene targeting approaches to neurotrauma. J. Neurotrauma 1999, 16, 377–389. [Google Scholar]
- Smith, D.H.; Chen, X.H.; Xu, B.N.; McIntosh, T.K.; Gennarelli, T.A.; Meaney, D.F. Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig. J. Neuropathol. Exp. Neurol 1997, 56, 822–834. [Google Scholar]
- Dick, R.W. Is there a gender difference in concussion incidence and outcomes? Br. J. Sports Med 2009, 43, i46–i50. [Google Scholar]
- Davis, D.P.; Douglas, D.J.; Smith, W.; Sise, M.J.; Vilke, G.M.; Holbrook, T.L.; Kennedy, F.; Eastman, A.B.; Velky, T.; Hoyt, D.B. Traumatic brain injury outcomes in pre- and post-menopausal females versus age-matched males. J. Neurotrauma 2006, 23, 140–148. [Google Scholar]
- Ottochian, M.; Salim, A.; Berry, C.; Chan, L.S.; Wilson, M.T.; Margulies, D.R. Severe traumatic brain injury: Is there a gender difference in mortality? Am. J. Surg 2009, 197, 155–158. [Google Scholar]
- Covassin, T.; Bay, E. Are there gender differences in cognitive function, chronic stress, and neurobehavioral symptoms after mild-to-moderate traumatic brain injury? J. Neurosci. Nurs 2012, 44, 124–133. [Google Scholar]
- Broshek, D.K.; Kaushik, T.; Freeman, J.R.; Erlanger, D.; Webbe, F.; Barth, J.T. Sex differences in outcome following sports-related concussion. J. Neurosurg 2005, 102, 856–863. [Google Scholar]
- Wagner, A.K.; Kline, A.E.; Sokoloski, J.; Zafonte, R.D.; Capulong, E.; Dixon, C.E. Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neurosci. Lett 2002, 334, 165–168. [Google Scholar]
- Wagner, A.K.; Kline, A.E.; Ren, D.; Willard, L.A.; Wenger, M.K.; Zafonte, R.D.; Dixon, C.E. Gender associations with chronic methylphenidate treatment and behavioral performance following experimental traumatic brain injury. Behav. Brain Res 2007, 181, 200–209. [Google Scholar]
- Dewan, Y.; Komolafe, E.O.; Mejía-Mantilla, J.H.; Perel, P.; Roberts, I.; Shakur, H. CRASH-3 Collaborators. CRASH-3—Tranexamic acid for the treatment of significant traumatic brain injury: Study protocol for an international randomized, double-blind, placebo-controlled trial. Trials 2012, 13, 87. [Google Scholar]
- Perel, P.; Al-Shahi Salman, R.; Kawahara, T.; Morris, Z.; Prieto-Merino, D.; Roberts, I.; Sandercock, P.; Shakur, H.; Wardlaw, J. CRASH-2 (Clinical Randomisation of an Antifibrinolytic in Significant Haemorrhage) intracranial bleeding study: The effect of tranexamic acid in traumatic brain injury—A nested randomised, placebo-controlled trial. Health Technol. Assess 2012, 16. [Google Scholar]
- Maas, A.I.; Steyerberg, E.W.; Marmarou, A.; McHugh, G.S.; Lingsma, H.F.; Butcher, I.; Lu, J.; Weir, J.; Roozenbeek, B.; Murray, G.D. IMPACT recommendations for improving the design and analysis of clinical trials in moderate to severe traumatic brain injury. Neurotherapeutics 2010, 7, 127–134. [Google Scholar]
- Chow, S.C.; Chang, M.; Pong, A. Statistical consideration of adaptive methods in clinical development. J. Biopharm. Stat 2005, 15, 575–591. [Google Scholar]
- Chow, S.C.; Chang, M. Adaptive design methods in clinical trials—A review. Orphanet J. Rare Dis 2008, 3, 11. [Google Scholar]
- Gallo, P.; Chuang-Stein, C.; Dragalin, V.; Gaydos, B.; Krams, M.; Pinheiro, J. PhRMA Working Group. Adaptive designs in clinical drug development—An Executive Summary of the PhRMA Working Group. J. Biopharm. Stat 2006, 16, 275–283. [Google Scholar]
- Faden, A.I. Comparison of single and combination drug treatment strategies in experimental brain trauma. J. Neurotrauma 1993, 10, 91–100. [Google Scholar]
- Gonzalez Deniselle, M.C.; Lopez Costa, J.J.; Gonzalez, S.L.; Labombarda, F.; Garay, L.; Guennoun, R.; Schumacher, M.; de Nicola, A.F. Basis of progesterone protection in spinal cord neurodegeneration. J. Steroid Biochem. Mol. Biol 2002, 83, 199–209. [Google Scholar]
