The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Treatments
2.3. Ophthalmologic Examinations
3. Results
3.1. Patients with Myopia <6 D
3.2. Patients with Myopia ≥6 D
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morgan, I.G.; Ohno-Matsui, K.; Saw, S.M. Myopia. Lancet 2012, 379, 1739–1748. [Google Scholar] [CrossRef]
- Resnikoff, S.; Pascolini, D.; Mariotti, S.P.; Pokharel, G.P. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull. World Health Organ. 2008, 86, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Crim, N.; Esposito, E.; Monti, R.; Correa, L.J.; Serra, H.M.; Urrets-Zavalia, J.A. Myopia as a risk factor for subsequent retinal tears in the course of a symptomatic posterior vitreous detachment. BMC Ophthalmol. 2017, 17, 226. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Phua, V.; Lee, S.Y.; Wong, T.Y.; Cheung, C.M. Is choroidal or scleral thickness related to myopic macular degeneration? Investig. Ophthalmol. Vis. Sci. 2017, 58, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.M.; Gazzard, G.; Shih-Yen, E.C.; Chua, W.H. Myopia and associated pathological complications. Ophthalmic Physiol. Opt. 2005, 25, 381–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, M.W.; de Vries, M.M.; Junoy Montolio, F.G.; Jansonius, N.M. Myopia as a risk factor for open-angle glaucoma: A systematic review and meta-analysis. Ophthalmology 2011, 118, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Leo, S.W.; Young, T.L. An evidence-based update on myopia and interventions to retard its progression. J. AAPOS 2011, 15, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.F.; Chen, C.H.; Chou, A.C.; Ho, T.C.; Lin, L.L.; Hung, P.T. Effects of different concentrations of atropine on controlling myopia in myopic children. J. Ocul. Pharmacol. Ther. 1999, 15, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.S.; Lam, D.S.; Chan, C.K.; Fan, A.H.; Cheung, E.Y.; Rao, S.K. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: A pilot study. Jpn. J. Ophthalmol. 2007, 51, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Mckanna, J.A.; Casagrande, V.A. Atropine affects lid-suture myopia development. Doc. Ophthalmol. 1981, 28, 187–192. [Google Scholar]
- Tigges, M.; Iuvone, P.M.; Fernandes, A.; Sugrue, M.F.; Mallorga, P.J.; Laties, A.M.; Stone, R.A. Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys. Optom. Vis. Sci. 1999, 76, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.A.; Lin, T.; Laties, A.M. Muscarinic antagonist effects on experimental chick myopia. Exp. Eye Res. 1991, 52, 755–758. [Google Scholar] [CrossRef]
- Schmid, K.L.; Wildsoet, C.F. Inhibitory effects of apomorphine and atropine and their combination on myopia in chicks. Optom. Vis. Sci. 2004, 81, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Glasser, A.; Howland, H.C. A history of studies of visual accommodation in birds. Q. Rev. Biol. 1996, 71, 475–509. [Google Scholar] [CrossRef] [PubMed]
- McBrien, N.A.; Moghaddam, H.O.; Reeder, A.P. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Investig. Ophthalmol. Vis. Sci. 1993, 34, 205–215. [Google Scholar]
