The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function
Abstract
:1. Introduction
2. RNF183
3. RNF186
4. RNF182
5. RNF152
6. mTORC1 in Cancer
7. NF-κB and NFAT5 in Inflammation and Osmotic Stress
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
ATP6V0C | V-type proton ATPase 16 kDa proteolipid subunit |
Bcl-xL | B-cell lymphoma extra large |
BIK | Bcl-2-interacting killer |
BNip1 | Bcl2/adenovirus E1B 19-kDa interacting protein 1 |
BNIP3L | cl-2/adenovirus E1B 19 kDa protein-interacting protein 3-like |
CD | Crohn’s disease |
CKD | chronic kidney disease |
CRC | colorectal cancer |
DR5 | Death receptor 5 |
DSS | dextran sulfate sodium |
DUB | deubiquitinase |
E1 | ubiquitin-activating enzyme |
E2 | ubiquitin-conjugating enzyme |
E3 | ubiquitin ligase |
EC | endometrial carcinoma |
ER | endoplasmic reticulum |
EWSR1-FLI1 | Ewing sarcoma breakpoint region 1-Friend Leukemia Integration 1 |
FATE1 | fetal and adult testis-expressed 1 |
GAP | GTPase-activating protein |
GATOR | GAP activity toward RAGs |
GCL | ganglion cell layer |
GWAS | genome-wide association study |
hpf | hours post-fertilization |
IBD | inflammatory bowel disease |
IκB | Inhibitor of NF-κB |
INL | inner nuclear layer |
IRE1α | Inositol requiring 1α |
IRS1 | insulin receptor substrate 1 |
JNK | c-Jun N-terminal kinase |
MeCP2 | methyl-CpG-binding protein 2 |
MHB | midbrain–hindbrain boundary |
mIMCD | mouse inner medullary collecting duct |
MIRI | myocardial ischemia–reperfusion injury |
mTORC1 | mammalian target of rapamycin complex 1 |
NFAT5 | Nuclear factor of activated T cells 5 |
NF-κB | nuclear factor-kappa B |
NT2 | Ntera2 |
ONL | outer nuclear layer |
Shh | Sonic hedgehog |
TLR | Toll-like receptor |
TNBS | trinitrobenzene sulfonic acid |
TNF-α | Tumor necrosis factor-α |
UC | ulcerative colitis |
UPR | unfolded protein response |
Ub | Ubiquitin |
References
- Rennie, M.L.; Chaugule, V.K.; Walden, H. Modes of allosteric regulation of the ubiquitination machinery. Curr. Opin. Struct. Biol. 2020, 62, 189–196. [Google Scholar] [CrossRef]
- Hann, Z.S.; Ji, C.; Olsen, S.K.; Lu, X.; Lux, M.C.; Tan, D.S.; Lima, C.D. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl. Acad. Sci. USA 2019, 116, 15475–15484. [Google Scholar] [CrossRef] [Green Version]
- Buetow, L.; Huang, D.T. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 2016, 17, 626–642. [Google Scholar] [CrossRef] [Green Version]
- Walden, H.; Rittinger, K. RBR ligase-mediated ubiquitin transfer: A tale with many twists and turns. Nat. Struct. Mol. Biol. 2018, 25, 440–445. [Google Scholar] [CrossRef]
- Bernassola, F.; Chillemi, G.; Melino, G. HECT-Type E3 Ubiquitin Ligases in Cancer. Trends Biochem. Sci. 2019, 44, 1057–1075. [Google Scholar] [CrossRef]
- Ruan, J.; Schlüter, D.; Wang, X. Deubiquitinating enzymes (DUBs): DoUBle-edged swords in CNS autoimmunity. J. Neuroinflamm. 2020, 17, 102. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.T.; Ciechanover, A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy. Trends Biochem. Sci. 2017, 42, 873–886. [Google Scholar] [CrossRef]
- Davis, M.E.; Gack, M.U. Ubiquitination in the antiviral immune response. Virology 2015, 479, 52–65. [Google Scholar] [CrossRef] [Green Version]
