The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. ML in the Stratification of SSc Patients
3.2. ML Algorithms to Diagnose and Evaluate Lung Involvement
3.3. Early Detection of PAH with ML
3.4. ML and Tailored SSc Treatment
4. Discussion and Future Perspectives
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Varga, J.; Trojanowska, M.; Kuwana, M. Pathogenesis of systemic sclerosis: Recent insights of molecular and cellular mechanisms and therapeutic opportunities. J. Scleroderma Relat. Disord. 2017, 2, 137–152. [Google Scholar] [CrossRef]
- Elhai, M.; Meune, C.; Boubaya, M.; Avouac, J.; Hachulla, E.; Balbir-Gurman, A.; Riemekasten, G.; Airò, P.; Joven, B.; Vettori, S.; et al. Mapping and predicting mortality from systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1897–1905. [Google Scholar] [CrossRef] [PubMed]
- Toledano, E.; Candelas, G.; Rosales, Z.; Martínez Prada, C.; León, L.; Abásolo, L.; Loza, E.; Carmona, L.; Tobías, A.; Jover, J.Á. A meta-analysis of mortality in rheumatic diseases. Reumatol. Clín. 2012, 8, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Shand, L.; Lunt, M.; Nihtyanova, S.; Hoseini, M.; Silman, A.; Black, C.M.; Denton, C.P. Relationship between change in skin score and disease outcome in diffuse cutaneous systemic sclerosis: Application of a latent linear trajectory model. Arthritis Rheum. 2007, 56, 2422–2431. [Google Scholar] [CrossRef]
- Bellando-Randone, S.; Galdo, F.D.; Lepri, G.; Minier, T.; Huscher, D.; Furst, D.E.; Allanore, Y.; Distler, O.; Czirják, L.; Bruni, C.; et al. Progression of patients with Raynaud’s phenomenon to systemic sclerosis: A five-year analysis of the European Scleroderma Trial and Research group multicentre, longitudinal registry study for Very Early Diagnosis of Systemic Sclerosis (VEDOSS). Lancet Rheumatol. 2021, 3, e834–e843. [Google Scholar] [CrossRef]
- Akay, M.; Du, Y.; Sershen, C.L.; Wu, M.; Chen, T.Y.; Assassi, S.; Mohan, C.; Akay, Y.M. Deep Learning Classification of Systemic Sclerosis Skin Using the MobileNetV2 Model. IEEE Open J. Eng. Med. Biol. 2021, 2, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.K.; Domsic, R.T. Clinical Trial Design Issues in Systemic Sclerosis: An Update. Curr. Rheumatol. Rep. 2016, 18, 38. [Google Scholar] [CrossRef] [PubMed]
- Leclair, V.; Hudson, M.; Proudman, S.M.; Stevens, W.M.; Fritzler, M.J.; Wang, M.; Nikpour, M.; Baron, M. Subsets in systemic sclerosis: One size does not fit all. J. Scleroderma Relat. Disord. 2016, 1, 298–306. [Google Scholar] [CrossRef]
- LeRoy, E.C.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef]
- de Bruijne, M. Machine learning approaches in medical image analysis: From detection to diagnosis. Med. Image Anal. 2016, 33, 94–97. [Google Scholar] [CrossRef] [Green Version]
- Deeb, S.J.; Tyanova, S.; Hummel, M.; Schmidt-Supprian, M.; Cox, J.; Mann, M. Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles. Mol. Cell. Proteom. 2015, 14, 2947–2960. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.; Aittokallio, T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys. Rev. 2019, 11, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, B.; Doken, S.; Zhuang, T.; Wingerter, D.; Gidwani, M.; Mistry, N.; Ladic, L.; Kamen, A.; Abazeed, M.E. An image-based deep learning framework for individualizing radiotherapy dose. Lancet Digit. Health 2019, 1, e136–e147. [Google Scholar] [CrossRef] [Green Version]
- Kato-Kogoe, N.; Sakaguchi, S.; Kamiya, K.; Omori, M.; Gu, Y.-H.; Ito, Y.; Nakamura, S.; Nakano, T.; Tamaki, J.; Ueno, T.; et al. Characterization of Salivary Microbiota in Patients with Atherosclerotic Cardiovascular Disease: A Case-Control Study. J. Atheroscler. Thromb. 2022, 29, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ianiro, G.; Ahern, A.; Carbone, C.; Temko, A.; Claesson, M.J.; Gasbarrini, A.; Tortora, G. Gut microbiome, big data and machine learning to promote precision medicine for cancer. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 635–648. [Google Scholar] [CrossRef]