- Jiang, N.; Chopp, M.; Stein, D.; Feit, H. Progesterone is neuroprotective after transient middle cerebral artery occlusion in male rats. Stroke 1997, 28, 109–109. [Google Scholar]
- Roof, R.L.; Hall, E.D. Gender differences in acute CNS trauma and stroke: Neuroprotective effects of estrogen and progesterone. J. Neurotrauma 2000, 17, 367–388. [Google Scholar]
- Smith, S.S. Progesterone administration attenuates excitatory amino acid responses of cerebellar Purkinje cells. Neuroscience 1991, 42, 309–320. [Google Scholar]
- Roof, R.L.; Hoffman, S.W.; Stein, D.G. Progesterone protects against lipid peroxidation following traumatic brain injury in rats. Mol. Chem. Neuropathol 1997, 31, 1–11. [Google Scholar]
- Djebaili, M.; Guo, Q.; Pettus, E.H.; Hoffman, S.W.; Stein, D.G. The neurosteroids progesterone and allopregnanolone reduce cell death, gliosis, and functional deficits after traumatic brain injury in rats. J. Neurotrauma 2005, 22, 106–118. [Google Scholar]
- O’Connor, C.A.; Cernak, I.; Johnson, F.l.; Vink, R. Effects of progesterone on neurologic and morphologic outcome following diffuse traumatic brain injury in rats. Exp. Neurol 2007, 205, 145–153. [Google Scholar]
- Wright, D.W.; Kellermann, A.L.; Hertzberg, V.S.; Clark, P.L.; Frankel, M.; Goldstein, F.C.; Salomone, J.P.; Dent, L.L.; Harris, O.A.; Ander, D.S.; et al. ProTECT: A randomized clinical trial of progesterone for acute traumatic brain injury. Ann. Emerg. Med 2007, 49. [Google Scholar]
- Xiao, G.; Wei, J.; Yan, W.; Wang, W.; Lu, Z. Improved outcomes from the administration of progesterone for patients with acute severe traumatic brain injury: A randomized controlled trial. Crit. Care 2008, 12, R61. [Google Scholar]
- Gilmer, L.K.; Roberts, K.N.; Scheff, S.W. Efficacy of progesterone following a moderate unilateral cortical contusion injury. J. Neurotrauma 2008, 25, 593–602. [Google Scholar]
- Gibson, C.L.; Gray, L.J.; Bath, P.M.W.; Murphy, S.P. Progesterone for the treatment of experimental brain injury; a systematic review. Brain 2008, 131, 318–328. [Google Scholar]
- Stein, D.G. Progesterone in the treatment of acute traumatic brain injury: A clinical perspective and update. Neuroscience 2011, 191, 101–106. [Google Scholar]
- Stein, D.G.; Wright, D.W. Progesterone in the clinical treatment of acute traumatic brain injury. Expert Opin. Investig. Drugs 2010, 19, 847–857. [Google Scholar]
- Faden, A.I.; Knoblach, S.M.; Movsesyan, V.A.; Cernak, I. Novel small peptides with neuroprotective and nootropic properties. J. Alzheimer’s Dis 2004, 6, S93–S97. [Google Scholar]
- Ponce, L.L.; Navarro, J.C.; Ahmed, O.; Robertson, C.S. Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology 2013, 20, 31–38. [Google Scholar]
- Grasso, G.; Sfacteria, A.; Meli, F.; Fodale, V.; Buemi, M.; Iacopino, D.G. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res 2007, 1182, 99–105. [Google Scholar]
- Busto, R.; Dietrich, W.D.; Globus, M.Y.; Ginsberg, M.D. The importance of brain temperature in cerebral ischemic injury. Stroke 1989, 20, 1113–1114. [Google Scholar]
- Dietrich, W.D. The importance of brain temperature in cerebral injury. J. Neurotrauma 1992, 9, S475–S485. [Google Scholar]
- Dietrich, W.D.; Alonso, O.; Busto, R.; Globus, M.Y.; Ginsberg, M.D. Post-traumatic brain hypothermia reduces histopathological damage following concussive brain injury in the rat. Acta Neuropathol 1994, 87, 250–258. [Google Scholar]