- Grice, G.L.; Nathan, J.A. The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 2016, 73, 3497–3506. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, M.; Iwase, I.; Yamasaki, Y.; Takai, T.; Wu, Y.; Kanemoto, S.; Matsuhisa, K.; Asada, R.; Okuma, Y.; Watanabe, T.; et al. Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation. Sci. Rep. 2016, 6, 30955. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.; Jia, J.; Zhang, Y.; Li, J.; Zhu, Z.; Wang, H.; Tang, J.; Hu, J. Transmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL. Proc. Natl. Acad. Sci. USA 2018, 115, E2762–E2771. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Guo, X.P.; Kanemoto, S.; Maeoka, Y.; Saito, A.; Asada, R.; Matsuhisa, K.; Ohtake, Y.; Imaizumi, K.; Kaneko, M. Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183. PLoS ONE 2018, 13, e0190407. [Google Scholar] [CrossRef] [Green Version]
- Maeoka, Y.; Okamoto, T.; Wu, Y.; Saito, A.; Asada, R.; Matsuhisa, K.; Terao, M.; Takada, S.; Masaki, T.; Imaizumi, K.; et al. Renal medullary tonicity regulates RNF183 expression in the collecting ducts via NFAT5. Biochem. Biophys. Res. Commun. 2019, 514, 436–442. [Google Scholar] [CrossRef]
- Maeoka, Y.; Wu, Y.; Okamoto, T.; Kanemoto, S.; Guo, X.P.; Saito, A.; Asada, R.; Matsuhisa, K.; Masaki, T.; Imaizumi, K.; et al. NFAT5 up-regulates expression of the kidney-specific ubiquitin ligase gene Rnf183 under hypertonic conditions in inner-medullary collecting duct cells. J. Biol. Chem. 2019, 294, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Maxfield, K.E.; Taus, P.J.; Corcoran, K.; Wooten, J.; Macion, J.; Zhou, Y.; Borromeo, M.; Kollipara, R.K.; Yan, J.; Xie, Y.; et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat. Commun. 2015, 6, 8840. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, Z.R.; Taus, P.; Gibbs, Z.A.; McGlynn, K.; Gomez, N.C.; Davis, I.; Whitehurst, A.W. EWSR1-FLI1 Activation of the Cancer/Testis Antigen FATE1 Promotes Ewing Sarcoma Survival. Mol. Cell Biol. 2019, 39. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Zhang, S.; Chao, K.; Feng, R.; Wang, H.; Li, M.; Chen, B.; He, Y.; Zeng, Z.; Chen, M. E3 Ubiquitin ligase RNF183 Is a Novel Regulator in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 713–725. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Kimura, Y.; Okamoto, T.; Matsuhisa, K.; Asada, R.; Saito, A.; Sakaue, F.; Imaizumi, K.; Kaneko, M. Inflammatory bowel disease-associated ubiquitin ligase RNF183 promotes lysosomal degradation of DR5 and TRAIL-induced caspase activation. Sci. Rep. 2019, 9, 20301. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Wu, Y.; Matsuhisa, K.; Saito, A.; Sakaue, F.; Imaizumi, K.; Kaneko, M. Hypertonicity-responsive ubiquitin ligase RNF183 promotes Na, K-ATPase lysosomal degradation through ubiquitination of its β1 subunit. Biochem. Biophys. Res. Commun. 2020, 521, 1030–1035. [Google Scholar] [CrossRef]
- Geng, R.; Tan, X.; Zuo, Z.; Wu, J.; Pan, Z.; Shi, W.; Liu, R.; Yao, C.; Wang, G.; Lin, J.; et al. Synthetic lethal short hairpin RNA screening reveals that ring finger protein 183 confers resistance to trametinib in colorectal cancer cells. Chin. J. Cancer 2017, 36, 63. [Google Scholar] [CrossRef] [Green Version]
- Geng, R.; Tan, X.; Wu, J.; Pan, Z.; Yi, M.; Shi, W.; Liu, R.; Yao, C.; Wang, G.; Lin, J.; et al. RNF183 promotes proliferation and metastasis of colorectal cancer cells via activation of NF-κB-IL-8 axis. Cell Death Dis. 2017, 8, e2994. [Google Scholar] [CrossRef] [PubMed]
- Colas, E.; Perez, C.; Cabrera, S.; Pedrola, N.; Monge, M.; Castellvi, J.; Eyzaguirre, F.; Gregorio, J.; Ruiz, A.; Llaurado, M.; et al. Molecular markers of endometrial carcinoma detected in uterine aspirates. Int. J. Cancer 2011, 129, 2435–2444. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wu, Y.; Li, Y.; Zheng, J.; Tang, J. A novel RING finger E3 ligase RNF186 regulate ER stress-mediated apoptosis through interaction with BNip1. Cell Signal. 2013, 25, 2320–2333. [Google Scholar] [CrossRef] [PubMed]