- Kingsmore, K.M.; Grammer, A.C.; Lipsky, P.E. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat. Rev. Rheumatol. 2020, 16, 32–52. [Google Scholar] [CrossRef]
- Eyre, S.; Orozco, G.; Worthington, J. The genetics revolution in rheumatology: Large scale genomic arrays and genetic mapping. Nat. Rev. Rheumatol. 2017, 13, 421–432. [Google Scholar] [CrossRef]
- Venerito, V.; Angelini, O.; Cazzato, G.; Lopalco, G.; Maiorano, E.; Cimmino, A.; Iannone, F. A convolutional neural network with transfer learning for automatic discrimination between low and high-grade synovitis: A pilot study. Intern. Emerg. Med. 2021, 16, 1457–1465. [Google Scholar] [CrossRef]
- Venerito, V.; Angelini, O.; Fornaro, M.; Cacciapaglia, F.; Lopalco, G.; Iannone, F. A Machine Learning Approach for Predicting Sustained Remission in Rheumatoid Arthritis Patients on Biologic Agents. J. Clin. Rheumatol. 2021, 28, e334–e339. [Google Scholar] [CrossRef]
- Venerito, V.; Lopalco, G.; Abbruzzese, A.; Colella, S.; Morrone, M.; Tangaro, S.; Iannone, F. A Machine Learning Approach to Predict Remission in Patients With Psoriatic Arthritis on Treatment With Secukinumab. Front. Immunol. 2022, 13, 917939. [Google Scholar] [CrossRef]
- Lepri, G.; Hughes, M.; Bruni, C.; Cerinic, M.M.; Randone, S.B. Recent advances steer the future of systemic sclerosis toward precision medicine. Clin. Rheumatol. 2020, 39, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuwen, N.M.; Maurits, M.; Liem, S.; Ciaffi, J.; Marsan, N.A.; Ninaber, M.; Allaart, C.; van Dongen, H.G.; Goekoop, R.; Huizinga, T.; et al. New risk model is able to identify patients with a low risk of progression in systemic sclerosis. RMD Open 2021, 7, e001524. [Google Scholar] [CrossRef]
- Franks, J.M.; Martyanov, V.; Cai, G.; Wang, Y.; Li, Z.; Wood, T.A.; Whitfield, M.L. A Machine Learning Classifier for Assigning Individual Patients With Systemic Sclerosis to Intrinsic Molecular Subsets. Arthritis Rheumatol. 2019, 71, 1701–1710. [Google Scholar] [CrossRef]
- Xu, X.; Ramanujam, M.; Visvanathan, S.; Assassi, S.; Liu, Z.; Li, L. Transcriptional insights into pathogenesis of cutaneous systemic sclerosis using pathway driven meta-analysis assisted by machine learning methods. PLoS ONE 2020, 15, e0242863. [Google Scholar] [CrossRef]
- Showalter, K.; Spiera, R.; Magro, C.; Agius, P.; Martyanov, V.; Franks, J.M.; Sharma, R.; Geiger, H.; Wood, T.A.; Zhang, Y.; et al. Machine learning integration of scleroderma histology and gene expression identifies fibroblast polarisation as a hallmark of clinical severity and improvement. Ann. Rheum. Dis. 2021, 80, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Murdaca, G.; Caprioli, S.; Tonacci, A.; Billeci, L.; Greco, M.; Negrini, S.; Cittadini, G.; Zentilin, P.; Ventura Spagnolo, E.; Gangemi, S. A Machine Learning Application to Predict Early Lung Involvement in Scleroderma: A Feasibility Evaluation. Diagnostics 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Andrade, D.S.M.; Ribeiro, L.M.; Lopes, A.J.; Amaral, J.L.M.; Melo, P.L. Machine learning associated with respiratory oscillometry: A computer-aided diagnosis system for the detection of respiratory abnormalities in systemic sclerosis. BioMed. Eng. OnLine 2021, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Chassagnon, G.; Vakalopoulou, M.; Régent, A.; Zacharaki, E.I.; Aviram, G.; Martin, C.; Marini, R.; Bus, N.; Jerjir, N.; Mekinian, A.; et al. Deep Learning–based Approach for Automated Assessment of Interstitial Lung Disease in Systemic Sclerosis on CT Images. Radiol. Artif. Intell. 2020, 2, e190006. [Google Scholar] [CrossRef]
