Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. rSO2 Measurement and Study Endpoints
2.3. Perioperative Data Assessment
2.4. Perioperative Management Including Interventions Guided by Decrease in rSO2
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Ghosh, A.; Elwell, C.; Smith, M. Review article: Cerebral near-infrared spectroscopy in adults: A work in progress. Anesth. Analg. 2012, 115, 1373–1383. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.S.; Tseng, C.C.; Ho, C.Y.; Levin, S.K.; Illner, P. Cerebral oxygen desaturation is associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2004, 18, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Sheinberg, R.; Yee, M.S.; Ono, M.; Zheng, Y.; Hogue, C.W. Cerebral near-infrared spectroscopy monitoring and neurologic outcomes in adult cardiac surgery patients: A systematic review. Anesth. Analg. 2013, 116, 663–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Meng, L.Z.; Lyon, R.; Wang, D.X. Monitoring cerebral ischemia during cerebrovascular surgery. J. Biomed. Res. 2017, 31, 279–282. [Google Scholar]
- Evered, L.; Silbert, B.; Knopman, D.S.; Scott, D.A.; DeKosky, S.T.; Rasmussen, L.S.; Oh, E.S.; Crosby, G.; Berger, M.; Eckenhoff, R.G.; et al. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Anesthesiology 2018, 129, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Murkin, J.M. Cerebral oximetry: Monitoring the brain as the index organ. Anesthesiology 2011, 114, 12–13. [Google Scholar] [CrossRef] [Green Version]
- Vranken, N.P.A.; Weerwind, P.W.; Sutedja, N.A.; Ševerdija, E.E.; Barenbrug, P.J.C.; Maessen, J.G. Cerebral oximetry and autoregulation during cardiopulmonary bypass: A review. J. Extra Corpor. Technol. 2017, 49, 182–191. [Google Scholar]
- Murkin, J.M.; Adams, S.J.; Novick, R.J.; Quantz, M.; Bainbridge, D.; Iglesias, I.; Cleland, A.; Schaefer, B.; Irwin, B.; Fox, S. Monitoring brain oxygen saturation during coronary bypass surgery: A randomized, prospective study. Anesth. Analg. 2007, 104, 51–58. [Google Scholar] [CrossRef]
- Heringlake, M.; Garbers, C.; Käbler, J.H.; Anderson, I.; Heinze, H.; Schön, J.; Berger, K.U.; Dibbelt, L.; Sievers, H.H.; Hanke, T. Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 2011, 114, 58–69. [Google Scholar] [CrossRef] [Green Version]
- de Tournay-Jetté, E.; Dupuis, G.; Bherer, L.; Deschamps, A.; Cartier, R.; Denault, A. The relationship between cerebral oxygen saturation changes and postoperative cognitive dysfunction in elderly patients after coronary artery bypass graft surgery. J. Cardiothorac. Vasc. Anesth. 2011, 25, 95–104. [Google Scholar] [CrossRef]