- Lear, T.B.; Lockwood, K.C.; Ouyang, Y.; Evankovich, J.W.; Larsen, M.B.; Lin, B.; Liu, Y.; Chen, B.B. The RING-type E3 ligase RNF186 ubiquitinates Sestrin-2 and thereby controls nutrient sensing. J. Biol. Chem. 2019, 294, 16527–16534. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Kinoshita, M.; Tanaka, H.; Okuzaki, D.; Shimada, Y.; Kayama, H.; Okumura, R.; Furuta, Y.; Narazaki, M.; Tamura, A.; et al. Regulation of intestinal homeostasis by the ulcerative colitis-associated gene RNF186. Mucosal. Immunol. 2017, 10, 446–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, X.; Zhang, Q.; Wang, L.; Ji, Y.; Zhang, L.; Xie, L.; Chen, W.; Zhang, H. RNF186 impairs insulin sensitivity by inducing ER stress in mouse primary hepatocytes. Cell Signal. 2018, 52, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.A.; Boucher, G.; Lees, C.W.; Franke, A.; D’Amato, M.; Taylor, K.D.; Lee, J.C.; Goyette, P.; Imielinski, M.; Latiano, A.; et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 2011, 43, 246–252. [Google Scholar] [CrossRef] [Green Version]
- Juyal, G.; Prasad, P.; Senapati, S.; Midha, V.; Sood, A.; Amre, D.; Juyal, R.C.; Bk, T. An investigation of genome-wide studies reported susceptibility loci for ulcerative colitis shows limited replication in north Indians. PLoS ONE 2011, 6, e16565. [Google Scholar] [CrossRef] [Green Version]
- Uniken Venema, W.T.; Voskuil, M.D.; Dijkstra, G.; Weersma, R.K.; Festen, E.A. The genetic background of inflammatory bowel disease: From correlation to causality. J. Pathol. 2017, 241, 146–158. [Google Scholar] [CrossRef]
- Venkataraman, G.R.; Rivas, M.A. Rare and common variant discovery in complex disease: The IBD case study. Hum. Mol. Genet. 2019, 28, R162–R169. [Google Scholar] [CrossRef]
- Beaudoin, M.; Goyette, P.; Boucher, G.; Lo, K.S.; Rivas, M.A.; Stevens, C.; Alikashani, A.; Ladouceur, M.; Ellinghaus, D.; Torkvist, L.; et al. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLoS Genet. 2013, 9, e1003723. [Google Scholar] [CrossRef] [PubMed]
- Rivas, M.A.; Graham, D.; Sulem, P.; Stevens, C.; Desch, A.N.; Goyette, P.; Gudbjartsson, D.; Jonsdottir, I.; Thorsteinsdottir, U.; Degenhardt, F.; et al. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis. Nat. Commun. 2016, 7, 12342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.K.; Hong, M.; Zhao, W.; Jung, Y.; Tayebi, N.; Ye, B.D.; Kim, K.J.; Park, S.H.; Lee, I.; Shin, H.D.; et al. Genome-wide association study of ulcerative colitis in Koreans suggests extensive overlapping of genetic susceptibility with Caucasians. Inflamm. Bowel Dis. 2013, 19, 954–966. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsson, G.; Mikaelsdottir, E.; Palsson, R.; Indridason, O.S.; Holm, H.; Jonasdottir, A.; Helgason, A.; Sigurdsson, S.; Jonasdottir, A.; Sigurdsson, A.; et al. Rare mutations associating with serum creatinine and chronic kidney disease. Hum. Mol. Genet. 2014, 23, 6935–6943. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Y.; Lei, J.X.; Sikorska, M.; Liu, R. A novel brain-enriched E3 ubiquitin ligase RNF182 is up regulated in the brains of Alzheimer’s patients and targets ATP6V0C for degradation. Mol. Neurodegener. 2008, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Nectoux, J.; Fichou, Y.; Rosas-Vargas, H.; Cagnard, N.; Bahi-Buisson, N.; Nusbaum, P.; Letourneur, F.; Chelly, J.; Bienvenu, T. Cell cloning-based transcriptome analysis in Rett patients: Relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes. J. Cell Mol. Med. 2010, 14, 1962–1974. [Google Scholar] [CrossRef]
