Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review
Abstract
:1. Introduction
1.1. Epidemiology
1.2. Pathogenesis
1.3. Clinical Features
1.4. Diagnosis
1.4.1. Prenatal Diagnosis
1.4.2. Postnatal Diagnosis
1.4.3. Differential Diagnosis
2. Methods of Treatment
2.1. C-Type Natriuretic Peptide in Achondroplasia Treatment
2.1.1. C-Type Natriuretic Peptide Analog: Vosoritide (BMN-111)
2.1.2. Prodrug, Prolonged-Release C-Type Natriuretic Peptide: TransCon CNP
2.2. Recombinant Human Growth Hormone (rhGH)
2.3. Tyrosine Kinase Inhibitor (TKI): Infigratinib
2.4. Soluble FGFR3 (TA-46): Recifercept
2.5. Vofatamab (B-701)
2.6. Meclizine
2.7. Statins
2.8. Parathyroid Hormone (PTH) and Parathyroid Hormone-Related Peptide (PTHrP)
2.9. FGFR Inhibitor: ASP5878
2.10. Aptamer RBM-007
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horton, W.A.; Hall, J.G.; Hecht, J.T. Achondroplasia. Lancet 2007, 370, 162–172. [Google Scholar] [CrossRef]
- Pauli, R.M. Achondroplasia: A comprehensive clinical review. Orphanet J. Rare Dis. 2019, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Bonafe, L.; Cormier-Daire, V.; Hall, C.; Lachman, R.; Mortier, G.; Mundlos, S.; Nishimura, G.; Sangiorgi, L.; Savarirayan, R.; Sillence, D.; et al. Nosology and classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 2015, 167, 2869–2892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coi, A.; Santoro, M.; Garne, E.; Pierini, A.; Addor, M.-C.; Alessandri, J.-L.; Bergman, J.E.H.; Bianchi, F.; Boban, L.; Braz, P.; et al. Epidemiology of achondroplasia: A population-based study in Europe. Am. J. Med. Genet. A 2019, 179, 1791–1798. [Google Scholar] [CrossRef]
- Enderle, A.; Meyerhöfer, D. Small People—Great Art: Restricted Growth from an Artistic and Medical Viewpoint; Enderle, A., Ed.; Artcolor Verlag: Hamm, Germany, 1994; ISBN 3892613362. [Google Scholar]
- Baujat, G.; Legeai-Mallet, L.; Finidori, G.; Cormier-Daire, V.; Le Merrer, M. Achondroplasia. Best Pract. Res. Clin. Rheumatol. 2008, 22, 3–18. [Google Scholar] [CrossRef]
- Maroteaux, P.; Le Merrer, M. Les Maladies Osseuses de L’Enfant, 4th ed.; Médecine-Sciences Flammarion: Paris, France, 2002; ISBN 2257142314. [Google Scholar]
- Tucker-Bartley, A.; Lemme, J.; Gomez-Morad, A.; Shah, N.; Veliu, M.; Birklein, F.; Storz, C.; Rutkove, S.; Kronn, D.; Boyce, A.M.; et al. Pain Phenotypes in Rare Musculoskeletal and Neuromuscular Diseases. Neurosci. Biobehav. Rev. 2021, 124, 267–290. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, K.M.; Brod, M.; Smith, A.; Gianettoni, J.; Viuff, D.; Ota, S.; Charlton, R.W. Assessing physical symptoms, daily functioning, and well-being in children with achondroplasia. Am. J. Med. Genet. A 2021, 185, 33–45. [Google Scholar] [CrossRef]
- Sommer, R.; Blömeke, J.; Dabs, M.; Witt, S.; Bullinger, M.; Quitmann, J. An ICF-CY-based approach to assessing self-and observer-reported functioning in young persons with achondroplasia—Development of the pilot version of the Achondroplasia Personal Life Experience Scale (APLES). Disabil. Rehabil. 2017, 39, 2499–2503. [Google Scholar] [CrossRef] [PubMed]
- Foreman, P.K.; van Kessel, F.; van Hoorn, R.; van den Bosch, J.; Shediac, R.; Landis, S. Birth prevalence of achondroplasia: A systematic literature review and meta-analysis. Am. J. Med. Genet. A 2020, 182, 2297–2316. [Google Scholar] [CrossRef]
- Shiang, R.; Thompson, L.M.; Zhu, Y.Z.; Church, D.M.; Fielder, T.J.; Bocian, M.; Winokur, S.T.; Wasmuth, J.J. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 1994, 78, 335–342. [Google Scholar] [CrossRef]
