Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of Recipients
2.2. Mutations Identified before HSCT
2.3. Mutations Identified after HSCT
2.4. Higher Incidence of Clonal Hematopoiesis (CH) Development in Transplanted Hematopoietic Cells
2.5. Telomere Length
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Identification of Mutations Associated with CH
4.2.1. Sequencing
4.2.2. Data Preprocessing, Quality Control Analysis, and Control Cohort
4.2.3. Somatic Mutation Calling and Filtering
4.3. Telomere Length Analysis
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pronk, E.; Raaijmakers, M. The mesenchymal niche in MDS. Blood 2019, 133, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Jekarl, D.W.; Kim, J.; Kwon, A.; Choi, H.; Lee, S.; Kim, Y.J.; Kim, H.J.; Kim, Y.; Oh, I.H.; et al. Genetic and epigenetic alterations of bone marrow stromal cells in myelodysplastic syndrome and acute myeloid leukemia patients. Stem Cell Res. 2015, 14, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, Y.; Kang, D.; Kwon, A.; Kim, J.; Min Kim, J.; Park, S.S.; Kim, Y.J.; Min, C.K.; Kim, M. Common and different alterations of bone marrow mesenchymal stromal cells in myelodysplastic syndrome and multiple myeloma. Cell Prolif. 2020, 53, e12819. [Google Scholar] [CrossRef] [PubMed]
- Kouroukli, O.; Symeonidis, A.; Foukas, P.; Maragkou, M.K.; Kourea, E.P. Bone Marrow Immune Microenvironment in Myelodysplastic Syndromes. Cancers 2022, 14, 5656. [Google Scholar] [CrossRef]
- Raaijmakers, M.H.; Mukherjee, S.; Guo, S.; Zhang, S.; Kobayashi, T.; Schoonmaker, J.A.; Ebert, B.L.; Al-Shahrour, F.; Hasserjian, R.P.; Scadden, E.O.; et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010, 464, 852–857. [Google Scholar] [CrossRef]
- Binder, V.; Li, W.; Faisal, M.; Oyman, K.; Calkins, D.L.; Shaffer, J.; Teets, E.M.; Sher, S.; Magnotte, A.; Belardo, A.; et al. Microenvironmental control of hematopoietic stem cell fate via CXCL8 and protein kinase C. Cell Rep. 2023, 42, 112528. [Google Scholar] [CrossRef]
- Dong, L.; Yu, W.M.; Zheng, H.; Loh, M.L.; Bunting, S.T.; Pauly, M.; Huang, G.; Zhou, M.; Broxmeyer, H.E.; Scadden, D.T.; et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 2016, 539, 304–308. [Google Scholar] [CrossRef]
- Khaddour, K.; Hana, C.K.; Mewawalla, P. Hematopoietic Stem Cell Transplantation. 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK536951 (accessed on 1 September 2024).
