Serum Uric Acid Associates with Systemic Complement C3 Activation in Severe ANCA-Associated Renal Vasculitides
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Serum UA Levels Are Inversely Associated with Serum C3 Complement Levels, Especially in Critically Ill Patients with ANCA-Associated Renal Vasculitis
2.3. Histopathological Associations with Serum UA Levels in ANCA-Associated Renal Vasculitis
3. Discussion
4. Materials and Methods
4.1. Study Population and Data Assessment
4.2. UA Measurements
4.3. ANCA Autoantibody and Complement Measurements
4.4. Renal Histopathology
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 Revised International CHAPEL Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jennette, J.C.; Nachman, P.H. Anca Glomerulonephritis and Vasculitis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1680–1691. [Google Scholar] [CrossRef] [PubMed]
- Almaani, S.; Fussner, L.A.; Brodsky, S.; Meara, A.S.; Jayne, D. Anca-Associated Vasculitis: An Update. J. Clin. Med. 2021, 10, 1446. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kronbichler, A.; Park, D.D.; Park, Y.; Moon, H.; Kim, H.; Choi, J.H.; Choi, Y.; Shim, S.; Lyu, I.S.; et al. Neutrophil Extracellular Traps (Nets) in Autoimmune Diseases: A Comprehensive Review. Autoimmun. Rev. 2017, 16, 1160–1173. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; An, D.; Wu, Y.; Ma, P.; Guo, Y.; Tang, L. Clinicopathological Characteristics and Outcomes of Anti-Neutrophil Cytoplasmic Autoantibody-Related Renal Vasculitis with Hyperuricemia: A Retrospective Case-Control Study. Sci. Rep. 2021, 11, 2002. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.C.; Ahn, S.S.; Yoo, B.W.; Yoo, J.; Jung, S.M.; Song, J.J.; Park, Y.B.; Lee, S.W. Hyperuricemia is Associated with Decreased Renal Function and Occurrence of End-Stage Renal Disease in Patients with Microscopic Polyangiitis and Granulomatosis with Polyangiitis: A Retrospective Study. Rheumatol. Int. 2020, 40, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Immler, R.; Pruenster, M.; Sellmayr, M.; Li, C.; von Brunn, A.; von Brunn, B.; Ehmann, R.; Wolfel, R.; Napoli, M.; et al. Soluble Uric Acid Inhibits Beta2 Integrin-Mediated Neutrophil Recruitment in Innate Immunity. Blood 2022, 139, 3402–3417. [Google Scholar] [CrossRef]
- Sautin, Y.Y.; Johnson, R.J. Uric acid: The oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 2008, 27, 608–619. [Google Scholar] [CrossRef]
- Spiga, R.; Marini, M.A.; Mancuso, E.; Di Fatta, C.; Fuoco, A.; Perticone, F.; Andreozzi, F.; Mannino, G.C.; Sesti, G. Uric Acid Is Associated with Inflammatory Biomarkers and Induces Inflammation Via Activating the NF-kappab Signaling Pathway in HepG2 Cells. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1241–1249. [Google Scholar] [CrossRef]