- Rousseau, F.; Bonaventure, J.; Legeai-Mallet, L.; Pelet, A.; Rozet, J.M.; Maroteaux, P.; Le Merrer, M.; Munnich, A. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 1994, 371, 252–254. [Google Scholar] [CrossRef] [PubMed]
- Bellus, G.A.; Hefferon, T.W.; Ortiz de Luna, R.I.; Hecht, J.T.; Horton, W.A.; Machado, M.; Kaitila, I.; McIntosh, I.; Francomano, C.A. Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am. J. Hum. Genet. 1995, 56, 368–373. [Google Scholar] [PubMed]
- Ornitz, D.M.; Legeai-Mallet, L. Achondroplasia: Development, pathogenesis, and therapy. Dev. Dyn. 2017, 246, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Wen, X.; Li, X.; Tang, Y.; Tang, J.; Zhou, S.; Xie, Y.; Guo, J.; Yang, J.; Du, X.; Su, N.; et al. Chondrocyte FGFR3 Regulates Bone Mass by Inhibiting Osteogenesis. J. Biol. Chem. 2016, 291, 24912–24921. [Google Scholar] [CrossRef] [Green Version]
- Su, N.; Jin, M.; Chen, L. Role of FGF/FGFR signaling in skeletal development and homeostasis: Learning from mouse models. Bone Res. 2014, 2, 14003. [Google Scholar] [CrossRef] [Green Version]
- Webster, M.K.; Donoghue, D.J. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 1996, 15, 520–527. [Google Scholar] [CrossRef]
- Henderson, J.E.; Naski, M.C.; Aarts, M.M.; Wang, D.; Cheng, L.; Goltzman, D.; Ornitz, D.M. Expression of FGFR3 with the G380R achondroplasia mutation inhibits proliferation and maturation of CFK2 chondrocytic cells. J. Bone Miner. Res. 2000, 15, 155–165. [Google Scholar] [CrossRef]
- Matsushita, T.; Wilcox, W.R.; Chan, Y.Y.; Kawanami, A.; Bükülmez, H.; Balmes, G.; Krejci, P.; Mekikian, P.B.; Otani, K.; Yamaura, I.; et al. FGFR3 promotes synchondrosis closure and fusion of ossification centers through the MAPK pathway. Hum. Mol. Genet. 2008, 18, 227–240. [Google Scholar] [CrossRef] [Green Version]
- de Frutos, C.A.; Vega, S.; Manzanares, M.; Flores, J.M.; Huertas, H.; Martínez-Frías, M.L.; Nieto, M.A. Snail1 is a transcriptional effector of FGFR3 signaling during chondrogenesis and achondroplasias. Dev. Cell 2007, 13, 872–883. [Google Scholar] [CrossRef]
- Karuppaiah, K.; Yu, K.; Lim, J.; Chen, J.; Smith, C.; Long, F.; Ornitz, D.M. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 2016, 143, 1811–1822. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.Y.; Guo, C.; Torello, M.; Lunstrum, G.P.; Iwata, T.; Deng, C.; Horton, W.A. Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia. Proc. Natl. Acad. Sci. USA 2003, 101, 609–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duplan, M.B.; Dambroise, E.; Estibals, V.; Veziers, J.; Guicheux, J.; Legeai-Mallet, L. An Fgfr3-activating mutation in immature osteoblasts affects the appendicular and craniofacial skeleton. Dis. Model. Mech. 2021, 14. [Google Scholar] [CrossRef]
- Legare, J.M. Achondroplasia. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Biosse Duplan, M.; Komla-Ebri, D.; Heuzé, Y.; Estibals, V.; Gaudas, E.; Kaci, N.; Benoist-Lasselin, C.; Zerah, M.; Kramer, I.; Kneissel, M.; et al. Meckel’s and condylar cartilages anomalies in achondroplasia result in defective development and growth of the mandible. Hum. Mol. Genet. 2016, 25, 2997–3010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ireland, P.J.; Donaghey, S.; McGill, J.; Zankl, A.; Ware, R.S.; Pacey, V.; Ault, J.; Savarirayan, R.; Sillence, D.; Thompson, E.; et al. Development in children with achondroplasia: A prospective clinical cohort study. Dev. Med. Child Neurol. 2012, 54, 532–537. [Google Scholar] [CrossRef]
- Bodensteiner, J.B. Neurological Manifestations of Achondroplasia. Curr. Neurol. Neurosci. Rep. 2019, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Saint-Laurent, C.; Garcia, S.; Sarrazy, V.; Dumas, K.; Authier, F.; Sore, S.; Tran, A.; Gual, P.; Gennero, I.; Salles, J.-P.; et al. Early postnatal soluble FGFR3 therapy prevents the atypical development of obesity in achondroplasia. PLoS ONE 2018, 13, e0195876. [Google Scholar] [CrossRef]