- Flynn, C.M.; Kaufman, D.S. Donor cell leukemia: Insight into cancer stem cells and the stem cell niche. Blood 2007, 109, 2688–2692. [Google Scholar] [CrossRef]
- Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 2015, 126, 9–16. [Google Scholar] [CrossRef]
- Midic, D.; Rinke, J.; Perner, F.; Müller, V.; Hinze, A.; Pester, F.; Landschulze, J.; Ernst, J.; Gruhn, B.; Matziolis, G.; et al. Prevalence and dynamics of clonal hematopoiesis caused by leukemia-associated mutations in elderly individuals without hematologic disorders. Leukemia 2020, 34, 2198–2205. [Google Scholar] [CrossRef]
- Laconi, E.; Marongiu, F.; De Gregori, J. Cancer as a disease of old age: Changing mutational and microenvironmental landscapes. Br. J. Cancer. 2020, 122, 943–952. [Google Scholar] [CrossRef] [PubMed]
- Walkley, C.R.; Olsen, G.H.; Dworkin, S.; Fabb, S.A.; Swann, J.; McArthur, G.A.; Westmoreland, S.V.; Chambon, P.; Scadden, D.T.; Purton, L.E. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007, 129, 1097–1110. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.; Dolinska, M.; Sandhow, L.; Kondo, M.; Johansson, A.S.; Bouderlique, T.; Zhao, Y.; Li, X.; Dimitriou, M.; Rassidakis, G.Z.; et al. Sipa1 deficiency-induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Adv. 2018, 2, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W. Accelerated telomere shortening in bone-marrow recipients. Lancet 1998, 351, 153–154. [Google Scholar] [CrossRef]
- Lee, J.J.; Kook, H.; Chung, I.J.; Kim, H.J.; Park, M.R.; Kim, C.J.; Nah, J.A.; Hwang, T.J. Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transpl. 1999, 24, 411–415. [Google Scholar] [CrossRef]
- Robertson, J.D.; Testa, N.G.; Russell, N.H.; Jackson, G.; Parker, A.N.; Milligan, D.W.; Stainer, C.; Chakrabarti, S.; Dougal, M.; Chopra, R. Accelerated telomere shortening following allogeneic transplantation is independent of the cell source and occurs within the first year post transplant. Bone Marrow Transpl. 2001, 27, 1283–1286. [Google Scholar] [CrossRef]
- Gadalla, S.M.; Savage, S.A. Telomere biology in hematopoiesis and stem cell transplantation. Blood Rev. 2011, 25, 261–269. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Choi, H.; Kwon, A.; Jekarl, D.W.; Lee, S.; Jang, W.; Chae, H.; Kim, J.R.; Kim, J.M.; et al. Ubiquitin C decrement plays a pivotal role in replicative senescence of bone marrow mesenchymal stromal cells. Cell Death Dis. 2018, 9, 139. [Google Scholar] [CrossRef]
- Kim, M.; Rhee, J.K.; Choi, H.; Kwon, A.; Kim, J.; Lee, G.D.; Jekarl, D.W.; Lee, S.; Kim, Y.; Kim, T.M. Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing. Sci. Rep. 2017, 7, 14508. [Google Scholar] [CrossRef]
- Wilk, C.M.; Manz, M.G.; Boettcher, S. Clonal hematopoiesis in hematopoietic stem cell transplantation. Curr. Opin. Hematol. 2021, 28, 94–100. [Google Scholar] [CrossRef]
- Frick, M.; Chan, W.; Arends, C.M.; Hablesreiter, R.; Halik, A.; Heuser, M.; Michonneau, D.; Blau, O.; Hoyer, K.; Christen, F.; et al. Role of Donor Clonal Hematopoiesis in Allogeneic Hematopoietic Stem-Cell Transplantation. J. Clin. Oncol. 2019, 37, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.J.; Kim, H.T.; Zhao, L.; Murdock, H.M.; Hambley, B.; Ogata, A.; Madero-Marroquin, R.; Wang, S.; Green, L.; Fleharty, M.; et al. Donor Clonal Hematopoiesis and Recipient Outcomes After Transplantation. J. Clin. Oncol. 2022, 40, 189–201. [Google Scholar] [CrossRef]