- Stamp, L.K.; Turner, R.; Khalilova, I.S.; Zhang, M.; Drake, J.; Forbes, L.V.; Kettle, A.J. Myeloperoxidase and Oxidation of Uric Acid in Gout: Implications for the Clinical Consequences of Hyperuricaemia. Rheumatology 2014, 53, 1958–1965. [Google Scholar] [CrossRef]
- Jia, L.; Xing, J.; Ding, Y.; Shen, Y.; Shi, X.; Ren, W.; Wan, M.; Guo, J.; Zheng, S.; Liu, Y.; et al. Hyperuricemia Causes Pancreatic Beta-Cell Death And Dysfunction through NF-Kappab Signaling Pathway. PLoS ONE 2013, 8, e78284. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Baier, E.; Kluge, I.A.; Strobel, P.; Tampe, B. Intrarenal Synthesis of Complement C3 Localized to Distinct Vascular Compartments in ANCA-Associated Renal Vasculitis. J. Autoimmun. 2022, 133, 102924. [Google Scholar] [CrossRef] [PubMed]
- Tampe, D.; Baier, E.; Hakroush, S.; Tampe, B. Low Serum Levels of Complement C3c at Diagnosis Indicate Poor Outcome in Antineutrophil Cytoplasmic Antibody-Associated Glomerulonephritis. Kidney Int. Rep. 2022, 7, 660–661. [Google Scholar] [CrossRef] [PubMed]
- Brilland, B.; Wacrenier, S.; Henry, N.; Guibert, F.; Piccoli, G.B.; Augusto, J.F. Low Complement C3 Levels at Diagnosis of ANCA-Associated Glomerulonephritis, a Specific Subset of Patients to Target with Anti-C5aR Therapy?: In Response to: Hypocomplementemia at Diagnosis of Pauci-Immune Glomerulonephritis Is Associated with Advanced Histopathological Activity Index and High Probability of Treatment Resistance (Lionaki et al., Kidney International Reports, June 2021, Doi: 10.1016/J.Ekir.2021.05.043). Kidney Int. Rep. 2021, 6, 2931–2933. [Google Scholar]
- Lionaki, S.; Marinaki, S.; Liapis, G.; Kalaitzakis, E.; Fragkioudaki, S.; Kalogeropoulos, P.; Michelakis, I.; Goules, A.; Tzioufas, A.G.; Boletis, J.N. Hypocomplementemia at Diagnosis of Pauci-immune Glomerulonephritis Is Associated with Advanced Histopathological Activity Index and High Probability of Treatment Resistance. Kidney Int. Rep. 2021, 6, 2425–2435. [Google Scholar] [CrossRef]
- Scurt, F.G.; Hirschfeld, V.; Ganz, M.; Mertens, P.R.; Chatzikyrkou, C. Low Levels of Complement Factor C3 at Diagnosis Can Predict Outcome in Antineutrophil Antibody Associated Vasculitis. J. Nephrol. 2023, 36, 2281–2293. [Google Scholar] [CrossRef]
- An, L.L.; Mehta, P.; Xu, L.; Turman, S.; Reimer, T.; Naiman, B.; Connor, J.; Sanjuan, M.; Kolbeck, R.; Fung, M. Complement C5a Potentiates Uric Acid Crystal-Induced IL-1beta Production. Eur. J. Immunol. 2014, 44, 3669–3679. [Google Scholar] [CrossRef]
- Lu, J.; Mold, C.; Du Clos, T.W.; Sun, P.D. Pentraxins and Fc Receptor-Mediated Immune Responses. Front. Immunol. 2018, 9, 2607. [Google Scholar] [CrossRef]