- Wang, J.H.; Wei, Z.F.; Gao, Y.L.; Liu, C.C.; Sun, J.H. Activation of the mammalian target of rapamycin signaling pathway underlies a novel inhibitory role of ring finger protein 182 in ventricular remodeling after myocardial ischemia-reperfusion injury. J. Cell Biochem. 2018. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, Y.; Chang, H.; Sun, X.; Yang, S. The E3 ubiquitin ligase RNF182 inhibits TLR-triggered cytokine production through promoting p65 ubiquitination and degradation. FEBS Lett. 2019, 593, 3210–3219. [Google Scholar] [CrossRef]
- Brim, H.; Abu-Asab, M.S.; Nouraie, M.; Salazar, J.; Deleo, J.; Razjouyan, H.; Mokarram, P.; Schaffer, A.A.; Naghibhossaini, F.; Ashktorab, H. An integrative CGH, MSI and candidate genes methylation analysis of colorectal tumors. PLoS ONE 2014, 9, e82185. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, W.; Wu, Y.; Zheng, J.; Suo, T.; Tang, H.; Tang, J. RNF152, a novel lysosome localized E3 ligase with pro-apoptotic activities. Protein Cell 2010, 1, 656–663. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Huh, T.L.; Choe, J.; Rhee, M. Rnf152 Is Essential for NeuroD Expression and Delta-Notch Signaling in the Zebrafish Embryos. Mol. Cells 2017, 40, 945–953. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, M.; Sasai, N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front. Neurosci. 2019, 13, 1022. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Jiang, C.; Chen, L.; Jin, J.; Wei, J.; Zhao, L.; Chen, M.; Pan, W.; Xu, Y.; Chu, H.; et al. The ubiquitination of rag A GTPase by RNF152 negatively regulates mTORC1 activation. Mol. Cell 2015, 58, 804–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, L.; Chen, L.; Zhao, L.; Xu, Y.; Peng, X.; Wang, X.; Ding, L.; Jin, J.; Teng, H.; Wang, Y.; et al. Ubiquitination of Rheb governs growth factor-induced mTORC1 activation. Cell Res. 2019, 29, 136–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, F.; Yamamoto, M. Scanning copy number and gene expression on the 18q21-qter chromosomal region by the systematic multiplex PCR and reverse transcription-PCR methods. Electrophoresis 2007, 28, 1882–1895. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Lin, Y.W.; Chen, H.M.; Kong, X.; Xiong, H.; Shen, N.; Hong, J.; Fang, J.Y. Calcium prevents tumorigenesis in a mouse model of colorectal cancer. PLoS ONE 2011, 6, e22566. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Shen, W.; Wang, G.; Huang, Z.; Wen, D.; Yang, Y.; Liu, Y.; Cui, L. Ring finger protein 152 inhibits colorectal cancer cell growth and is a novel prognostic biomarker. Am. J. Trans. Res. 2018, 10, 3701–3712. [Google Scholar]
- Fu, J.; Tang, W.; Du, P.; Wang, G.; Chen, W.; Li, J.; Zhu, Y.; Gao, J.; Cui, L. Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC Syst. Biol. 2012, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Olesen, C.; Larsen, N.J.; Byskov, A.G.; Harboe, T.L.; Tommerup, N. Human FATE is a novel X-linked gene expressed in fetal and adult testis. Mol. Cell. Endocrinol. 2001, 184, 25–32. [Google Scholar] [CrossRef]