- O’Brien, S.M.; Feng, L.; He, X.; Xian, Y.; Jacobs, J.P.; Badhwar, V.; Kurlansky, P.A.; Furnary, A.P.; Cleveland, J.C., Jr.; Lobdell, K.W.; et al. The society of thoracic surgeons 2018 adult cardiac surgery risk models: Part 2-Statistical methods and results. Ann. Thorac. Surg. 2018, 105, 1419–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denault, A.; Deschamps, A.; Murkin, J.M. A proposed algorithm for the intraoperative use of cerebral near-infrared spectroscopy. Semin. Cardiothorac. Vasc. Anesth. 2007, 11, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.H.; Marcantonio, E.R.; Mangione, C.M.; Thomas, E.J.; Polanczyk, C.A.; Cook, E.F.; Sugarbaker, D.J.; Donaldson, M.C.; Poss, R.; Ho, K.K.; et al. Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation 1999, 100, 1043–1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salis, S.; Mazzanti, V.V.; Merli, G.; Salvi, L.; Tedesco, C.C.; Veglia, F.; Sisillo, E. Cardiopulmonary bypass duration is an independent predictor of morbidity and mortality after cardiac surgery. J. Cardiothorac. Vasc. Anesth. 2008, 22, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M. Serum creatinine role in predicting outcome after cardiac surgery beyond acute kidney injury. World J. Cardiol. 2014, 6, 1006–1021. [Google Scholar] [CrossRef]
- Paquet, C.; Deschamps, A.; Denault, A.Y.; Couture, P.; Carrier, M.; Babin, D.; Levesque, S.; Piquette, D.; Lambert, J.; Tardif, J.C. Baseline regional cerebral oxygen saturation correlates with left ventricular systolic and diastolic function. J. Cardiothorac. Vasc. Anesth. 2008, 22, 840–846. [Google Scholar] [CrossRef]
- Colak, Z.; Borojevic, M.; Bogovic, A.; Ivancan, V.; Biocina, B.; Majeric-Kogler, V. Influence of intraoperative cerebral oximetry monitoring on neurocognitive function after coronary artery bypass surgery: A randomized, prospective study. Eur. J. Cardiothorac. Surg. 2015, 47, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Huffmyer, J.L.; Groves, D.S. Pulmonary complications of cardiopulmonary bypass. Best Pract. Res. Clin. Anaesthesiol. 2015, 29, 163–175. [Google Scholar] [CrossRef]
- Sun, X.; Ellis, J.; Corso, P.J.; Hill, P.C.; Lowery, R.; Chen, F.; Lindsay, J. Mortality predicted by preinduction cerebral oxygen saturation after cardiac operation. Ann. Thorac. Surg. 2014, 98, 91–96. [Google Scholar] [CrossRef]
- Murkin, J.M.; Arango, M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 2009, 103 (Suppl. 1), i3–i13. [Google Scholar] [CrossRef] [Green Version]
- Schoen, J.; Meyerrose, J.; Paarmann, H.; Heringlake, M.; Hueppe, M.; Berger, K.U. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: A prospective observational trial. Crit. Care 2011, 15, R218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschamps, A.; Hall, R.; Grocott, H.; Mazer, C.D.; Choi, P.T.; Turgeon, A.F.; de Medicis, E.; Bussières, J.S.; Hudson, C.; Syed, S.; et al. Cerebral oximetry monitoring to maintain normal cerebral oxygen saturation during high-risk cardiac surgery: A randomized controlled feasibility trial. Anesthesiology 2016, 124, 826–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, B.; Ono, M.; Brown, C.; Brady, K.; Easley, R.B.; Yenokyan, G.; Gottesman, R.F.; Hogue, C.W. Predicting the limits of cerebral autoregulation during cardiopulmonary bypass. Anesth. Analg. 2012, 114, 503–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazer, C.D.; Whitlock, R.P.; Fergusson, D.A.; Hall, J.; Belley-Cote, E.; Connolly, K.; Khanykin, B.; Gregory, A.J.; de Médicis, É.; McGuinness, S.; et al. Restrictive or liberal red-cell transfusion for cardiac surgery. NEJM 2017, 377, 2133–2144. [Google Scholar] [CrossRef] [PubMed]