- Vitarbo, E.A.; Chatzipanteli, K.; Kinoshita, K.; Truettner, J.S.; Alonso, O.F.; Dietrich, W.D. Tumor necrosis factor alpha expression and protein levels after fluid percussion injury in rats: The effect of injury severity and brain temperature. Neurosurgery 2004, 55, 416–424, discussion 424–425. [Google Scholar]
- Dietrich, W.D.; Busto, R.; Halley, M.; Valdes, I. The importance of brain temperature in alterations of the blood-brain barrier following cerebral ischemia. J. Neuropathol. Exp. Neurol 1990, 49, 486–497. [Google Scholar]
- Shiozaki, T.; Sugimoto, H.; Taneda, M.; Yoshida, H.; Iwai, A.; Yoshioka, T.; Sugimoto, T. Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg 1993, 79, 363–368. [Google Scholar]
- Marion, D.W.; Penrod, L.E.; Kelsey, S.F.; Obrist, W.D.; Kochanek, P.M.; Palmer, A.M.; Wisniewski, S.R.; DeKosky, S.T. Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med 1997, 336, 540–546. [Google Scholar]
- Zhi, D.; Zhang, S.; Lin, X. Study on therapeutic mechanism and clinical effect of mild hypothermia in patients with severe head injury. Surg. Neurol 2003, 59, 381–385. [Google Scholar]
- Metz, C.; Holzschuh, M.; Bein, T.; Woertgen, C.; Frey, A.; Frey, I.; Taeger, K.; Brawanski, A. Moderate hypothermia in patients with severe head injury: Cerebral and extracerebral effects. J. Neurosurg 1996, 85, 533–541. [Google Scholar]
- Clifton, G.L.; Miller, E.R.; Choi, S.C.; Levin, H.S.; McCauley, S.; Smith, K.R., Jr.; Muizelaar, J.P.; Wagner, F.C., Jr.; Marion, D.W.; Luerssen, T.G.; et al. Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med 2001, 344, 556–563. [Google Scholar]
- Guan, J.; Mathai, S.; Harris, P.; Wen, J.Y.; Zhang, R.; Brimble, M.; Gluckman, P. Peripheral administration of a novel diketopiperazine, NNZ 2591, prevents brain injury and improves somatosensory-motor function following hypoxia-ischemia in adult rats. Neuropharmacology 2007, 53, 749–762. [Google Scholar]
- Simard, J.M.; Kilbourne, M.; Tsymbalyuk, O.; Tosun, C.; Caridi, J.; Ivanova, S.; Keledjian, K.; Bochicchio, G.; Gerzanich, V. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J. Neurotrauma 2009, 26, 2257–2267. [Google Scholar]
- Chen, G.; Zhang, S.; Shi, J.; Ai, J.; Qi, M.; Hang, C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: Possible involvement of TLR4/NF-kappaB pathway. Exp. Neurol 2009, 216, 398–406. [Google Scholar]
- Chen, S.F.; Hung, T.H.; Chen, C.C.; Lin, K.H.; Huang, Y.N.; Tsai, H.C.; Wang, J.Y. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci 2007, 81, 288–298. [Google Scholar]
- Mbye, L.H.; Singh, I.N.; Carrico, K.M.; Saatman, K.E.; Hall, E.D. Comparative neuroprotective effects of cyclosporin A and NIM811, a nonimmunosuppressive cyclosporin A analog, following traumatic brain injury. J. Cereb. Blood Flow Metab 2009, 29, 87–97. [Google Scholar]
- Mbye, L.H.; Singh, I.N.; Sullivan, P.G.; Springer, J.E.; Hall, E.D. Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp. Neurol 2008, 209, 243–253. [Google Scholar]
- Nimmo, A.J.; Cernak, I.; Heath, D.L.; Hu, X.; Bennett, C.J.; Vink, R. Neurogenic inflammation is associated with development of edema and functional deficits following traumatic brain injury in rats. Neuropeptides 2004, 38, 40–47. [Google Scholar]
- Di Giovanni, S.; Movsesyan, V.; Ahmed, F.; Cernak, I.; Schinelli, S.; Stoica, B.; Faden, A.I. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc. Natl. Acad. Sci. USA 2005, 102, 8333–8338. [Google Scholar]
- Cernak, I.; Faden, A.I. Role of the cell cycle in the pathophysiology of central nervous system trauma. Cell Cycle 2005, 4, 1286–1293. [Google Scholar]
- Hilton, G.D.; Stoica, B.A.; Byrnes, K.R.; Faden, A.I. Roscovitine reduces neuronal loss, glial activation, and neurologic deficits after brain trauma. J. Cereb. Blood Flow Metab 2008, 28, 1845–1859. [Google Scholar]