- Tenconi, R.; Khirani, S.; Amaddeo, A.; Michot, C.; Baujat, G.; Couloigner, V.; de Sanctis, L.; James, S.; Zerah, M.; Cormier-Daire, V.; et al. Sleep-disordered breathing and its management in children with achondroplasia. Am. J. Med. Genet. A 2017, 173, 868–878. [Google Scholar] [CrossRef]
- Collins, W.O.; Choi, S.S. Otolaryngologic Manifestations of Achondroplasia. Arch. Otolaryngol. Head Neck Surg. 2007, 133, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Fredwall, S.O.; Linge, J.; Leinhard, O.D.; Kjønigsen, L.; Eggesbø, H.B.; Weedon-Fekjær, H.; Lidal, I.B.; Månum, G.; Savarirayan, R.; Tonstad, S. Cardiovascular risk factors and body composition in adults with achondroplasia. Genet. Med. 2020. [Google Scholar] [CrossRef]
- Sukhavasi, A.; O’Malley, T.J.; Maynes, E.J.; Choi, J.H.; Gordon, J.S.; Phan, K.; Tchantchaleishvili, V. Cardiac interventions in patients with achondroplasia: A systematic review. J. Thorac. Dis. 2020, 12, 998–1006. [Google Scholar] [CrossRef]
- Smid, C.J.; Modaff, P.; Alade, A.; Legare, J.M.; Pauli, R.M. Acanthosis nigricans in achondroplasia. Am. J. Med. Genet. A 2018, 176, 2630–2636. [Google Scholar] [CrossRef]
- Yang, P.-Y.; Liao, H.-G.; Yeh, G.-P.; Hsieh, C.T.C. Prenatal Diagnosis of Achondroplasia with Ultrasound, Three-Dimensional Computed Tomography and Molecular Methods. J. Med. Ultrasound 2012, 20, 176–179. [Google Scholar] [CrossRef] [Green Version]
- Boulet, S.; Althuser, M.; Nugues, F.; Schaal, J.-P.; Jouk, P.-S. Prenatal diagnosis of achondroplasia: New specific signs. Prenat. Diagn. 2009, 29, 697–702. [Google Scholar] [CrossRef]
- Gilligan, L.A.; Calvo-Garcia, M.A.; Weaver, K.N.; Kline-Fath, B.M. Fetal magnetic resonance imaging of skeletal dysplasias. Pediatr. Radiol. 2020, 50, 224–233. [Google Scholar] [CrossRef]
- Chitty, L.S.; Mason, S.; Barrett, A.N.; McKay, F.; Lench, N.; Daley, R.; Jenkins, L.A. Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: Next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat. Diagn. 2015, 35, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Orhant, L.A.; Anselem, O.; Fradin, M.; Becker, P.H.; Beugnet, C.; Deburgrave, N.; Tafuri, G.; Letourneur, F.; Goffinet, F.; El Khattabi, L.A.; et al. Droplet digital PCR combined with minisequencing, a new approach to analyze fetal DNA from maternal blood: Application to the non-invasive prenatal diagnosis of achondroplasia. Prenat. Diagn. 2016, 36, 397–406. [Google Scholar] [CrossRef]
- Bober, M.B.; Bellus, G.A.; Nikkel, S.M.; Tiller, G.E. Hypochondroplasia. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- French, T.; Savarirayan, R. Thanatophoric Dysplasia. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Kumar, K.V.S.H.; Shaikh, A.; Sharma, R.; Prusty, P. SADDAN syndrome. J. Pediatr. Endocrinol. Metab. 2011, 24, 851–852. [Google Scholar] [CrossRef]
- Kruszka, P.; Addissie, Y.A.; Agochukwu, N.B.; Doherty, E.S.; Muenke, M. Muenke Syndrome. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Berk, D.R.; Spector, E.B.; Bayliss, S.J. Familial Acanthosis Nigricans Due to K650T FGFR3 Mutation. Arch. Dermatol. 2007, 143, 1153–1156. [Google Scholar] [CrossRef] [Green Version]
- Arnaud-López, L.; Fragoso, R.; Mantilla-Capacho, J.; Barros-Núñez, P. Crouzon with acanthosis nigricans. Further delineation of the syndrome. Clin. Genet. 2007, 72, 405–410. [Google Scholar] [CrossRef]
