Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition and Study Population
2.2. Data Labelling
2.3. Data Preprocessing
2.4. Feature Selection
2.5. Classifiers and Hyper-Parameters Selection
2.6. Model Training and Evaluation
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Costantino, G.; Perego, F.; Dipaola, F.; Borella, M.; Galli, A.; Cantoni, G.; Dell’Orto, S.; Dassi, S.; Filardo, N.; Duca, P.G.; et al. Short- and long-term prognosis of syncope, risk factors, and role of hospital admission: Results from the STePS (Short-Term Prognosis of Syncope) study. J. Am. Coll. Cardiol. 2008, 51, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Numeroso, F.; Mossini, G.; Lippi, G.; Cervellin, G. Analysis of Temporal and Causal Relationship Between Syncope and 30-Day Events in a Cohort of Emergency Department Patients to Identify the True Rate of Short-term Outcomes. J. Emerg. Med. 2018, 55, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Costantino, G.; Casazza, G.; Reed, M.; Bossi, I.; Sun, B.; Del Rosso, A.; Ungar, A.; Grossman, S.; D’Ascenzo, F.; Quinn, J.; et al. Syncope Risk Stratification Tools vs. Clinical Judgment: An Individual Patient Data Meta-analysis. Am. J. Med. 2014, 127, 1126.e13–1126.e25. [Google Scholar] [CrossRef] [PubMed]
- Quinn, J.V.; Stiell, I.G.; A McDermott, D.; Sellers, K.L.; A Kohn, M.; A Wells, G. Derivation of the San Francisco Syncope Rule to predict patients with short-term serious outcomes. Ann. Emerg. Med. 2004, 43, 224–232. [Google Scholar] [CrossRef]
- Colivicchi, F.; Ammirati, F.; Melina, D.; Guido, V.; Imperoli, G.; Santini, M. Development and prospective validation of a risk stratification system for patients with syncope in the emergency department: The OESIL risk score. ACC Curr. J. Rev. 2003, 12, 70–71. [Google Scholar] [CrossRef]
- Reed, M.J.; Newby, D.E.; Coull, A.J.; Prescott, R.J.; Jacques, K.G.; Gray, A.J. The ROSE (Risk Stratification of Syncope in the Emergency Department) Study. J. Am. Coll. Cardiol. 2010, 55, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- del Rosso, A.; Ungar, A.; Maggi, R.; Giada, F.; Petix, N.R.; De Santo, T.; Menozzi, C.; Brignole, M. Clinical predictors of cardiac syncope at initial evaluation in patients referred urgently to a general hospital: The EGSYS score. Heart 2008, 94, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Grossman, S.A.; Fischer, C.; Lipsitz, L.A.; Mottley, L.; Sands, K.; Thompson, S.; Zimetbaum, P.; Shapiro, N.I. Predicting adverse outcomes in syncope. J. Emerg. Med. 2007, 33, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Ruwald, M.H.; Hansen, M.L.; Lamberts, M.; Kristensen, S.L.; Wissenberg, M.; Olsen, A.M.S.; Christensen, S.B.; Vinther, M.; Køber, L.; Torp-Pederson, C.; et al. Accuracy of the ICD-10 discharge diagnosis for syncope. Europace 2013, 15, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Furlan, L.; Solbiati, M.; Pacetti, V.; DiPaola, F.; Meda, M.; Bonzi, M.; Fiorelli, E.; Cernuschi, G.; Alberio, D.; Casazza, G.; et al. Diagnostic accuracy of ICD-9 code 780.2 for the identification of patients with syncope in the emergency department. Clin. Auton. Res. 2018, 28, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Tsui, B.Y.; Ni, H.; Valentim, C.C.S.; Baxter, S.L.; Liu, G.; Cai, W.; Kermany, D.S.; Sun, X.; Chen, J.; et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence. Nat. Med. 2019, 25, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Taggart, M.; Chapman, W.W.; Steinberg, B.A.; Ruckel, S.; Pregenzer-Wenzler, A.; Du, Y.; Ferraro, J.; Bucher, B.T.; Lloyd-Jones, D.M.; Rondina, M.T.; et al. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients. JAMA Netw. Open 2018, 1, e183451. [Google Scholar] [CrossRef] [PubMed]
- Mirończuk, M.M.; Protasiewicz, J. A recent overview of the state-of-the-art elements of text classification. Expert Syst. Appl. 2018, 106, 36–54. [Google Scholar] [CrossRef]
- Brignole, M.; Moya, A.; De Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Pedersen, J.P. Feature Selection in Statistical Learning of Text Categorization. In Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, Tennesee, 8–12 July 1997; pp. 412–420. [Google Scholar]