- Kabadi, S.V.; Stoica, B.A.; Byrnes, K.R.; Hanscom, M.; Loane, D.J.; Faden, A.I. Selective CDK inhibitor limits neuroinflammation and progressive neurodegeneration after brain trauma. J. Cereb. Blood Flow Metab 2012, 32, 137–149. [Google Scholar]
- Kabadi, S.V.; Stoica, B.A.; Hanscom, M.; Loane, D.J.; Kharebava, G.; Murray, M.G., II; Cabatbat, R.M.; Faden, A.I. CR8, a selective and potent CDK inhibitor, provides neuroprotection in experimental traumatic brain injury. Neurotherapeutics 2012, 9, 405–421. [Google Scholar]
- Loane, D.J.; Stoica, B.A.; Pajoohesh-Ganji, A.; Byrnes, K.R.; Faden, A.I. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J. Biol. Chem 2009, 284, 15629–15639. [Google Scholar]
- Loane, D.J.; Stoica, B.A.; Byrnes, K.R.; Jeong, W.; Faden, A.I. Activation of mGluR5 and inhibition of NADPH oxidase improves functional recovery after traumatic brain injury. J. Neurotrauma 2013, 30, 403–412. [Google Scholar]
- Piao, C.S.; Loane, D.J.; Stoica, B.A.; Li, S.; Hanscom, M.; Cabatbat, R.; Blomgren, K.; Faden, A.I. Combined inhibition of cell death induced by apoptosis inducing factor and caspases provides additive neuroprotection in experimental traumatic brain injury. Neurobiol. Dis 2012, 46, 745–758. [Google Scholar]
- Sabirzhanov, B.; Stoica, B.A.; Hanscom, M.; Piao, C.S.; Faden, A.I. Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J. Neurochem 2012, 123, 542–554. [Google Scholar]
- Zhao, Z.; Faden, A.I.; Loane, D.J.; Lipinski, M.M.; Sabirzhanov, B.; Stoica, B.A. Neuroprotective effects of geranylgeranylacetone in experimental traumatic brain injury. J. Cereb. Blood Flow Metab 2013, 33, 1897–1908. [Google Scholar]
- Piao, C.S.; Stoica, B.A.; Wu, J.; Sabirzhanov, B.; Zhao, Z.; Cabatbat, R.; Loane, D.J.; Faden, A.I. Late exercise reduces neuroinflammation and cognitive dysfunction after traumatic brain injury. Neurobiol. Dis 2013, 54, 252–263. [Google Scholar]
- Nirula, R.; Diaz-Arrastia, R.; Brasel, K.; Weigelt, J.A.; Waxman, K. Safety and efficacy of erythropoietin in traumatic brain injury patients: A pilot randomized trial. Crit. Care Res. Pract 2010, 2010. [Google Scholar] [CrossRef]
- Faden, A.I.; Knoblach, S.M.; Cernak, I.; Fan, L.; Vink, R.; Araldi, G.L.; Fricke, S.T.; Roth, B.L.; Kozikowski, A.P. Novel diketopiperazine enhances motor and cognitive recovery after traumatic brain injury in rats and shows neuroprotection in vitro and in vivo. J. Cereb. Blood Flow Metab. 2003, 23, 342–354. [Google Scholar]
- Faden, A.I.; Fox, G.B.; Di, X.; Knoblach, S.M.; Cernak, I.; Mullins, P.; Nikolaeva, M.; Kozikowski, A.P. Neuroprotective and nootropic actions of a novel cyclized dipeptide after controlled cortical impact injury in mice. J. Cereb. Blood Flow Metab 2003, 23, 355–363. [Google Scholar]
- Faden, A.I.; Movsesyan, V.A.; Knoblach, S.M.; Ahmed, F.; Cernak, I. Neuroprotective effects of novel small peptides in vitro and after brain injury. Neuropharmacology 2005, 49, 410–424. [Google Scholar]
- Simard, J.M.; Woo, S.K.; Bhatta, S.; Gerzanich, V. Drugs acting on SUR1 to treat CNS ischemia and trauma. Curr. Opin. Pharmacol 2008, 8, 42–49. [Google Scholar]
- Cucchiara, B.; Kasner, S.E. Use of statins in CNS disorders. J. Neurol. Sci 2001, 187, 81–89. [Google Scholar]
- Wible, E.F.; Laskowitz, D.T. Statins in traumatic brain injury. Neurotherapeutics 2010, 7, 62–73. [Google Scholar]
- Lu, D.; Goussev, A.; Chen, J.; Pannu, P.; Li, Y.; Mahmood, A.; Chopp, M. Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J. Neurotrauma 2004, 21, 21–32. [Google Scholar]
- Lu, D.; Qu, C.; Goussev, A.; Jiang, H.; Lu, C.; Schallert, T.; Mahmood, A.; Chen, J.; Li, Y.; Chopp, M. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J. Neurotrauma 2007, 24, 1132–1146. [Google Scholar]