- Alberts, A.; Klingberg, A.; Wessig, A.K.; Combes, C.; Witte, T.; Brand, K.; Pich, A.; Neumann, K. C-Reactive Protein (CRP) Recognizes Uric Acid Crystals and Recruits Proteases C1 and Masp1. Sci. Rep. 2020, 10, 6391. [Google Scholar] [CrossRef]
- Wessig, A.K.; Hoffmeister, L.; Klingberg, A.; Alberts, A.; Pich, A.; Brand, K.; Witte, T.; Neumann, K. Natural Antibodies and CRP Drive Anaphylatoxin Production by Urate Crystals. Sci. Rep. 2022, 12, 4483. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Schauer, C.; Hoffmann, M.; Herrmann, M. Why Does the Gout Attack Stop? A Roadmap for the Immune Pathogenesis of Gout. RMD Open 2015, 1, e000046. [Google Scholar] [CrossRef] [PubMed]
- Conforti-Andreoni, C.; Spreafico, R.; Qian, H.L.; Riteau, N.; Ryffel, B.; Ricciardi-Castagnoli, P.; Mortellaro, A. Uric Acid-Driven Th17 Differentiation Requires Inflammasome-Derived Il-1 and Il-18. J. Immunol. 2011, 187, 5842–5850. [Google Scholar] [CrossRef]
- Krebs, C.F.; Schmidt, T.; Riedel, J.H.; Panzer, U. T helper type 17 Cells in Immune-Mediated Glomerular Disease. Nat. Rev. Nephrol. 2017, 13, 647–659. [Google Scholar] [CrossRef]
- Schmidt, T.; Luebbe, J.; Kilian, C.; Riedel, J.H.; Hiekmann, S.; Asada, N.; Ginsberg, P.; Robben, L.; Song, N.; Kaffke, A.; et al. IL-17 Receptor C Signaling Controls Cd4(+) T(H)17 Immune Responses and Tissue Injury in Immune-Mediated Kidney Diseases. J. Am. Soc. Nephrol. 2021, 32, 3081–3098. [Google Scholar] [CrossRef]
- Schreiber, A.; Rousselle, A.; Klocke, J.; Bachmann, S.; Popovic, S.; Bontscho, J.; Schmidt-Ott, K.M.; Siffrin, V.; Jerke, U.; Ashraf, M.I.; et al. Neutrophil Gelatinase-Associated Lipocalin Protects from ANCA-Induced Gn by Inhibiting T(H)17 Immunity. J. Am. Soc. Nephrol. 2020, 31, 1569–1584. [Google Scholar] [CrossRef]
- Li, G.; Wu, X.; Zhou, C.L.; Wang, Y.M.; Song, B.; Cheng, X.B.; Dong, Q.F.; Wang, L.L.; You, S.S.; Ba, Y.M. Uric Acid as a Prognostic Factor and Critical Marker of COVID-19. Sci. Rep. 2021, 11, 17791. [Google Scholar] [CrossRef]
- Dufour, I.; Werion, A.; Belkhir, L.; Wisniewska, A.; Perrot, M.; De Greef, J.; Schmit, G.; Yombi, J.C.; Wittebole, X.; Laterre, P.F.; et al. Serum Uric Acid, Disease Severity and Outcomes in COVID-19. Crit. Care 2021, 25, 212. [Google Scholar] [CrossRef]
- Akbar, S.R.; Long, D.M.; Hussain, K.; Alhajhusain, A.; Ahmed, U.S.; Iqbal, H.I.; Ali, A.W.; Leonard, R.; Dalton, C. Hyperuricemia: An Early Marker for Severity of Illness in Sepsis. Int. J. Nephrol. 2015, 2015, 301021. [Google Scholar] [CrossRef]
- Khosla, U.M.; Zharikov, S.; Finch, J.L.; Nakagawa, T.; Roncal, C.; Mu, W.; Krotova, K.; Block, E.R.; Prabhakar, S.; Johnson, R.J. Hyperuricemia Induces Endothelial Dysfunction. Kidney Int. 2005, 67, 1739–1742. [Google Scholar] [CrossRef] [PubMed]