- Jiang, X.; Kurihara, T.; Kunimi, H.; Miyauchi, M.; Ikeda, S.I.; Mori, K.; Tsubota, K.; Torii, H.; Tsubota, K. A highly efficient murine model of experimental myopia. Sci. Rep. 2018, 8, 2026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shih, Y.F.; Hsiao, C.K.; Chen, C.J.; Chang, C.W.; Hung, P.T.; Lin, L.L. An intervention trial on efficacy of atropine and multi-focal glasses in controlling myopic progression. Acta Ophthalmol. Scand. 2001, 79, 233–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, A.; Chua, W.H.; Cheung, Y.B.; Wong, W.L.; Lingham, A.; Fong, A.; Tan, D. Atropine for the treatment of childhood myopia: Safety and efficacy of 0.5%, 0.1%, and 0.01% doses (atropine for the treatment of myopia 2). Ophthalmology 2012, 119, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Chua, W.H.; Wen, L.; Fong, A.; Goon, Y.Y.; Tan, D. Atropine for the treatment of childhood myopia: Changes after stopping atropine 0.01%, 0.1% and 0.5%. Am. J. Ophthalmol. 2014, 157, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Huang, X.L.; Koh, A.L.; Zhang, X.; Tan, D.T.; Chua, W.H. Atropine for the treatment of childhood myopia: Effect on myopia progression after cessation of atropine. Ophthalmology 2009, 116, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Chia, A.; Lu, Q.S.; Tan, D. Five-year clinical trial on atropine for the treatment of myopia 2: Myopia control with atropine 0.01% eyedrops. Ophthalmology 2016, 123, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Janowski, M.; Luo, M.; Wei, H.; Chen, B.; Yang, G.; Liu, L. Efficacy and adverse effects of atropine in childhood myopia: A meta-analysis. JAMA Ophthalmol. 2017, 135, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Pineles, S.L.; Kraker, R.T.; VanderVeen, D.K.; Hutchinson, A.K.; Galvin, J.A.; Wilson, L.B.; Lambert, S.R. Atropine for the prevention of myopia progression in children: A report by the american academy of ophthalmology. Ophthalmology 2017, 124, 1857–1866. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.R.; Bian, H.L.; Wang, Q. Atropine 0.5% eyedrops for the treatment of children with low myopia: A randomized controlled trial. Medicine (Baltimore) 2017, 96, e7371. [Google Scholar] [CrossRef] [PubMed]
- Na, M.; Yoo, A. The effect of orthokeratology on axial length elongation in children with myopia: Contralateral comparison study. Jpn. J. Ophthalmol. 2018, 62, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Naidu, R.K.; Qu, X. Factors related to axial length elongation and myopia progression in orthokeratology practice. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed]
- Cho, P.; Cheung, S.W. Retardation of myopia in orthokeratology (romio) study: A 2-year randomized clinical trial. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7077–7085. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheung, S.W.; Cho, P. Myopia control using toric orthokeratology (to-see study). Investig. Ophthalmol. Vis. Sci. 2013, 54, 6510–6517. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.W.; Lam, C.; Cho, P. Parents’ knowledge and perspective of optical methods for myopia control in children. Optom. Vis. Sci. 2014, 91, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, M.; Yuan, Y.; Me, R.; Yu, Y.; Shi, G.; Ke, B. Interaction between corneal and internal ocular aberrations induced by orthokeratology and its influential factors. BioMed. Res. Int. 2017, 2017, 3703854. [Google Scholar] [CrossRef] [PubMed]