- Toydemir, R.M.; Brassington, A.E.; Bayrak-Toydemir, P.; Krakowiak, P.A.; Jorde, L.B.; Whitby, F.G.; Longo, N.; Viskochil, D.H.; Carey, J.C.; Bamshad, M.J. A novel mutation in FGFR3 causes camptodactyly, tall stature, and hearing loss (CATSHL) syndrome. Am. J. Hum. Genet. 2006, 79, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Mäkitie, O.; Vakkilainen, S. Cartilage-Hair Hypoplasia—Anauxetic Dysplasia Spectrum Disorders. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Briggs, M.D.; Wright, M.J. Pseudoachondroplasia. In GeneReviews®; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Chilbule, S.K.; Dutt, V.; Madhuri, V. Limb lengthening in achondroplasia. Indian J. Orthop. 2016, 50, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Yasoda, A.; Ogawa, Y.; Suda, M.; Tamura, N.; Mori, K.; Sakuma, Y.; Chusho, H.; Shiota, K.; Tanaka, K.; Nakao, K. Natriuretic peptide regulation of endochondral ossification. Evidence for possible roles of the C-type natriuretic peptide/guanylyl cyclase-B pathway. J. Biol. Chem. 1998, 273, 11695–11700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackie, E.J.; Ahmed, Y.A.; Tatarczuch, L.; Chen, K.-S.; Mirams, M. Endochondral ossification: How cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 2008, 40, 46–62. [Google Scholar] [CrossRef]
- Vasques, G.A.; Arnhold, I.J.P.; Jorge, A.A.L. Role of the natriuretic peptide system in normal growth and growth disorders. Horm. Res. Paediatr. 2014, 82, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Kerkelä, R.; Ulvila, J.; Magga, J. Natriuretic Peptides in the Regulation of Cardiovascular Physiology and Metabolic Events. J. Am. Heart Assoc. 2015, 4, e002423. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-A.; Kim, T.-G.; Han, M.-K.; Ha, K.-C.; Kim, S.-Z.; Kwak, Y.-G. Dendroaspis natriuretic peptide regulates the cardiac L-type Ca2+ channel activity by the phosphorylation of α1c proteins. Exp. Mol. Med. 2012, 44, 363–368. [Google Scholar] [CrossRef] [Green Version]
- Kake, T.; Kitamura, H.; Adachi, Y.; Yoshioka, T.; Watanabe, T.; Matsushita, H.; Fujii, T.; Kondo, E.; Tachibe, T.; Kawase, Y.; et al. Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E1339–E1348. [Google Scholar] [CrossRef]
- Breinholt, V.M.; Rasmussen, C.E.; Mygind, P.H.; Kjelgaard-Hansen, M.; Faltinger, F.; Bernhard, A.; Zettler, J.; Hersel, U. TransCon CNP, a Sustained-Release C-Type Natriuretic Peptide Prodrug, a Potentially Safe and Efficacious New Therapeutic Modality for the Treatment of Comorbidities Associated with Fibroblast Growth Factor Receptor 3-Related Skeletal Dysplasias. J. Pharmacol. Exp. Ther. 2019, 370, 459–471. [Google Scholar] [CrossRef]
- Wendt, D.J.; Dvorak-Ewell, M.; Bullens, S.; Lorget, F.; Bell, S.M.; Peng, J.; Castillo, S.; Aoyagi-Scharber, M.; O’Neill, C.A.; Krejci, P.; et al. Neutral endopeptidase-resistant C-type natriuretic peptide variant represents a new therapeutic approach for treatment of fibroblast growth factor receptor 3-related dwarfism. J. Pharmacol. Exp. Ther. 2015, 353, 132–149. [Google Scholar] [CrossRef] [Green Version]
- Savarirayan, R.; Tofts, L.; Irving, M.; Wilcox, W.; Bacino, C.A.; Hoover-Fong, J.; Font, R.U.; Harmatz, P.; Rutsch, F.; Bober, M.B.; et al. Once-daily, subcutaneous vosoritide therapy in children with achondroplasia: A randomised, double-blind, phase 3, placebo-controlled, multicentre trial. Lancet 2020, 396, 684–692. [Google Scholar] [CrossRef]
- Savarirayan, R.; Irving, M.; Maixner, W.; Thompson, D.; Offiah, A.C.; Connolly, D.J.; Raghavan, A.; Powell, J.; Kronhardt, M.; Jeha, G.; et al. Rationale, design, and methods of a randomized, controlled, open-label clinical trial with open-label extension to investigate the safety of vosoritide in infants, and young children with achondroplasia at risk of requiring cervicomedullary decompression surgery. Sci. Prog. 2021, 104, 368504211003782. [Google Scholar] [CrossRef]