- Awadallah, S. Protein Antioxidants in Thalassemia. Adv. Clin. Chem. 2013, 60, 85–128. [Google Scholar] [PubMed]
- Wang, Y.; Yang, Z.; Wu, J.; Xie, D.; Yang, T.; Li, H.; Xiong, Y. Associations of Serum Iron and Ferritin with Hyperuricemia and Serum Uric Acid. Clin. Rheumatol. 2020, 39, 3777–3785. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Sha, Y.; Li, Y.; Rui, Z.; Si, C.; Zhou, Y.; Yan, F.; Wang, B.; Hu, J.; Han, X.; et al. Serum Iron and Ferritin Levels Are Correlated with Complement C3. Biol. Trace Elem. Res. 2021, 199, 2482–2488. [Google Scholar] [CrossRef] [PubMed]
- Faria, B.; Gaya da Costa, M.; Poppelaars, F.; Franssen, C.F.M.; Pestana, M.; Berger, S.P.; Daha, M.R.; Gaillard, C.; Seelen, M.A. Administration of Intravenous Iron Formulations Induces Complement Activation In-Vivo. Front. Immunol. 2019, 10, 1885. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fang, L.; Jiang, L.; Wen, P.; Cao, H.; He, W.; Dai, C.; Yang, J. Uric Acid Induces Renal Inflammation Via Activating Tubular NF-Kappab Signaling Pathway. PLoS ONE 2012, 7, e39738. [Google Scholar]
- Kronbichler, A.; Kerschbaum, J.; Grundlinger, G.; Leierer, J.; Mayer, G.; Rudnicki, M. Evaluation and Validation of Biomarkers in Granulomatosis with Polyangiitis and Microscopic Polyangiitis. Nephrol. Dial. Transplant. 2016, 31, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, N.; Erlandsson, E.; Gunnarsson, L.; Pettersson, A.; Ohlsson, S. Monocyte Chemoattractant Protein-1 in Antineutrophil Cytoplasmic Autoantibody-Associated Vasculitis: Biomarker Potential and Association with Polymorphisms in the Mcp-1 and the Cc Chemokine Receptor-2 Gene. Mediat. Inflamm. 2018, 2018, 6861257. [Google Scholar] [CrossRef] [PubMed]
- Bulanov, N.M.; Serova, A.G.; Kuznetsova, E.I.; Bulanova, M.L.; Novikov, P.I.; Kozlovskaya, L.V.; Moiseev, S.V. Kidney Injury Molecules (Kim-1, Mcp-1) and Type IV Collagen in the Assessment of Activity of Antineutrophil Cytoplasmic Antibody-Associated Glomerulonephritis. Ter. Arkh. 2017, 89, 48–55. [Google Scholar] [CrossRef]
- Ohlsson, S.; Bakoush, O.; Tencer, J.; Torffvit, O.; Segelmark, M. Monocyte Chemoattractant Protein 1 Is a Prognostic Marker in ANCA-Associated Small Vessel Vasculitis. Mediat. Inflamm. 2009, 2009, 584916. [Google Scholar] [CrossRef]
- Tam, F.W.; Sanders, J.S.; George, A.; Hammad, T.; Miller, C.; Dougan, T.; Cook, H.T.; Kallenberg, C.G.; Gaskin, G.; Levy, J.B.; et al. Urinary Monocyte Chemoattractant Protein-1 (Mcp-1) Is a Marker of Active Renal Vasculitis. Nephrol. Dial. Transplant. 2004, 19, 2761–2768. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Korsten, P.; Strobel, P.; Tampe, B. Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in Anca-Associated Glomerulonephritis. Int. J. Mol. Sci. 2021, 22, 6588. [Google Scholar] [CrossRef]