- Soni, P.S.; Nguyen, T.T.; Bonanno, J.A. Overnight orthokeratology: Visual and corneal changes. Eye Contact Lens 2003, 29, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.J.; Wan, L.; Tsai, F.J.; Tsai, Y.Y.; Chen, L.A.; Tsai, A.L.; Huang, Y.C. Overnight orthokeratology is comparable with atropine in controlling myopia. BMC Ophthalmol. 2014, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Donovan, L.; Sankaridurg, P.; Ho, A.; Chen, X.; Lin, Z.; Thomas, V.; Smith, E.L., 3rd; Ge, J.; Holden, B. Myopia progression in chinese children is slower in summer than in winter. Optom. Vis. Sci. 2012, 89, 1196–1202. [Google Scholar] [CrossRef] [PubMed]
- Gwiazda, J.; Deng, L.; Manny, R.; Norton, T.T.; Group, C.S. Seasonal variations in the progression of myopia in children enrolled in the correction of myopia evaluation trial. Investig. Ophthalmol. Vis. Sci. 2014, 55, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Rusnak, S.; Salcman, V.; Hecova, L.; Kasl, Z. Myopia progression risk: Seasonal and lifestyle variations in axial length growth in czech children. J. Ophthalmol. 2018, 2018, 5076454. [Google Scholar] [CrossRef] [PubMed]
- Ip, J.M.; Rose, K.A.; Morgan, I.G.; Burlutsky, G.; Mitchell, P. Myopia and the urban environment: Findings in a sample of 12-year-old australian school children. Investig. Ophthalmol. Vis. Sci. 2008, 49, 3858–3863. [Google Scholar] [CrossRef] [PubMed]
- Little, J.A.; McCullough, S.J.; Breslin, K.M.; Saunders, K.J. Higher order ocular aberrations and their relation to refractive error and ocular biometry in children. Investig. Ophthalmol. Vis. Sci. 2014, 55, 4791–4800. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.A.; Sankaridurg, P.R.; Naduvilath, T.J.; Mitchell, P. Monochromatic aberrations in hyperopic and emmetropic children. J. Vis. 2009, 9, 23:1–23:14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Feng, H.; Zhu, J.; Qu, X. The impact of amplitude of accommodation on controlling the development of myopia in orthokeratology. Zhonghua Yan Ke Za Zhi 2014, 50, 14–19. [Google Scholar] [PubMed]
Atropine (0.125%) | p-Value | Atropine (0.025%) | p-Value | |||
---|---|---|---|---|---|---|
Yes (OA1) (N = 20) | No (OK1) (N = 26) | Yes (OA2) (N = 20) | No (OK2) (N = 20) | |||
Age | 10.6 ± 1.2 | 10.2 ± 1.7 | >0.05 | 10.4 ± 1.3 | 10.3 ± 1.4 | >0.05 |
Female: male # | 1:1 | 1:1 | 1:1 | 1:1 | ||
Axial length (mm) | ||||||
Baseline | 24.12 ± 1.28 | 24.32 ± 1.53 | >0.05 | 24.08 ± 1.31 | 24.19 ± 1.24 | >0.05 |
2 years | 24.67 ± 1.53 | 24.9 ± 1.98 | 0.042 | 24.73 ± 1.53 | 25.01 ± 1.26 | 0.031 |
Difference in axial length | 0.55 ± 0.12 | 0.58 ± 0.09 | 0.022 | 0.65 ± 0.18 | 0.83 ± 0.16 | 0.029 |
Spherical equivalent (D) | ||||||
Baseline | 4.25 ± 1.75 | 4.25 ± 1.25 | >0.05 | 4.53 ± 1.23 | 4.63 ± 1.35 | >0.05 |
2 years | 4.75 ± 0.75 | 4.8 ± 0.5 | 0.041 | 4.83 ± 1.12 | 5.13 ± 1.56 | 0.039 |
Accommodation | ||||||
Baseline | 16.2 ± 3.1 | 16.7 ± 3.4 | >0.05 | 16.3 ± 3.2 | 16.5 ± 3.4 | >0.05 |
2 years | 4.2 ± 2.7 | 16.3 ± 3.2 | <0.001 | 4.6 ± 1.56 | 16.4 ± 3.2 | <0.001 |
Photopic pupil diameter | ||||||
Baseline | 3.8 ± 0.4 | 3.7 ± 0. 5 | >0.05 | 3.9 ± 0.6 | 3.7 ± 0.45 | >0.05 |
2 years | 6.8 ± 0.5 | 3.6 ± 0.4 | <0.001 | 6.2 ± 0.6 | 3.6 ± 0.5 | <0.001 |
Mesopic pupil diameter | ||||||