- Devesa, J.; Almengló, C.; Devesa, P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin. Med. Insights Endocrinol. Diabetes 2016, 9, 47–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seino, Y.; Tokumaru, H.; Tanaka, H. Growth Hormone Therapy in Achondroplasia (ACH). Clin. Pediatr. Endocrinol. 1997, 6, 99–104. [Google Scholar] [CrossRef]
- Kanazawa, H.; Tanaka, H.; Inoue, M.; Yamanaka, Y.; Namba, N.; Seino, Y. Efficacy of growth hormone therapy for patients with skeletal dysplasia. J. Bone Miner. Metab. 2003, 21, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Miccoli, M.; Bertelloni, S.; Massart, F. Height Outcome of Recombinant Human Growth Hormone Treatment in Achondroplasia Children: A Meta-Analysis. Horm. Res. Paediatr. 2016, 86, 27–34. [Google Scholar] [CrossRef]
- Harada, D.; Namba, N.; Hanioka, Y.; Ueyama, K.; Sakamoto, N.; Nakano, Y.; Izui, M.; Nagamatsu, Y.; Kashiwagi, H.; Yamamuro, M.; et al. Final adult height in long-term growth hormone-treated achondroplasia patients. Eur. J. Pediatr. 2017, 176, 873–879. [Google Scholar] [CrossRef]
- Westwood, M.; Maqsood, A.R.; Solomon, M.; Whatmore, A.J.; Davis, J.R.E.; Baxter, R.C.; Gevers, E.F.; Robinson, I.C.A.F.; Clayton, P.E. The effect of different patterns of growth hormone administration on the IGF axis and somatic and skeletal growth of the dwarf rat. Am. J. Physiol. Endocrinol. Metab. 2010, 298, E467–E476. [Google Scholar] [CrossRef] [Green Version]
- Botrus, G.; Raman, P.; Oliver, T.; Bekaii-Saab, T. Infigratinib (BGJ398): An investigational agent for the treatment of FGFR-altered intrahepatic cholangiocarcinoma. Expert Opin. Investig. Drugs 2021, 1–8. [Google Scholar] [CrossRef]
- Gudernova, I.; Vesela, I.; Balek, L.; Buchtova, M.; Dosedelova, H.; Kunova, M.; Pivnicka, J.; Jelinkova, I.; Roubalova, L.; Kozubik, A.; et al. Multikinase activity of fibroblast growth factor receptor (FGFR) inhibitors SU5402, PD173074, AZD1480, AZD4547 and BGJ398 compromises the use of small chemicals targeting FGFR catalytic activity for therapy of short-stature syndromes. Hum. Mol. Genet. 2016, 25, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Komla-Ebri, D.; Dambroise, E.; Kramer, I.; Benoist-Lasselin, C.; Kaci, N.; Le Gall, C.; Martin, L.; Busca, P.; Barbault, F.; Graus-Porta, D.; et al. Tyrosine kinase inhibitor NVP-BGJ398 functionally improves FGFR3-related dwarfism in mouse model. J. Clin. Investig. 2016, 126, 1871–1884. [Google Scholar] [CrossRef] [Green Version]
- Lacouture, M.E.; Sibaud, V.; Anadkat, M.J.; Kaffenberger, B.; Leventhal, J.; Guindon, K.; Abou-Alfa, G. Dermatologic Adverse Events Associated with Selective Fibroblast Growth Factor Receptor Inhibitors: Overview, Prevention, and Management Guidelines. Oncologist 2021, 26, e316–e326. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.; Rignol, G.; Dellugat, P.; Hartmann, G.; Sarrazy Garcia, S.; Stavenhagen, J.; Santarelli, L.; Gouze, E.; Czech, C. In vitro and in vivo characterization of Recifercept, a soluble fibroblast growth factor receptor 3, as treatment for achondroplasia. PLoS ONE 2020, 15, e0244368. [Google Scholar] [CrossRef] [PubMed]
- Garcia, S.; Dirat, B.; Tognacci, T.; Rochet, N.; Mouska, X.; Bonnafous, S.; Patouraux, S.; Tran, A.; Gual, P.; Le Marchand-Brustel, Y.; et al. Postnatal soluble FGFR3 therapy rescues achondroplasia symptoms and restores bone growth in mice. Sci. Transl. Med. 2013, 5, 203ra124. [Google Scholar] [CrossRef] [PubMed]