- Korsten, P.; Baier, E.; Hakroush, S.; Tampe, B. C-Reactive Protein Levels Are Associated with Complement C4 Deposits and Interstitial Arteritis in ANCA-Associated Renal Vasculitis. Int. J. Mol. Sci. 2023, 24, 3072. [Google Scholar] [CrossRef] [PubMed]
- Baier, E.; Tampe, D.; Kluge, I.A.; Hakroush, S.; Tampe, B. Implication of Platelets and Complement C3 as Link between Innate Immunity and Tubulointerstitial Injury in Renal Vasculitis with Mpo-Anca Seropositivity. Front. Immunol. 2022, 13, 1054457. [Google Scholar] [CrossRef] [PubMed]
- Mukhtyar, C.; Lee, R.; Brown, D.; Carruthers, D.; Dasgupta, B.; Dubey, S.; Flossmann, O.; Hall, C.; Hollywood, J.; Jayne, D.; et al. Modification and validation of the Birmingham Vasculitis Activity Score (Version 3). Ann. Rheum. Dis. 2009, 68, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A New Simplified Acute Physiology Score (Saps Ii) Based on a European/North American Multicenter Study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Baier, E.; Tampe, D.; Hakroush, S.; Tampe, B. Low Levels of Hemoglobin Associate with Critical Illness and Predict Disease Course in Patients with ANCA-Associated Renal Vasculitis. Sci. Rep. 2022, 12, 18736. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A New Equation to Estimate Glomerular Filtration Rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Hakroush, S.; Kluge, I.A.; Strobel, P.; Korsten, P.; Tampe, D.; Tampe, B. Systematic Histological Scoring Reveals More Prominent Interstitial Inflammation in Myeloperoxidase-Anca Compared to Proteinase 3-Anca Glomerulonephritis. J. Clin. Med. 2021, 10, 1231. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Clahsen-van Groningen, M.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasinska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
Units | Total n = 34 | CI n = 19 | MPO-ANCA n = 21 | PR3-ANCA n = 13 | p Value | |
---|---|---|---|---|---|---|
Clinical data | ||||||
BMI | kg/m2 | 26 ± 5 | 25 ± 4 | 28 ± 4 | 24 ± 4 | 0.0417 |
Female sex | n (%) | 14 (41.2) | 7 (36.8) | 7 (33.3) | 7 (53.8) | 0.2376 |
Age | years | 69 (57–75) | 72 (61–76) | 66 (52–71) | 74 (64–76) | 0.1002 |
Sys. BP at kidney biopsy | mmHg | 129 ± 12 | 129 ± 9 | 130 ± 12 | 127 ± 14 | 0.5754 |
Dia. BP at kidney biopsy | mmHg | 74 ± 12 | 73 ± 12 | 76 ± 9 | 71 ± 16 | 0.4468 |
BVAS | Score | 18 ± 4 | 18 ± 4 | 18 ± 4 | 18 ± 2 | 0.3964 |
SAPS II | Score | 26 (21–32) | 32 (25–36) | 24 (21–33) | 28 (22–33) | 0.3041 |
Hyperuricemia | n (%) | 9 (26.5) | 7 (36.8) | 6 (28.6) | 3 (23.1) | 0.6357 |
Decompensated DM | n (%) | 2 (5.9) | 1 (5.3) | 2 (9.5) | 0 (0) | 0.2514 |
Arterial hypertension | n (%) | 29 (85.3) | 15 (78.9) | 20 (95.2) | 9 (69.2) | 0.0375 |