- Dong, X.Y.; Su, Y.R.; Qian, X.P.; Yang, X.A.; Pang, X.W.; Wu, H.Y.; Chen, W.F. Identification of two novel CT antigens and their capacity to elicit antibody response in hepatocellular carcinoma patients. Br. J. Cancer 2003, 89, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Fei, P.; Wang, W.; Kim, S.H.; Wang, S.; Burns, T.F.; Sax, J.K.; Buzzai, M.; Dicker, D.T.; McKenna, W.G.; Bernhard, E.J.; et al. Bnip3L is induced by p53 under hypoxia, and its knockdown promotes tumor growth. Cancer Cell 2004, 6, 597–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infante, J.R.; Fecher, L.A.; Falchook, G.S.; Nallapareddy, S.; Gordon, M.S.; Becerra, C.; DeMarini, D.J.; Cox, D.S.; Xu, Y.; Morris, S.R.; et al. Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: A phase 1 dose-escalation trial. Lancet Oncol. 2012, 13, 773–781. [Google Scholar] [CrossRef]
- Waugh, D.J.; Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-García, M.; Pérez-Ballestero, R.; Ding, L.; Duan, L.; Boise, L.H.; Thompson, C.B.; Núñez, G. bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development 1994, 120, 3033–3042. [Google Scholar]
- Eno, C.O.; Eckenrode, E.F.; Olberding, K.E.; Zhao, G.; White, C.; Li, C. Distinct roles of mitochondria- and ER-localized Bcl-xL in apoptosis resistance and Ca2+ homeostasis. Mol. Biol. Cell 2012, 23, 2605–2618. [Google Scholar] [CrossRef]
- Lerner, A.G.; Upton, J.P.; Praveen, P.V.; Ghosh, R.; Nakagawa, Y.; Igbaria, A.; Shen, S.; Nguyen, V.; Backes, B.J.; Heiman, M.; et al. IRE1α induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012, 16, 250–264. [Google Scholar] [CrossRef] [Green Version]
- Upton, J.P.; Wang, L.; Han, D.; Wang, E.S.; Huskey, N.E.; Lim, L.; Truitt, M.; McManus, M.T.; Ruggero, D.; Goga, A.; et al. IRE1α cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science 2012, 338, 818–822. [Google Scholar] [CrossRef] [Green Version]
- Halterman, J.A.; Kwon, H.M.; Wamhoff, B.R. Tonicity-independent regulation of the osmosensitive transcription factor TonEBP (NFAT5). Am. J. Physiol. Cell Physiol. 2012, 302, C1–C8. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, J.H. Biochemistry of Na,K-ATPase. Annu. Rev. Biochem. 2002, 71, 511–535. [Google Scholar] [CrossRef]
- Yordy, M.R.; Bowen, J.W. Na,K-ATPase expression and cell volume during hypertonic stress in human renal cells. Kidney Int. 1993, 43, 940–948. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, M.; Chinnadurai, G. Functional identification of the apoptosis effector BH3 domain in cellular protein BNIP1. Oncogene 2000, 19, 2363–2367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef] [PubMed]
- McCann, A.P.; Scott, C.J.; Van Schaeybroeck, S.; Burrows, J.F. Deubiquitylating enzymes in receptor endocytosis and trafficking. Biochem. J. 2016, 473, 4507–4525. [Google Scholar] [CrossRef]
- Thomas, J.L.; Ochocinska, M.J.; Hitchcock, P.F.; Thummel, R. Using the Tg(nrd:egfp)/albino zebrafish line to characterize in vivo expression of neurod. PLoS ONE 2012, 7, e29128. [Google Scholar] [CrossRef] [Green Version]
- Ochocinska, M.J.; Hitchcock, P.F. Dynamic expression of the basic helix-loop-helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish. J. Comp. Neurol. 2007, 501, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Raymond, P.A.; Barthel, L.K.; Bernardos, R.L.; Perkowski, J.J. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 2006, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.M.; Alvarez-Delfin, K.; Saade, C.J.; Thomas, J.L.; Thummel, R.; Fadool, J.M.; Hitchcock, P.F. The bHLH Transcription Factor NeuroD Governs Photoreceptor Genesis and Regeneration Through Delta-Notch Signaling. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7496–7515. [Google Scholar] [CrossRef]