- Tapia-Perez, J.; Sanchez-Aguilar, M.; Torres-Corzo, J.G.; Gordillo-Moscoso, A.; Martinez-Perez, P.; Madeville, P.; de la Cruz-Mendoza, E.; Chalita-Williams, J. Effect of rosuvastatin on amnesia and disorientation after traumatic brain injury (NCT003229758). J. Neurotrauma 2008, 25, 1011–1017. [Google Scholar]
- Okonkwo, D.O.; Büki, A.; Siman, R.; Povlishock, J.T. Cyclosporin A limits calcium-induced axonal damage following traumatic brain injury. Neuroreport 1999, 10, 353–358. [Google Scholar]
- Okonkwo, D.O.; Povlishock, J.T. An intrathecal bolus of cyclosporin A before injury preserves mitochondrial integrity and attenuates axonal disruption in traumatic brain injury. J. Cereb. Blood Flow Metab 1999, 19, 443–451. [Google Scholar]
- Sullivan, P.G.; Rabchevsky, A.G.; Hicks, R.R.; Gibson, T.R.; Fletcher-Turner, A.; Scheff, S.W. Dose-response curve and optimal dosing regimen of cyclosporin A after traumatic brain injury in rats. Neuroscience 2000, 101, 289–295. [Google Scholar]
- Sullivan, P.G.; Thompson, M.; Scheff, S.W. Continuous infusion of cyclosporin A postinjury significantly ameliorates cortical damage following traumatic brain injury. Exp. Neurol 2000, 161, 631–637. [Google Scholar]
- Mazzeo, A.T.; Alves, O.L.; Gilman, C.B.; Hayes, R.L.; Tolias, C.; Niki Kunene, K.; Ross Bullock, M. Brain metabolic and hemodynamic effects of cyclosporin A after human severe traumatic brain injury: A microdialysis study. Acta Neurochir. (Wien) 2008, 150, 1019–1031, discussion 1031. [Google Scholar]
- Margulies, S.; Hicks, R. Combination therapies for traumatic brain injury: Prospective considerations. J. Neurotrauma 2009, 26, 925–939. [Google Scholar]
- Donkin, J.J.; Nimmo, A.J.; Cernak, I.; Blumbergs, P.C.; Vink, R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J. Cereb. Blood Flow Metab 2009, 29, 1388–1398. [Google Scholar]
- Arendt, T. Synaptic plasticity and cell cycle activation in neurons are alternative effector pathways: The ‘Dr. Jekyll and Mr. Hyde concept’ of Alzheimer’s disease ordisease or the yin and yang of neuroplasticity. Prog. Neurobiol 2003, 71, 83–248. [Google Scholar]
- Bettayeb, K.; Oumata, N.; Echalier, A.; Ferandin, Y.; Endicott, J.A.; Galons, H.; Meijer, L. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 2008, 27, 5797–5807. [Google Scholar]
- Biber, K.; Laurie, D.J.; Berthele, A.; Sommer, B.; Tölle, T.R.; Gebicke-Härter, P.J.; van Calker, D.; Boddeke, H.W. Expression and signaling of group I metabotropic glutamate receptors in astrocytes and microglia. J. Neurochem 1999, 72, 1671–1680. [Google Scholar]
- Conti, A.C.; Raghupathi, R.; Trojanowski, J.Q.; McIntosh, T.K. Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. J. Neurosci 1998, 18, 5663–5672. [Google Scholar]
- Rink, A.; Fung, K.M.; Trojanowski, J.Q.; Lee, V.M.; Neugebauer, E.; McIntosh, T.K. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol 1995, 147, 1575–1583. [Google Scholar]
- Knoblach, S.M.; Nikolaeva, M.; Huang, X.; Fan, L.; Krajewski, S.; Reed, J.C.; Faden, A.I. Multiple caspases are activated after traumatic brain injury: Evidence for involvement in functional outcome. J. Neurotrauma 2002, 19, 1155–1170. [Google Scholar]
- Clark, R.S.; Kochanek, P.M.; Watkins, S.C.; Chen, M.; Dixon, C.E.; Seidberg, N.A.; Melick, J.; Loeffert, J.E.; Nathaniel, P.D.; Jin, K.L.; et al. Caspase-3 mediated neuronal death after traumatic brain injury in rats. J. Neurochem 2000, 74, 740–753. [Google Scholar]
- Candé, C.; Vahsen, N.; Kouranti, I.; Schmitt, E.; Daugas, E.; Spahr, C.; Luban, J.; Kroemer, R.T.; Giordanetto, F.; Garrido, C.; et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 2004, 23, 1514–1521. [Google Scholar]