Current alcohol abuse | n (%) | 3 (8.8) | 1 (5.3) | 3 (14.3) | 0 (0) | 0.1535 |
Serum parameters | ||||||
Albumin | g/dL | 2.6 ± 0.6 | 2.4 ± 0.7 | 2.8 ± 0.7 | 2.5 ± 0.6 | 0.6458 |
ALT | IU/L | 18 (9–44) | 24 (10–47) | 18 (11–27) | 22 (6–55) | 0.9396 |
AP | IU/L | 84 (68–108) | 84 (68–124) | 87 (73–106) | 73 (58–138) | 0.3290 |
AST | IU/L | 26 (19–32) | 27 (19–35) | 27 (20–31) | 20 (16–34) | 0.1726 |
BUN | mg/dL | 53 ± 28 | 65 ± 25 | 54 ± 26 | 51 ± 32 | 0.8396 |
C3 | g/L | 1.2 ± 0.3 | 1.1 ± 0.3 | 1.2 ± 0.3 | 1.2 ± 0.3 | 0.7841 |
C4 | g/L | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.3 ± 0.1 | 0.2 ± 0.1 | 0.7469 |
C-reactive protein | mg/dL | 61 (28–94) | 73 (47–104) | 64 (32–114) | 33 (15–75) | 0.1288 |
Serum creatinine | mg/dL | 2.9 (1.4–4.9) | 4.2 (2.0–6.3) | 3.9 (1.4–5.0) | 2.0 (0.9–4.5) | 0.8064 |
eGFR | mL/min/1.73 m2 | 17 (9–49) | 12 (9–25) | 16 (9–43) | 25 (12–85) | 0.9609 |
Ferritin | µg/L | 375 (268–1255) | 407 (336–1869) | 362 (172–972) | 407 (306–1915) | 0.2844 |
Haptoglobin | g/L | 2.2 ± 1.2 | 2.1 ± 1.3 | 2.5 ± 0.2 | 2.0 ± 1.6 | 0.6690 |
Hemoglobin | g/dL | 9.5 (8.1–10.6) | 8.3 (7.7–9.4) | 9.9 (8.6–11.1) | 9.3 (7.8–10.2) | 0.2898 |
Iron | µmol/L | 10.9 ± 6.5 | 11.2 ± 6.7 | 12.9 ± 7.1 | 7.6 ± 3.9 | 0.1468 |
Lactate dehydrogenase | IU/L | 264 (216–291) | 263 (183–314) | 230 (186–293) | 268 (250–299) | 0.2991 |
MPO-ANCA | IU/mL | 27 (0.2–90) | 57 (0.2–123) | 71 (28–129) | 0.2 (0.2–0.2) | 0.0055 |
Platelets | 103/µL | 279 (177–383) | 213 (150–321) | 253 (169–358) | 320 (191–464) | 0.5088 |
PR3-ANCA | IU/mL | 0.5 (0.2–32) | 0.4 (0.2–32) | 0.2 (0.2–0.4) | 35 (22–86) | 0.0008 |
Procalcitonin | mg/dL | 0.2 (0.1–0.5) | 0.3 (0.2–0.6) | 0.2 (0.1–0.6) | 0.2 (0.1–0.5) | 0.8643 |
Uric acid | µg/L | 6.8 ± 1.7 | 6.8 ± 1.7 | 6.8 ± 1.7 | 6.4 ± 1.4 | 0.9999 |
WBC | k/µL | 12 ± 5 | 12 ± 5 | 11 ± 4 | 13 ± 6 | 0.9838 |
Treatment | ||||||
XO inhibitors | n (%) | 5 (14.7) | 5 (26.3) | 4 (19.0) | 1 (7.7) | 0.3636 |
Diuretics | n (%) | 18 (52.9) | 11 (57.9) | 14 (66.7) | 4 (30.8) | 0.0416 |
Antihypertensives | n (%) | 2 (5.9) | 2 (10.5) | 3 (4.3) | 1 (7.7) | 0.5620 |
Statins | n (%) | 6 (17.6) | 4 (21.1) | 3 (14.3) | 3 (23.1) | 0.5135 |
Cyclophosphamide | n (%) | 19 (55.9) | 11 (57.9) | 12 (57.1) | 7 (53.8) | 0.8508 |
Steroid pulse | n (%) | 25 (73.5) | 17 (89.5) | 16 (76.2) | 9 (69.2) | 0.6549 |
Rituximab | n (%) | 18 (52.9) | 7 (36.4) | 11 (52.4) | 7 (53.8) | 0.9337 |
Plasma exchange | n (%) | 17 (50.0) | 12 (63.2) | 10 (47.6) | 7 (53.8) | 0.7242 |
KRT | n (%) | 13 (38.2) | 12 (63.2) | 8 (38.1) | 5 (38.5) | 0.9830 |
Glomerular lesions | ||||||
Normal | % of total | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.6 ± 0.2 | 0.0094 |