- Serraino, G.F.; Murphy, G.J. Effects of cerebral near-infrared spectroscopy on the outcome of patients undergoing cardiac surgery: A systematic review of randomised trials. BMJ Open 2017, 7, e016613. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Lu, Y.; Meng, L.; Han, R. Monitoring cerebral ischemia using cerebral oximetry: Pros and cons. J. Biomed. Res. 2016, 30, 1–4. [Google Scholar]
- Provencher, D.; Hennebelle, M.; Cunnane, S.C.; Bérubé-Lauzière, Y.; Whittingstall, K. Cortical thinning in healthy aging correlates with larger motor-evoked EEG desynchronization. Front. Aging Neurosci. 2016, 8, 63. [Google Scholar] [CrossRef]
Non-Morbid (n = 309) | Morbid (n = 47) | p-Value | |
---|---|---|---|
Age (years) | 61.8 ± 13.3 | 67.9 ± 11.9 | 0.002 |
Female sex (n) | 147 (48) | 26 (55) | 0.322 |
Body surface area (m2) | 1.68 ± 0.20 | 1.64 ± 0.19 | 0.140 |
Preoperative morbidity (n) | |||
Hypertension | 144 (47) | 33 (70) | 0.003 |
Diabetes mellitus | 53 (17) | 11 (23) | 0.298 |
Congestive heart failure | 57 (18) | 15 (32) | 0.032 |
CKD | 27 (9) | 17 (36) | <0.001 |
COPD | 11 (4) | 1 (2) | 0.612 |
Cerebrovascular attack | 34 (11) | 5 (11) | 0.941 |
EuroSCORE | 5.6 ± 3.2 | 8.0 ± 3.0 | <0.001 |
LVEF (%) | 61.4 ± 12.2 | 57.3 ± 15.7 | 0.040 |
Preoperative medication (n) | |||
Beta blocker | 119 (39) | 14 (30) | 0.468 |
Calcium channel blocker | 78 (25) | 17 (36) | 0.115 |
ACE-I/ARB | 144 (47) | 23 (49) | 0.765 |
Diuretics | 218 (71) | 34 (72) | 0.801 |
Preoperative laboratory value | |||
Hemoglobin (g/dL) | 12.8 ± 1.9 | 11.8 ± 2.3 | 0.001 |
Serum creatinine (mg/dL) | 0.90 ± 0.71 | 1.53 ± 1.87 | <0.001 |
Albumin (g/dL) | 3.97 ± 0.45 | 3.69 ± 0.63 | <0.001 |
Operations (n) | 0.662 | ||
Mitral valve replacement | 110 (36) | 15 (32) | |
Aortic valve replacement | 142 (46) | 20 (43) | |
Double valve replacement | 40 (13) | 8 (17) | |
Others | 16 (4) | 4 (9) |
Non-Morbid (n = 309) | Morbid (n = 47) | p-Value | |
---|---|---|---|
ACC duration (min) | 78.7 ± 39.4 | 91.0 ± 46.5 | 0.090 |
CPB duration (min) | 109.8 ± 47.6 | 127.5 ± 51.1 | 0.031 |
Total infused fluid (mL) | 1090.2 ± 375.6 | 1192.6 ± 471.2 | 0.165 |
pRBCs transfusion (n) | 125 (41) | 32 (68) | <0.001 |
Total urine output (mL) | 937.8 ± 519.4 | 731.5 ± 602.9 | 0.030 |
Norepinephrine (n) | 307 (99) | 47 (100) | 0.580 |
Milrinone (n) | 99 (32) | 22 (47) | 0.046 |
Vasopressin (n) | 215 (70) | 41 (87) | 0.012 |
Dobutamine (n) | 5 (2) | 2 (4) | 0.227 |
Total (n = 356) | Non-Morbid (n = 309) | Morbid (n = 47) | p-Value | |
---|---|---|---|---|
Baseline rSO2 (%) | 58.0 ± 10.1 | 58.7 ± 9.7 | 52.8 ± 11.5 | 0.002 |
Maximal rSO2 (%) | 70.8 ± 9.1 | 71.7 ± 8.7 | 65.0 ± 9.3 | <0.001 |
Minimal rSO2 (%) | 37.6 ± 9.9 | 38.4 ± 9.6 | 32.7 ± 10.4 | 0.001 |