- Culmsee, C.; Zhu, C.; Landshamer, S.; Becattini, B.; Wagner, E.; Pellecchia, M.; Blomgren, K.; Plesnila, N. Apoptosis-inducing factor triggered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ischemia. J. Neurosci 2005, 25, 10262–10272. [Google Scholar]
- Zhu, C.; Wang, X.; Huang, Z.; Qiu, L.; Xu, F.; Vahsen, N.; Nilsson, M.; Eriksson, P.S.; Hagberg, H.; Culmsee, C.; et al. Apoptosis-inducing factor is a major contributor to neuronal loss induced by neonatal cerebral hypoxia-ischemia. Cell Death Differ 2007, 14, 775–784. [Google Scholar]
- Redell, J.B.; Zhao, J.; Dash, P.K. Acutely increased cyclophilin a expression after brain injury: A role in blood-brain barrier function and tissue preservation. J. Neurosci. Res 2007, 85, 1980–1988. [Google Scholar]
- Turturici, G.; Sconzo, G.; Geraci, F. Hsp70 and its molecular role in nervous system diseases. Biochem. Res. Int 2011, 2011, 618127. [Google Scholar]
- Gribaldo, S.; Lumia, V.; Creti, R.; Conway de Macario, E.; Sanangelantoni, A.; Cammarano, P. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol 1999, 181, 434–443. [Google Scholar]
- Clark, R.S.; Bayir, H.; Chu, C.T.; Alber, S.M.; Kochanek, P.M.; Watkins, S.C. Autophagy is increased in mice after traumatic brain injury and is detectable in human brain after trauma and critical illness. Autophagy 2008, 4, 88–90. [Google Scholar]
- Lai, Y.; Hickey, R.W.; Chen, Y.; Bayir, H.; Sullivan, M.L.; Chu, C.T.; Kochanek, P.M.; Dixon, C.E.; Jenkins, L.W.; Graham, S.H.; et al. Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant gamma-glutamylcysteinyl ethyl ester. J. Cereb. Blood Flow Metab 2008, 28, 540–550. [Google Scholar]
- Erlich, S.; Alexandrovich, A.; Shohami, E.; Pinkas-Kramarski, R. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol. Dis 2007, 26, 86–93. [Google Scholar]
- Griesbach, G.S.; Gomez-Pinilla, F.; Hovda, D.A. Time window for voluntary exercise-induced increases in hippocampal neuroplasticity molecules after traumatic brain injury is severity dependent. J. Neurotrauma 2007, 24, 1161–1171. [Google Scholar]
- Griesbach, G.S.; Gomez-Pinilla, F.; Hovda, D.A. The upregulation of plasticity-related proteins following TBI is disrupted with acute voluntary exercise. Brain Res 2004, 1016, 154–162. [Google Scholar]
- Griesbach, G.S.; Hovda, D.A.; Molteni, R.; Wu, A.; Gomez-Pinilla, F. Voluntary exercise following traumatic brain injury: Brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 2004, 125, 129–139. [Google Scholar]
Translational (preclinical & clinical) challenges | Recommended corrective measures |
---|---|
The diversity and complexity of secondary injury mechanisms | Better elucidating secondary injury mechanisms including diversity of cell death mechanisms and interactions |
Inconsistency and inaccuracy of clinical outcome measures and biomarkers | Development of a more comprehensive and symptom-based classification for evaluation of specific behavioral outcomes, quality of life, physiological and imaging-based biomarkers |
Variable experimental factors such as multiple injury models of different injury severity, species, strains, genders, ages etc. | Evaluation of potential neuroprotective therapies in multiple TBI models, different strains and species—including higher gyrancephalic species, both genders and young versus aged animals |
Lack of clinically-relevant behavioral outcomes under pre-clinical settings | Use of well-characterized behavioral and histological outcome measures to assess long-term effects of the treatment |