Necrosis | % of total (IQR) | 0.3 (0.0–0.5) | 0.2 (0.0–0.7) | 0.3 (0.0–0.6) | 0.2 (0.1–0.5) | 0.8113 |
Crescents | % of total | 0.4 ± 0.3 | 0.4 ± 0.3 | 0.5 ± 0.3 | 0.3 ± 0.3 | 0.2187 |
Sclerosis | % of total (IQR) | 0.04 (0.0–0.3) | 0.05 (0.0–0.3) | 0.04 (0.0–0.4) | 0.04 (0.0–0.2) | 0.4053 |
Banff lesions | ||||||
ah (0/1/2/3/x) | Score | 22/5/2/2/3 | 15/2/0/1/1 | 11/2/1/2/5 | 10/1/1/0/1 | 0.5009 |
ci (0/1/2/3/x) | Score | 5/16/11/2/0 | 2/9/5/2/1 | 1/7/7/2/4 | 4/6/3/0/0 | 0.0901 |
ct (0/1/2/3/x) | Score | 0/21/9/1/3 | 2/12/3/1/1 | 0/10/6/1/4 | 2/8/2/0/1 | 0.2450 |
g (0/1/2/3/x) | Score | 6/2/20/4/2 | 5/1/10/2/1 | 6/0/9/2/4 | 0/2/8/2/1 | 0.0766 |
i (0/1/2/3/x) | Score | 25/7/0/0/2 | 12/6/0/0/1 | 12/5/0/0/4 | 10/2/0/0/1 | 0.4804 |
i-IFTA (0/1/2/3/x) | Score | 0/7/9/16/2 | 0/1/8/8/2 | 0/3/6/8/4 | 0/1/2/8/2 | 0.5958 |
ptc (0/1/2/3/x) | Score | 28/4/0/0/2 | 15/3/0/0/1 | 16/1/0/0/4 | 10/2/0/0/1 | 0.4207 |
t (0/1/2/3/x) | Score | 9/19/3/1/2 | 4/10/3/1/1 | 4/9/3/1/4 | 4/8/0/0/1 | 0.3128 |
ti (0/1/2/3/x) | Score | 8/18/6/0/2 | 5/9/4/0/1 | 2/10/5/0/4 | 5/6/1/0/1 | 0.1608 |
t-IFTA (0/1/2/3/x) | Score | 9/23/0/0/2 | 6/12/0/0/1 | 4/13/0/0/4 | 5/7/0/0/1 | 0.3799 |
v (0/1/2/3/x) | Score | 18/4/0/5/7 | 9/4/0/5/1 | 9/2/0/3/7 | 9/0/0/2/2 | 0.3509 |
C3c deposits | ||||||
Glomerular tuft | n (%) | 23 (67.6) | 15 (78.9) | 11 (52.4) | 10 (76.9) | |
Interstitial arteries | n (%) | 1 (2.9) | 0 (0) | 1 (4.8) | 0 (0) | |
Peritubular capilliaries | n (%) | 22 (64.7) | 14 (73.7) | 11 (52.4) | 9 (69.2) | |
Venules | n (%) | 0 (0.0) | 0 (0) | 0 (0) | 0 (0) | |
Tubular | n (%) | 11 (32.4) | 5 (26.3) | 7 (33.3) | 3 (23.1) | 0.6467 |
C4d deposits | ||||||
Glomerular tuft | n (%) | 17 (50.0) | 12 (63.2) | 9 (42.9) | 6 (46.2) | |
Interstitial arteries | n (%) | 11 (32.4) | 8 (42.1) | 6 (28.6) | 4 (30.8) | |
Peritubular capilliaries | n (%) | 15 (44.1) | 10 (52.6) | 8 (38.1) | 5 (38.5) | |
Venules | n (%) | 9 (26.5) | 7 (36.4) | 6 (28.6) | 2 (15.4) | |
Tubular | n (%) | 23 (67.6) | 14 (73.7) | 13 (61.9) | 8 (61.5) | 0.9621 |
Variable | Pearson’s/Spearman’s | Univariable | Stepwise Multivariable | |||
---|---|---|---|---|---|---|
r | p Value | β | p Value | β | p Value | |
Total | ||||||
C3 | −0.595 | 0.002 | −0.595 | 0.002 | −0.462 | 0.005 |
BMI | 0.426 | 0.030 | 0.426 | 0.030 | −0.184 | 0.241 |
Albumin | 0.426 | 0.078 | 0.426 | 0.078 | 0.209 | 0.181 |
CI | ||||||
C3 | −0.703 | 0.007 | −0.577 | 0.010 | −0.700 | <0.001 |
Diuretics | 0.434 | 0.063 | 0.500 | 0.029 | 0.240 | 0.224 |
XO inhibitors | 0.371 | 0.118 | 0.444 | 0.057 | 0.284 | 0.115 |
BMI | 0.734 | 0.010 | 0.453 | 0.051 | 0.429 | 0.009 |
Albumin | 0.500 | 0.098 | 0.340 | 0.154 | 0.194 | 0.289 |
MPO-ANCA | ||||||
Ferritin | 0.907 | 0.001 | 0.502 | 0.020 | 0.598 | 0.004 |
Platelets | −0.478 | 0.033 | −0.472 | 0.031 | −0.256 | 0.170 |