- Le Dreau, G.; Marti, E. Dorsal-ventral patterning of the neural tube: A tale of three signals. Dev. Neurobiol. 2012, 72, 1471–1481. [Google Scholar] [CrossRef] [Green Version]
- Kutejova, E.; Sasai, N.; Shah, A.; Gouti, M.; Briscoe, J. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs. Dev. Cell 2016, 36, 639–653. [Google Scholar] [CrossRef] [Green Version]
- Berry, M.R.; Mathews, R.J.; Ferdinand, J.R.; Jing, C.; Loudon, K.W.; Wlodek, E.; Dennison, T.W.; Kuper, C.; Neuhofer, W.; Clatworthy, M.R. Renal Sodium Gradient Orchestrates a Dynamic Antibacterial Defense Zone. Cell 2017, 170, 860–874. [Google Scholar] [CrossRef] [PubMed]
- Neuhofer, W. Role of NFAT5 in inflammatory disorders associated with osmotic stress. Curr. Genom. 2010, 11, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Cellular Localization | Expressing Tissue | Induction Mechanism | Substrate Protein | Associated Signaling Pathway | Types of Ubiquitin Chain | E2 | Associated Disease/Biological Function |
---|---|---|---|---|---|---|---|---|
RNF183 | ER, Golgi, lysosome [11,12,13] | kidney, testis [10]; renal medullary collecting duct [13] | prolonged ER stress [11]; NFAT5 [13,14] | BIK [15]; BNIP3L [16]; Bcl-xL [11]; IκBα [17]; DR5 [18]; Na,K-ATPase β1 subunit [19] | apoptosis [11,14,15,16,18]; NF-κB [17,20,21] | K48 [11,15,16,17]; K63 [18,19] | Ubc5c (in vitro) [11]; UbcH5c (in vitro) [12] | IBD [17,18]; endometrial carcinoma [22]; colorectal cancer [15,16,20]; Ewing Sarcoma [21] |
RNF186 | ER [23]; lysosome? [24] | lower gastrointestinal tract, kidney [10] | BNip1 [23]; Occludin [25]; Sestrin-2 [24] | apoptosis [23,26]; mTORC1 [24] | K29 [23]; K48 [24,25]; K63 [23,24] | IBD [25,27,28,29,30,31,32,33]; CKD [34] | ||
RNF182 | lysosome [35] | nervous system (cortex, hippocampus, cerebellum, spinal cord) [10,35] | oxygen and glucose deprivation [35]; MeCP2 mutation [36]; ischemia-reperfusion injury [37]; TLR stimuli [38] | ATP6V0C [35]; NF-κB p65 subunit [38] | apoptosis [35]; mTORC1 [37]; NF-κB [38] | K48 [35,38] | Ubc5a (in vitro) [35] | AD [35]; Rett syndrome [36]; colorectal cancer [39]; myocardial ischemia [37] |
RNF152 | lysosome [40] | kidney [10]; eyes, neural tube [41]; floor plate [42] | FoxA2 [42] | RagA [43]; Rheb [44] | apoptosis [40]; mTORC1 [42,43,44]; Notch [41] | K48 [40]; K63 [43]; mono [44] | UBC13 (in vivo) [43]; Ubc5a (in vitro) [40] | breast and prostate cancer [45]; colorectal cancer [44,46,47,48]; development of the eyes, midbrain and hindbrain (zebrafish) [41]; proliferation of floor plate cells [42] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okamoto, T.; Imaizumi, K.; Kaneko, M. The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. Int. J. Mol. Sci. 2020, 21, 3921. https://doi.org/10.3390/ijms21113921
Okamoto T, Imaizumi K, Kaneko M. The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. International Journal of Molecular Sciences. 2020; 21(11):3921. https://doi.org/10.3390/ijms21113921
Chicago/Turabian StyleOkamoto, Takumi, Kazunori Imaizumi, and Masayuki Kaneko. 2020. "The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function" International Journal of Molecular Sciences 21, no. 11: 3921. https://doi.org/10.3390/ijms21113921
APA StyleOkamoto, T., Imaizumi, K., & Kaneko, M. (2020). The Role of Tissue-Specific Ubiquitin Ligases, RNF183, RNF186, RNF182 and RNF152, in Disease and Biological Function. International Journal of Molecular Sciences, 21(11), 3921. https://doi.org/10.3390/ijms21113921