AUT 80base (min%) | 355.2 ± 537.4 | 328.2 ± 479.1 | 532.4 ± 809.4 | 0.015 |
AUT 50 (min%) | 678.7 ± 1046.5 | 566.6 ± 895.7 | 1415.6 ± 1562.0 | <0.001 |
Complete recovery (n) | 72 (20) | 57 (19) | 15 (32) | 0.034 |
80% recovery (n) | 240 (67) | 208 (68) | 32 (68) | 0.988 |
Maximal decrease (%) | 34.7 ± 14.6 | 34.2 ± 14.1 | 37.3 ± 17.4 | 0.176 |
Univariable | Multivariable | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Age (years) | 1.04 | 1.01–1.08 | 0.004 | 1.05 | 1.02–1.09 | 0.004 |
Chronic kidney disease (n) | 5.92 | 2.90–12.09 | <0.001 | 4.92 | 2.13–11.36 | <0.001 |
Congestive heart failure (n) | 2.07 | 1.05–4.08 | 0.035 | 1.41 | 0.65–3.09 | 0.386 |
Baseline rSO2 (%) | 0.95 | 0.92–0.98 | <0.001 | 1.02 | 0.97–1.07 | 0.424 |
AUT 50 (min%) | 1.06 | 1.03–1.08 | <0.001 | 1.05 | 1.01–1.08 | 0.015 |
CPB duration (min) | 1.93 | 1.09–3.39 | 0.023 | 1.01 | 1.00–1.02 | 0.014 |
Variables | Group | Time | ||||
---|---|---|---|---|---|---|
Baseline | Ind 15 min | CPB 15 min | PostCPB | Sternal Closure | ||
MAP (mmHg) | High AUT50 | 90.9 ± 16.4 | 75.0 ± 10.5 | 63.7 ± 11.3 | 67.6 ± 9.9 | 74.9 ± 11.7 |
Low AUT50 | 89.1 ± 15.0 | 74.9 ± 10.5 | 61.9 ± 13.0 | 68.9 ± 10.2 | 77.0 ± 12.8 | |
CI (L/min/m2) | High AUT50 | 2.1 ± 0.7 | 2.5 ± 0.7 | 2.2 ± 0.6 | ||
Low AUT50 | 2.2 ± 0.8 | 2.6 ± 0.9 | 2.2 ± 0.7 | |||
CVP (mmHg) | High AUT50 | 10.5 ± 3.6 | 10.6 ± 2.6 | 11.5 ± 2.8 * | ||
Low AUT50 | 9.8 ± 3.0 | 10.1 ± 2.8 | 10.6 ± 2.2 | |||
PaCO2 (mmHg) | High AUT50 | 34.2 ± 3.4 * | 32.9 ± 3.9 | 34.4 ± 3.9 | 36.9 ± 3.5 * | |
Low AUT50 | 33.5 ± 3.0 | 33.1 ± 3.8 | 33.8 ± 3.6 | 35.7 ± 3.3 | ||
PaO2 (mmHg) | High AUT50 | 176.0 ± 44.5 | 329.0 ± 57.6 | 185.2 ± 41.8 | 167.7 ± 42.9 | |
Low AUT50 | 179.0 ± 39.9 | 326.5 ± 59.4 | 185.6 ± 37.9 | 171.7 ± 44.6 | ||
Temperature (°C) | High AUT50 | 36.1 ± 0.6 | 32.6 ± 2.7 | 36.4 ± 0.8 | 36.4 ± 0.5 | |
Low AUT50 | 36.0 ± 0.6 | 32.2 ± 3.1 | 36.4 ± 0.4 | 36.4 ± 0.5 | ||
Hemoglobin (g/dL) | High AUT50 | 12.2 ± 2.3 * | 11.5 ± 1.7 * | 7.8 ± 1.2 * | 8.2 ± 1.0 * | 9.6 ± 1.0 * |
Low AUT50 | 13.2 ± 1.8 | 12.3 ± 1.5 | 8.4 ± 1.5 | 8.8 ± 1.2 | 10.0 ± 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, Y.Y.; Shim, J.-K.; Soh, S.; Suh, S.; Kwak, Y.L. Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ. J. Clin. Med. 2020, 9, 840. https://doi.org/10.3390/jcm9030840
Jo YY, Shim J-K, Soh S, Suh S, Kwak YL. Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ. Journal of Clinical Medicine. 2020; 9(3):840. https://doi.org/10.3390/jcm9030840
Chicago/Turabian StyleJo, Youn Yi, Jae-Kwang Shim, Sarah Soh, Sungmin Suh, and Young Lan Kwak. 2020. "Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ" Journal of Clinical Medicine 9, no. 3: 840. https://doi.org/10.3390/jcm9030840
APA StyleJo, Y. Y., Shim, J. -K., Soh, S., Suh, S., & Kwak, Y. L. (2020). Association between Cerebral Oxygen Saturation with Outcome in Cardiac Surgery: Brain as an Index Organ. Journal of Clinical Medicine, 9(3), 840. https://doi.org/10.3390/jcm9030840