XO inhibitors | 0.522 | 0.015 | 0.443 | 0.044 | 0.360 | 0.076 |
C3 | −0.597 | 0.015 | −0.462 | 0.035 | −0.244 | 0.203 |
ALT | −0.402 | 0.123 | −0.308 | 0.174 | −0.359 | 0.049 |
BMI | 0.363 | 0.167 | 0.301 | 0.185 | 0.125 | 0.561 |
PR3-ANCA | ||||||
Albumin | 0.555 | 0.154 | 0.461 | 0.113 | 0.267 | 0.509 |
C3 | −0.596 | 0.091 | −0.506 | 0.078 | −0.433 | 0.302 |
LDH | 0.480 | 0.191 | 0.447 | 0.126 | 0.112 | 0.775 |
PEX | −0.454 | 0.138 | −0.376 | 0.205 | 0.543 | 0.430 |
KRT | −0.465 | 0.127 | −0.398 | 0.178 | −0.292 | 0.590 |
BMI | 0.553 | 0.097 | 0.355 | 0.234 | 0.451 | 0.251 |
CYC | −0.536 | 0.073 | −0.439 | 0.133 | −0.413 | 0.364 |
Variable | Pearson’s/Spearman’s | Univariable | Stepwise Multivariable | |||
---|---|---|---|---|---|---|
r | p Value | β | p Value | β | p Value | |
Total | ||||||
t-IFTA | 0.524 | 0.002 | 0.508 | 0.003 | 0.494 | 0.008 |
C4d venules | 0.380 | 0.067 | 0.426 | 0.038 | 0.500 | 0.007 |
Sclerosis | 0.315 | 0.069 | −0.066 | 0.713 | ||
CI | ||||||
t-IFTA | 0.443 | 0.066 | 0.489 | 0.040 | 0.488 | 0.034 |
C4d venules | 0.356 | 0.199 | 0.403 | 0.136 | 0.513 | 0.016 |
C4d ptc | 0.541 | 0.042 | 0.480 | 0.070 | 0.180 | 0.472 |
i | −0.443 | 0.065 | −0.370 | 0.131 | −0.470 | 0.021 |
Sclerosis | 0.399 | 0.091 | 0.399 | 0.091 | 0.416 | 0.046 |
MPO-ANCA | ||||||
t-IFTA | 0.590 | 0.008 | 0.533 | 0.019 | 0.488 | 0.029 |
C3c tubules | 0.360 | 0.213 | 0.187 | 0.430 | 0.093 | 0.672 |
t | 0.306 | 0.202 | 0.281 | 0.244 | 0.046 | 0.848 |
PR3-ANCA | ||||||
ci | 0.484 | 0.107 | 0.626 | 0.022 | 0.626 | 0.022 |
ti | 0.307 | 0.325 | 0.402 | 0.195 | −0.203 | 0.597 |
t-IFTA | 0.358 | 0.283 | 0.504 | 0.095 | 0.032 | 0.934 |
C4d venules | 0.518 | 0.222 | 0.481 | 0.190 | 0.317 | 0.189 |
Sclerosis | 0.429 | 0.144 | 0.429 | 0.144 | 0.462 | 0.043 |
ptc | −0.324 | 0.364 | −0.164 | 0.611 | ||
i | −0.324 | 0.364 | −0.164 | 0.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baier, E.; Kluge, I.A.; Hakroush, S.; Korsten, P.; Tampe, B. Serum Uric Acid Associates with Systemic Complement C3 Activation in Severe ANCA-Associated Renal Vasculitides. Int. J. Mol. Sci. 2024, 25, 713. https://doi.org/10.3390/ijms25020713
Baier E, Kluge IA, Hakroush S, Korsten P, Tampe B. Serum Uric Acid Associates with Systemic Complement C3 Activation in Severe ANCA-Associated Renal Vasculitides. International Journal of Molecular Sciences. 2024; 25(2):713. https://doi.org/10.3390/ijms25020713
Chicago/Turabian StyleBaier, Eva, Ingmar Alexander Kluge, Samy Hakroush, Peter Korsten, and Björn Tampe. 2024. "Serum Uric Acid Associates with Systemic Complement C3 Activation in Severe ANCA-Associated Renal Vasculitides" International Journal of Molecular Sciences 25, no. 2: 713. https://doi.org/10.3390/ijms25020713