Limited preclinical pharmacological evaluation | Examination of pharmacokinetics, pharmacodynamics and brain concentration of the proposed treatment |
Inadequate therapeutic window data | Performing therapeutic window studies for prospective neuroprotective treatments to include a more delayed clinically-relevant time points of administration |
Inconsistency in statistical modeling/methodologies and inadequate sample sizes | Reducing discrepancies in research methodology between animal and clinical trials, enlargement of sample sizes and use of adaptive design to improve power |
Emerging neuroprotective approaches | Mechanisms of action/neuroprotective effects |
---|---|
Progesterone | Attenuates glutamate excitotoxicity [51], membrane lipid peroxidation [52], apoptotic and inflammatory pathways [53], and diffuse axonal injury [54]. |
Thyrotropin-releasing Hormone | Increases cerebral blood flow and metabolism; attenuates peptidyl leukotrienes, platelet-activation factor, endogenous opioids and glutamate [61]. |
Erythropoietin | Limits excitotoxic, pro-oxidant, edematous, and inflammatory effects [62,63]. |
Hypothermia | Reduces contusion volume and improves functional outcomes in experimental TBI [64–68], reduces intra-cranial pressure [69–71], and cerebral metabolic rate [72] and increases brain tissue and jugular vein oxygenation [71] in clinical cases, although primary outcome in a major randomized trial not significantly improved [73]. |
Diketopiperazines | Attenuates cell cycle, calpain, cathepsin; increases BDNF, HSP 70 [74]. |
SUR1-regulated NCCa-ATP Channel Inhibitors (glibenclamide) | Reduces edema, secondary hemorrhage, inflammation, apoptosis and lesion size [75]. |
Statins (rosuvastatin and atorvastatin) | Reduces IL-6, TNF-α, and ICAM-1, glial cell activation and cerebral edema, and restores blood-brain barrier integrity [76,77]. |
Cyclosporin A | Preservation of mitochondrial function, inhibition of lipid peroxidation and oxidative stress [78,79]. |
Substance P (SP) Antagonists | Reduced inflammation and maintenance of blood-brain barrier integrity [80]. |
Cell Cycle Inhibitors | Inhibition of cell cycle activation, neurodegeneration and chronic neuroinflammation microglial and astrocyte activation [81–85]. |
Metabotropic Glutamate Receptor-5 Agonists (CHPG) | Reduces expression of inducible nitric-oxide synthase, production of nitric oxide and TNF-α, and intracellular generation of reactive oxygen species, limits caspase dependent apoptosis [18,86,87]. |
Combined inhibition of multiple cell death pathways (e.g., HSP 70) | Limiting both caspase–dependent and caspase-independent cell death [88–90]. |
Non-pharmacological approaches such as delayed initiation of exercise | Attenuates classical inflammatory pathways, activation of alternative inflammatory responses and enhancement of neurogenesis, increases BDNF [91]. |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Kabadi, S.V.; Faden, A.I. Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation. Int. J. Mol. Sci. 2014, 15, 1216-1236. https://doi.org/10.3390/ijms15011216
Kabadi SV, Faden AI. Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation. International Journal of Molecular Sciences. 2014; 15(1):1216-1236. https://doi.org/10.3390/ijms15011216
Chicago/Turabian StyleKabadi, Shruti V., and Alan I. Faden. 2014. "Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation" International Journal of Molecular Sciences 15, no. 1: 1216-1236. https://doi.org/10.3390/ijms15011216
APA StyleKabadi, S. V., & Faden, A. I. (2014). Neuroprotective Strategies for Traumatic Brain Injury: Improving Clinical Translation. International Journal of Molecular Sciences, 15(1), 1216-1236. https://doi.org/10.3390/ijms15011216