Baseline | 4.7 ± 0.5 | 4.3 ± 0.5 | >0.05 | 4.7 ± 0.4 | 4.6 ± 0.6 | >0.05 |
2 years | 7.2 ± 0.4 | 4.6 ± 0.6 | <0.001 | 6.6 ± 0.7 | 4.7 ± 0.5 | <0.001 |
Distance BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 |
2 years | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 |
Near BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.01 | >0.05 |
2 years | 0.12 ± 0.02 | 0.01 ± 0.01 | >0.05 | 0.02 ± 0.02 | 0.01 ± 0.01 | >0.05 |
Atropine (0.125%) | p-Value | Atropine (0.025%) | p-Value | |||
---|---|---|---|---|---|---|
Yes (OA3) (N = 24) | No (OK3) (N = 29) | Yes (OA4) (N = 20) | No (OK4) (N = 20) | |||
Age | 11.0 ± 1.8 | 10.8 ± 1.8 | >0.05 | 10.8 ± 1.2 | 10.9 ± 1.3 | >0.05 |
Female: male # | 1:1 | 1.07:1 | 1:1 | 1:1 | ||
Axial length (mm) | ||||||
Baseline | 25.21 ± 1.35 | 25.29 ± 1.78 | >0.05 | 25.28 ± 1.53 | 25.65 ± 1.67 | >0.05 |
2 years | 25.78 ± 1.46 | 25.93 ± 1.94 | 0.021 | 25.86 ± 1.21 | 26.05 ± 1.57 | 0.011 |
Difference in axial length | 0.57 ± 0.17 | 0.64 ± 0.14 | 0.015 | 0.58 ± 0.08 | 0.4 ± 0.15 | 0.023 |
Spherical equivalent (D) | ||||||
Baseline | 6.75 ± 1.5 | 6.75 ± 1.5 | >0.05 | 6.63 ± 1.56 | 6.67 ± 1.73 | >0.05 |
2 years | 7.0 ± 0.5 | 7.2 ± 0.75 | 0.028 | 7.12 ± 1.83 | 7.32 ± 1.87 | 0.027 |
Accommodation | ||||||
Baseline | 16.6 ± 2.9 | 16.8 ± 3.2 | >0.05 | 16.6 ± 2.8 | 16.8 ± 3.1 | >0.05 |
2 years | 3.8 ± 2.9 | 15.9 ± 3.8 | <0.001 | 3.9 ± 2.01 | 16.6 ± 2.9 | <0.001 |
Photopic pupil diameter | ||||||
Baseline | 3.9 ± 0.5 | 3.8 ± 0.7 | >0.05 | 3.8 ± 0.57 | 3.6 ± 0.63 | >0.05 |
2 years | 6.6 ± 0.4 | 3.5 ± 0.6 | <0.001 | 6.0 ± 0.7 | 3.7 ± 0.5 | <0.001 |
Mesopic pupil diameter | ||||||
Baseline | 4.8 ± 0.6 | 4.5 ± 0.7 | >0.05 | 4.8 ± 0.5 | 4.7 ± 0.6 | >0.05 |
2 years | 6.9 ± 0.6 | 4.5 ± 0.8 | <0.001 | 6.8 ± 0.6 | 4.8 ± 0.5 | <0.001 |
Distance BCVA (log MAR) | ||||||
Baseline | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.00 | >0.05 |
2 years | 0.01 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.00 | 0.01 ± 0.00 | >0.05 |
Near BCVA (log MAR) | ||||||
Baseline | 0.00 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.01 ± 0.01 | 0.01 ± 0.00 | >0.05 |
2 years | 0.02 ± 0.01 | 0.01 ± 0.01 | >0.05 | 0.012 ± 0.03 | 0.01 ± 0.00 | >0.05 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, L.; Wei, C.-C.; Chen, C.S.; Chang, C.-Y.; Lin, C.-J.; Chen, J.J.-Y.; Tien, P.-T.; Lin, H.-J. The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. J. Clin. Med. 2018, 7, 259. https://doi.org/10.3390/jcm7090259
Wan L, Wei C-C, Chen CS, Chang C-Y, Lin C-J, Chen JJ-Y, Tien P-T, Lin H-J. The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. Journal of Clinical Medicine. 2018; 7(9):259. https://doi.org/10.3390/jcm7090259
Chicago/Turabian StyleWan, Lei, Chang-Ching Wei, Chih Sheng Chen, Ching-Yao Chang, Chao-Jen Lin, Jamie Jiin-Yi Chen, Peng-Tai Tien, and Hui-Ju Lin. 2018. "The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia" Journal of Clinical Medicine 7, no. 9: 259. https://doi.org/10.3390/jcm7090259
APA StyleWan, L., Wei, C. -C., Chen, C. S., Chang, C. -Y., Lin, C. -J., Chen, J. J. -Y., Tien, P. -T., & Lin, H. -J. (2018). The Synergistic Effects of Orthokeratology and Atropine in Slowing the Progression of Myopia. Journal of Clinical Medicine, 7(9), 259. https://doi.org/10.3390/jcm7090259