- Nawas, M.T.; Schetelig, J.; Damm, F.; Levine, R.L.; Perales, M.A.; Giralt, S.A.; Van Den Brink, M.R.; Arcila, M.E.; Zehir, A.; Papaemmanuil, E.; et al. The clinical implications of clonal hematopoiesis in hematopoietic cell transplantation. Blood Rev. 2021, 46, 100744. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.J.; Kennedy, J.A.; Nikiforow, S.; Kuo, F.C.; Alyea, E.P.; Ho, V.; Ritz, J.; Soiffer, R.; Antin, J.H.; Lindsley, R.C. Donor-engrafted CHIP is common among stem cell transplant recipients with unexplained cytopenias. Blood 2017, 130, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, S.; Wilk, C.M.; Singer, J.; Beier, F.; Burcklen, E.; Beisel, C.; Ventura Ferreira, M.S.; Gourri, E.; Gassner, C.; Frey, B.M.; et al. Clonal hematopoiesis in donors and long-term survivors of related allogeneic hematopoietic stem cell transplantation. Blood 2020, 135, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Lu, C.; Wang, J.; McLellan, M.D.; Johnson, K.J.; Wendl, M.C.; McMichael, J.F.; Schmidt, H.K.; Yellapantula, V.; Miller, C.A.; et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat. Med. 2014, 20, 1472–1478. [Google Scholar] [CrossRef] [PubMed]
- Hormaechea-Agulla, D.; Matatall, K.A.; Le, D.T.; Kain, B.; Long, X.; Kus, P.; Jaksik, R.; Challen, G.A.; Kimmel, M.; King, K.Y. Chronic infection drives Dnmt3a-loss-of-function clonal hematopoiesis via IFNγ signaling. Cell Stem Cell. 2021, 28, 1428–1442.e6. [Google Scholar] [CrossRef]
- Caiado, F.; Kovtonyuk, L.V.; Gonullu, N.G.; Fullin, J.; Boettcher, S.; Manz, M.G. Aging drives Tet2 + /- clonal hematopoiesis via IL-1 signaling. Blood 2023, 141, 886–903. [Google Scholar] [CrossRef]
- Heumüller, A.; Wehrle, J.; Stosch, J.; Niemöller, C.; Bleul, S.; Waterhouse, M.; Uhl, D.; Metzeler, K.H.; Lübbert, M.; Duyster, J.; et al. Clonal hematopoiesis of indeterminate potential in older patients having received an allogeneic stem cell transplantation from young donors. Bone Marrow Transpl. 2020, 55, 665–668. [Google Scholar] [CrossRef]
- Wong, T.N.; Miller, C.A.; Jotte, M.R.; Bagegni, N.; Baty, J.D.; Schmidt, A.P.; Cashen, A.F.; Duncavage, E.J.; Helton, N.M.; Fiala, M.; et al. Cellular stressors contribute to the expansion of hematopoietic clones of varying leukemic potential. Nat. Commun. 2018, 9, 455. [Google Scholar] [CrossRef]
- Husby, S.; Favero, F.; Nielsen, C.; Sørensen, B.S.; Bæch, J.; Grell, K.; Hansen, J.W.; Rodriguez-Gonzalez, F.G.; Haastrup, E.K.; Fischer-Nielsen, A.; et al. Clinical impact of clonal hematopoiesis in patients with lymphoma undergoing ASCT: A national population-based cohort study. Leukemia 2020, 34, 3256–3268. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Song, H.; Choi, S.Y.; Koh, Y.; Ryu, G.; Park, H.E.; Yoon, J.W.; Kim, M.J.; Chung, S.; Bae, J.H.; et al. Impact of clonal haematopoiesis on atherosclerotic cardiovascular disease according to low-density lipoprotein cholesterol levels in general population. Eur. J. Prev. Cardiol. 2024, 31, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
Cases | Sex | Age (Years) | Bridging Chemotherapy | Worst Subtypes | Donor | CI | aGVHD | cGVHD | GCV | Sampling Time | Relapse | Survival | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R | D | Post-Transplant Years | |||||||||||