- Aggarwal, C.C.; Zhai, C. A Survey of Text Classification Algorithms. In Mining Text Data; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 163–222. [Google Scholar] [Green Version]
- Cawley, G.C.; Talbot, N.L.C. On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J. Mach. Learn. Res. 2010, 11, 2079–2107. [Google Scholar]
- Aronson, A.R.; Lang, F.-M. An overview of MetaMap: Historical perspective and recent advances. J. Am. Med. Inform. Assoc. 2010, 17, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Levy, O.; Goldberg, Y.; Dagan, I. Improving Distributional Similarity with Lessons Learned from Word Embeddings. Trans. Assoc. Comput. Linguist. 2015, 3, 211–225. [Google Scholar] [CrossRef]
Humanitas Syncope n-Grams | |
---|---|
Unigrams | ‘assenza’ (‘absence’), ‘caduta’ (‘fall’), ‘capogiro’ (‘dizziness’), ‘clonie’ (‘clonus’), ‘ipotensione’ (‘hypotension’), ‘lipotimia’ (‘lipotimia’), ‘malessere’ (‘malaise’), ‘malore’ (‘illness’), ‘prelipotimia’ (‘prelipotimia’), ‘presincope’ (‘presyncope’), ‘prodromi’ (‘prodromes’), ‘sincope’ (‘syncope’), ‘svenimento’ (‘faint’), ‘trauma’ (‘trauma’), ‘trovato’ (‘found’), ‘vertigini’ (‘dizziness’) |
Bigrams | ‘crisi epilettica’ (‘epileptic crisis’) |
Trigrams | ‘ferita lacero contusa’ (‘lacerated bruised wound’), ‘perdita di coscienza’ (‘loss of consciousness’) |
Characteristic | 2013 Dataset | 2015 Dataset | Total |
---|---|---|---|
Electronical medical records, No. | 15,098 | 15,222 | 30,320 |
Unique patients, No. | 12,535 | 12,831 | 25,366 |
Female, No. (%) | 6303 (50.3) | 6445 (50.2) | 12,748 (50.2) |
Age, mean (SD), y | 54.6 (20.0) | 56.0 (20.0) | 55.3 (20.0) |
Syncope present, No. (%) | 251 (1.7) | 320 (2.1) | 571 (1.9) |
Reason for ED admission * | |||
Abdominal pain | 1051 (7.0) | 886 (5.8) | 1937 (6.4) |
Chest pain | 557 (3.7) | 661 (4.3) | 1218 (4.0) |
Lumbar pain | 455 (3.0) | 432 (2.8) | 887 (2.9) |
Cervicalgia | 406 (2.7) | 266 (1.7) | 672 (2.2) |
Fatigue and malaise | 249 (1.6) | 380 (2.5) | 629 (2.1) |
Renal colic | 281 (1.9) | 265 (1.7) | 546 (1.8) |
Primary hypertension | 203 (1.3) | 296 (1.9) | 499 (1.6) |
Cerebrovascular disease | 192 (1.3) | 296 (1.9) | 488 (1.6) |
Heart failure | 187 (1.2) | 174 (1.1) | 361 (1.2) |
Coronary heart disease | 132 (0.9) | 157 (1.0) | 289 (1.0) |
Algorithm | Accuracy | Sensitivity | PPV | F3 Score a | NPV | Specificity |
---|---|---|---|---|---|---|
NB-HuMan | 98.3 | 70.6 | 51.8 | 68.1 | 99.5 | 98.8 |
SVM-HuMan | 96.7 | 92.6 | 34.1 | 78.8 | 99.9 | 96.8 |
NB-NGI | 98.0 | 89.3 | 47.2 | 82.0 | 99.8 | 98.1 |
SVM-NGI | 98.0 | 92.2 | 47.4 | 84.0 | 99.9 | 98.1 |
Algorithm 1 | Algorithm 2 | Algorithm 1 F3 Score | Algorithm 2 F3 Score | 95% CI | p Value |
---|---|---|---|---|---|
NB-HuMan | SVM-HuMan | 68.1 | 78.8 | −14.2–7.2 | <0.001 |
SVM-HuMan | SVM-NGI | 78.8 | 84.0 | −8.3–2.1 | 0.005 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipaola, F.; Gatti, M.; Pacetti, V.; Bottaccioli, A.G.; Shiffer, D.; Minonzio, M.; Menè, R.; Giaj Levra, A.; Solbiati, M.; Costantino, G.; et al. Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records. J. Clin. Med. 2019, 8, 1677. https://doi.org/10.3390/jcm8101677
Dipaola F, Gatti M, Pacetti V, Bottaccioli AG, Shiffer D, Minonzio M, Menè R, Giaj Levra A, Solbiati M, Costantino G, et al. Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records. Journal of Clinical Medicine. 2019; 8(10):1677. https://doi.org/10.3390/jcm8101677
Chicago/Turabian StyleDipaola, Franca, Mauro Gatti, Veronica Pacetti, Anna Giulia Bottaccioli, Dana Shiffer, Maura Minonzio, Roberto Menè, Alessandro Giaj Levra, Monica Solbiati, Giorgio Costantino, and et al. 2019. "Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records" Journal of Clinical Medicine 8, no. 10: 1677. https://doi.org/10.3390/jcm8101677
APA StyleDipaola, F., Gatti, M., Pacetti, V., Bottaccioli, A. G., Shiffer, D., Minonzio, M., Menè, R., Giaj Levra, A., Solbiati, M., Costantino, G., Anastasio, M., Sini, E., Barbic, F., Brunetta, E., & Furlan, R. (2019). Artificial Intelligence Algorithms and Natural Language Processing for the Recognition of Syncope Patients on Emergency Department Medical Records. Journal of Clinical Medicine, 8(10), 1677. https://doi.org/10.3390/jcm8101677