- Casadei, C.; Dizman, N.; Schepisi, G.; Cursano, M.C.; Basso, U.; Santini, D.; Pal, S.K.; De Giorgi, U. Targeted therapies for advanced bladder cancer: New strategies with FGFR inhibitors. Ther. Adv. Med. Oncol. 2019, 11, 1758835919890285. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.V.; Lu, D.; Gupta, P.; Jin, D.; Xin, Y.; Brady, A.; Stephan, J.-P.; Li, H.; Tien, J.; Qing, J.; et al. Preclinical pharmacokinetics of MFGR1877A, a human monoclonal antibody to FGFR3, and prediction of its efficacious clinical dose for the treatment of t (4;14)-positive multiple myeloma. Cancer Chemother. Pharmacol. 2012, 69, 1071–1078. [Google Scholar] [CrossRef]
- Legeai-Mallet, L.; Savarirayan, R. Novel therapeutic approaches for the treatment of achondroplasia. Bone 2020, 141, 115579. [Google Scholar] [CrossRef]
- Matsushita, M.; Kitoh, H.; Ohkawara, B.; Mishima, K.; Kaneko, H.; Ito, M.; Masuda, A.; Ishiguro, N.; Ohno, K. Meclozine facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated FGFR3 signaling in achondroplasia. PLoS ONE 2013, 8, e81569. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, M.; Hasegawa, S.; Kitoh, H.; Mori, K.; Ohkawara, B.; Yasoda, A.; Masuda, A.; Ishiguro, N.; Ohno, K. Meclozine promotes longitudinal skeletal growth in transgenic mice with achondroplasia carrying a gain-of-function mutation in the FGFR3 gene. Endocrinology 2015, 156, 548–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsushita, M.; Esaki, R.; Mishima, K.; Ishiguro, N.; Ohno, K.; Kitoh, H. Clinical dosage of meclozine promotes longitudinal bone growth, bone volume, and trabecular bone quality in transgenic mice with achondroplasia. Sci. Rep. 2017, 7, 7371. [Google Scholar] [CrossRef] [Green Version]
- Kitoh, H.; Matsushita, M.; Mishima, K.; Nagata, T.; Kamiya, Y.; Ueda, K.; Kuwatsuka, Y.; Morikawa, H.; Nakai, Y.; Ishiguro, N. Pharmacokinetics and safety after once and twice a day doses of meclizine hydrochloride administered to children with achondroplasia. PLoS ONE 2020, 15, e0229639. [Google Scholar] [CrossRef] [Green Version]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef]
- Yamashita, A.; Morioka, M.; Kishi, H.; Kimura, T.; Yahara, Y.; Okada, M.; Fujita, K.; Sawai, H.; Ikegawa, S.; Tsumaki, N. Statin treatment rescues FGFR3 skeletal dysplasia phenotypes. Nature 2014, 513, 507–511. [Google Scholar] [CrossRef]
- Fafilek, B.; Hampl, M.; Ricankova, N.; Vesela, I.; Balek, L.; Kunova Bosakova, M.; Gudernova, I.; Varecha, M.; Buchtova, M.; Krejci, P. Statins do not inhibit the FGFR signaling in chondrocytes. Osteoarthr. Cartil. 2017, 25, 1522–1530. [Google Scholar] [CrossRef] [Green Version]
- Hirai, T.; Chagin, A.S.; Kobayashi, T.; Mackem, S.; Kronenberg, H.M. Parathyroid hormone/parathyroid hormone-related protein receptor signaling is required for maintenance of the growth plate in postnatal life. Proc. Natl. Acad. Sci. USA 2011, 108, 191–196. [Google Scholar] [CrossRef] [Green Version]
- Ueda, K.; Yamanaka, Y.; Harada, D.; Yamagami, E.; Tanaka, H.; Seino, Y. PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 2007, 41, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Y.; Su, N.; Jin, M.; Qi, H.; Yang, J.; Li, C.; Du, X.; Luo, F.; Chen, B.; Shen, Y.; et al. Intermittent PTH (1-34) injection rescues the retarded skeletal development and postnatal lethality of mice mimicking human achondroplasia and thanatophoric dysplasia. Hum. Mol. Genet. 2012, 21, 3941–3955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, N.; Ryoo, B.-Y.; Keam, B.; Kudo, M.; Lin, C.-C.; Kunieda, F.; Ball, H.A.; Moran, D.; Komatsu, K.; Takeda, K.; et al. A phase 1 study of oral ASP5878, a selective small-molecule inhibitor of fibroblast growth factor receptors 1–4, as a single dose and multiple doses in patients with solid malignancies. Investig. New Drugs 2020, 38, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Kawamoto, T.; Iimori, Y.; Takeshita, N.; Yamagishi, Y.; Nakamura, H.; Kamohara, M.; Fujita, K.; Tanahashi, M.; Tsumaki, N. Evaluation of FGFR inhibitor ASP5878 as a drug candidate for achondroplasia. Sci. Rep. 2020, 10, 20915. [Google Scholar] [CrossRef] [PubMed]
- Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as Therapeutics. Annu. Rev. Pharmacol. Toxicol. 2017, 57, 61–79. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Nonaka, Y.; Miyakawa, S.; Fujiwara, M.; Nakamura, Y. Dual Therapeutic Action of a Neutralizing Anti-FGF2 Aptamer in Bone Disease and Bone Cancer Pain. Mol. Ther. 2016, 24, 1974–1986. [Google Scholar] [CrossRef]
- Kimura, T.; Bosakova, M.; Nonaka, Y.; Hruba, E.; Yasuda, K.; Futakawa, S.; Kubota, T.; Fafilek, B.; Gregor, T.; Abraham, S.P.; et al. An RNA aptamer restores defective bone growth in FGFR3-related skeletal dysplasia in mice. Sci. Transl. Med. 2021, 13. [Google Scholar] [CrossRef]
- Högler, W.; Ward, L.M. Neue Entwicklungen im Management der Achondroplasie. Wien. Med. Wochenschr. 2020, 170, 104–111. [Google Scholar] [CrossRef] [Green Version]
- Shuhaibar, L.C.; Kaci, N.; Egbert, J.R.; Loisay, L.; Vigone, G.; Uliasz, T.F.; Dambroise, E.; Swingle, M.R.; Honkanen, R.E.; Jaffe, L.A.; et al. The phosphatase inhibitor LB-100 acts synergistically with the NPR2 agonist BMN-111 to improve bone growth. bioRxiv 2020. [Google Scholar] [CrossRef]
Target of Action | Drug Name |
---|---|
FGFR3 | sFGFR3 (recifercept) |
Inhibitors of HMG-CoA (statins) | |
Tyrosine kinase inhibitor (infigratinib) | |
FGFR 1–4 inhibitor (ASP5878) | |
FGFR3 antibody (vofatamab) | |
NPR-B | CNP analogue (vosoritide) |
Sustained-release CNP prodrug (TransCon CNP) | |
MAPK pathway | Meclizine |
Chondrocyte nucleus | rhGH |
PTH/PTHrP |
Drug Name | Benefits for People | Benefits for Animals |
---|---|---|
Clinically used drugs | ||
Recombinant human growth hormone (rhGH) | Possibly better growth pattern in children with achondroplasia, especially in combination with l-thyroxine and surgical elongation of tibia and/or femur | Possibly better growth velocity with variable rather than continuous drug administration |
Drugs in different phases of clinical trials | ||
C-type natriuretic peptide (CNP) analog: vosoritide | Treatment targets underlying molecular pathogenesis, increasing growth velocity and height Z-score More proportional growth Resistance to natural endopeptidase No serious side effects | Increase in axial and appendicular skeleton growth Increase in the hypertrophic zone in tibial growth plates Widening of lumbar vertebral openings |
C-type natriuretic peptide prolonged-released: TransCon CNP | Long half-life, about 90 h Resistance to natural endopeptidase Prevents adverse cardiovascular effects because of long-release form Phase II of research in progress NCT04085523 | Increase in body and tail length in monkeys No adverse effect on bone quality Increase in the width of the proliferative zones in the proximal tibia |
Infigratinib (NVP-BGJ398) | No data Phase II of research in progress NCT04265651 | Increases the growth of long bones, axial and craniofacial skeleton Increases the size of foramen magnum Correction of spinal stenosis Ameliorates the defective differentiation of the chondrocyte |
Soluble recombinant human fibroblast growth factor receptor 3 (soluble FGFR3): recifercept | No data Phase II of research in progress NCT04638153 | Reduces mortality Restores skeletal bone growth Increases cortical bone thickness Decreases spinal and skull deformities Enlargement of pelvic bone Corrects metabolic alteration (helps with atypical obesity) |