R1 | F | 26 | 20 | none | MDS-EB−1 | MSD | RIC | none | none | none | 5.2 | none | alive (11.9) |
R2 | M | 43 | 39 | DEC | MDS-EB−1 | MSD | MAC | 1 | severe | none | 6.7 | none | alive (13.4) |
R3 | M | 30 | 67 | DEC | MDS/AML | HID | MAC | 2 | moderate | none | 6.0 | none | alive (12.6) |
R4 | M | 64 | 64 | none | MDS-EB−1 | MSD | RIC | 2 | mild | none | 6.1 | none | alive (12.1) |
R5 | M | 41 | 46 | DEC | MDS-EB−2 | HID | MAC | 2 | severe | none | 5.8 | none | dead (8.3) |
R6 | F | 38 | 36 | AZA | MDS-EB−1 | MSD | MAC | 2 | none | none | 2.5 | relapse (10.2) | alive (10.3) |
R7 | F | 37 | 39 | DEC | MDS-MLD | MSD | RIC | 0 | mild | none | 5.4 | none | alive (12.1) |
R8 | F | 42 | 38 | DEC | MDS-EB−1 | MSD | MAC | none | severe | yes | 7.0 | none | alive (13.3) |
R9 | M | 62 | 24 | AZA + DEC | MDS/AML | HID | MAC | 2 | moderate | none | 7.2 | none | alive (13.6) |
R10 | F | 55 | 46 | AZA | MDS-EB−2 | MSD | RIC | none | moderate | none | 8.3 | none | alive (14.5) |
R11 | M | 47 | 18 | AZA | MDS-MLD | HID | MAC | none | moderate | none | 7.2 | none | alive (13.5) |
R12 | M | 54 | 49 | none | MDS-EB−1 | MSD | RIC | 2 | none | none | 4.0 | none | alive (11.1) |
R13 | M | 44 | 46 | none | MDS-EB−1 | MSD | RIC | none | mild | none | 5.1 | none | alive (11.8) |
R14 | M | 41 | 36 | none | MDS-MLD | MSD | MAC | none | none | none | 8.4 | none | alive (14.4) |
R15 | M | 33 | 36 | none | MDS-EB−1 | MSD | MAC | none | none | none | 8.3 | none | alive (14.4) |
R16 | M | 40 | 38 | none | MDS-EB−2 | HID | MAC | none | none | none | 6.0 | none | alive (12.3) |
R17 | M | 58 | 26 | AZA | MDS-EB−2 | MUD | MAC | none | none | none | 3.0 | none | alive (9.0) |
R18 | M | 59 | 55 | AZA | MDS-U | MSD | RIC | 2 | moderate | none | 5.2 | none | alive (11.8) |
R19 | M | 56 | 20 | none | MDS-EB−1 | HID | RIC | none | none | none | 5.6 | none | alive (11.7) |
R20 | M | 64 | 59 | AZA | MDS-EB−2 | MSD | MAC | 3 | mild | none | 6.1 | none | alive (12.1) |
R21 | F | 50 | 43 | DEC | MDS-MLD | MSD | RIC | 4 | severe | none | 5.6 | none | alive (12.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Kang, D.; Kim, H.S.; Lee, J.-M.; Park, S.; Kwag, D.; Lee, C.; Hong, Y.; Na, D.; Koh, Y.; et al. Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. Int. J. Mol. Sci. 2024, 25, 10258. https://doi.org/10.3390/ijms251910258
Kim M, Kang D, Kim HS, Lee J-M, Park S, Kwag D, Lee C, Hong Y, Na D, Koh Y, et al. Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. International Journal of Molecular Sciences. 2024; 25(19):10258. https://doi.org/10.3390/ijms251910258
Chicago/Turabian StyleKim, Myungshin, Dain Kang, Hoon Seok Kim, Jong-Mi Lee, Silvia Park, Daehun Kwag, Chaeyeon Lee, Yuna Hong, Duyeon Na, Youngil Koh, and et al. 2024. "Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics" International Journal of Molecular Sciences 25, no. 19: 10258. https://doi.org/10.3390/ijms251910258
APA StyleKim, M., Kang, D., Kim, H. S., Lee, J.-M., Park, S., Kwag, D., Lee, C., Hong, Y., Na, D., Koh, Y., Sun, C. H., An, H., Kim, Y.-J., & Kim, Y. (2024). Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. International Journal of Molecular Sciences, 25(19), 10258. https://doi.org/10.3390/ijms251910258