Vofatamab (monoclonal antibody specific for FGFR3) | No data | No data |
Meclizine | Administered orally No data | Increases the growth of long bones, axial and skull lengths Ameliorates short stature Increases trabecular thickness |
Statin | Ambiguous data | Ambiguous data |
ASP5878 | Administered orally | Increases the growth of long bones Elongates the length of the cranial base Increases thickness of growth plate cartilage |
Parathyroid hormone (PTH) | Causes proper development of cartilage tissue Increases proliferation and differentiation of chondrocytes and mesenchymal cells, extracellular matrix synthesis | Positive effect on growth velocity, similar body length to the rest of the healthy litter Retardation of premature fusion of the skull synchondrosis Inhibition of FGFR3 activation |
Drug Name | Drawbacks for People | Drawbacks for Animals |
---|---|---|
Clinically used drugs | ||
Recombinant human growth hormone (rhGH) | Theoretical possibility of the appearance of acromegaly signs, increase in foramen magnum narrowing and spinal cord compression, but no conclusive evidence Ineffective in the case of deformation of the limbs and spine Requires daily subcutaneous injections | Increases body mass |
Drugs in different phases of clinical trials | ||
C-type natriuretic peptide (CNP) analogue: vosoritide | Mild side effects: transient changes in blood pressure Requires daily subcutaneous injections | Transient, mild hemodynamic effects |
C-type natriuretic peptide prolonged-released: TransCon CNP | No data Phase II of research in progress NCT04085523 | Dose-dependent lowering of blood pressure in mice but not in monkeys |
Infigratinib (NVP-BGJ398) | Administered in injections No data Phase II of research in progress NCT04265651 | No effect on the defect in the structure of long bones Not found |
Soluble recombinant human fibroblast growth factor receptor 3 (soluble FGFR3): recifercept | Administered in injections No data Phase II of research in progress NCT04638153 | No effect on the trabecular bone Effects are mediated only through FGF-dependent pathway No signs of toxicity Preserved fertility |
Vofatamab (monoclonal antibody specific for FGFR3) | No data | No data |
Meclizine | Phase I completed: no signs of toxicity were found | No effect on the area of foramen magnum or lumbar spinal canal Cumulative effect of 20 mg/kg—toxicity: ineffective bone growth |
Statin | Ambiguous data | Ambiguous data |
ASP5878 | Hyperphosphatemia Retinal detachment Diarrhea Elevated alanine transaminase | Slight atrophy of the corneal epithelium |
Parathyroid hormone (PTH) | Unknown long-term effects, need for further studies on the safety profile | No data |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wrobel, W.; Pach, E.; Ben-Skowronek, I. Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. Int. J. Mol. Sci. 2021, 22, 5573. https://doi.org/10.3390/ijms22115573
Wrobel W, Pach E, Ben-Skowronek I. Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. International Journal of Molecular Sciences. 2021; 22(11):5573. https://doi.org/10.3390/ijms22115573
Chicago/Turabian StyleWrobel, Wiktoria, Emilia Pach, and Iwona Ben-Skowronek. 2021. "Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review" International Journal of Molecular Sciences 22, no. 11: 5573. https://doi.org/10.3390/ijms22115573
APA StyleWrobel, W., Pach, E., & Ben-Skowronek, I. (2021). Advantages and Disadvantages of Different Treatment Methods in Achondroplasia: A Review. International Journal of Molecular Sciences, 22(11), 5573. https://doi.org/10.3390/ijms22115573