- Taroni, J.N.; Martyanov, V.; Mahoney, J.M.; Whitfield, M.L. A Functional Genomic Meta-Analysis of Clinical Trials in Systemic Sclerosis: Toward Precision Medicine and Combination Therapy. J. Investig. Dermatol. 2017, 137, 1033–1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebata, S.; Oba, K.; Kashiwabara, K.; Ueda, K.; Uemura, Y.; Watadani, T.; Fukasawa, T.; Miura, S.; Yoshizaki-Ogawa, A.; Yoshihide, A.; et al. Predictors of Rituximab Effect on Modified Rodnan Skin Score in Systemic Sclerosis: A machine learning analysis of the DESIRES trial. Rheumatology 2022, keac023. [Google Scholar] [CrossRef] [PubMed]
- Zamanian, R.T.; Badesch, D.; Chung, L.; Domsic, R.T.; Medsger, T.; Pinckney, A.; Keyes-Elstein, L.; D’Aveta, C.; Spychala, M.; White, R.J.; et al. Safety and Efficacy of B-Cell Depletion with Rituximab for the Treatment of Systemic Sclerosis-associated Pulmonary Arterial Hypertension: A Multicenter, Double-Blind, Randomized, Placebo-controlled Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Franks, J.M.; Martyanov, V.; Wang, Y.; Wood, T.A.; Pinckney, A.; Crofford, L.J.; Keyes-Elstein, L.; Furst, D.E.; Goldmuntz, E.; Mayes, M.D.; et al. Machine learning predicts stem cell transplant response in severe scleroderma. Ann. Rheum. Dis. 2020, 79, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Schniering, J.; Maciukiewicz, M.; Gabrys, H.S.; Brunner, M.; Blüthgen, C.; Meier, C.; Braga-Lagache, S.; Uldry, A.-C.; Heller, M.; Guckenberger, M.; et al. Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis. Eur. Respir. J. 2022, 59, 2004503. [Google Scholar] [CrossRef] [PubMed]
- Diab, N.; Hassoun, P.M. Pulmonary arterial hypertension: Screening challenges in systemic sclerosis and future directions. Eur. Respir. J. 2017, 49, 1700522. [Google Scholar] [CrossRef] [Green Version]
- Milano, A.; Pendergrass, S.A.; Sargent, J.L.; George, L.K.; McCalmont, T.H.; Connolly, M.K.; Whitfield, M.L. Molecular Subsets in the Gene Expression Signatures of Scleroderma Skin. PLoS ONE 2008, 3, e2696. [Google Scholar] [CrossRef]
- Pendergrass, S.A.; Lemaire, R.; Francis, I.P.; Mahoney, J.M.; Lafyatis, R.; Whitfield, M.L. Intrinsic gene expression subsets of diffuse cutaneous systemic sclerosis are stable in serial skin biopsies. J. Investig. Dermatol. 2012, 132, 1363–1373. [Google Scholar] [CrossRef] [Green Version]
- Hinchcliff, M.; Huang, C.-C.; Wood, T.A.; Matthew Mahoney, J.; Martyanov, V.; Bhattacharyya, S.; Tamaki, Z.; Lee, J.; Carns, M.; Podlusky, S.; et al. Molecular signatures in skin associated with clinical improvement during mycophenolate treatment in systemic sclerosis. J. Investig. Dermatol. 2013, 133, 1979–1989. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, J.M.; Taroni, J.; Martyanov, V.; Wood, T.A.; Greene, C.S.; Pioli, P.A.; Hinchcliff, M.E.; Whitfield, M.L. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms. PLOS Comput. Biol. 2015, 11, e1004005. [Google Scholar] [CrossRef] [Green Version]
- Bruni, C.; Guignabert, C.; Manetti, M.; Cerinic, M.M.; Humbert, M. The multifaceted problem of pulmonary arterial hypertension in systemic sclerosis. Lancet Rheumatol. 2021, 3, e149–e159. [Google Scholar] [CrossRef]
- Raja, J.; Denton, C.P. Cytokines in the immunopathology of systemic sclerosis. Semin. Immunopathol. 2015, 37, 543–557. [Google Scholar] [CrossRef]
- Hoffmann-Vold, A.-M.; Maher, T.M.; Philpot, E.E.; Ashrafzadeh, A.; Barake, R.; Barsotti, S.; Bruni, C.; Carducci, P.; Carreira, P.E.; Castellví, I.; et al. The identification and management of interstitial lung disease in systemic sclerosis: Evidence-based European consensus statements. Lancet Rheumatol. 2020, 2, e71–e83. [Google Scholar] [CrossRef]
- Wallace, B.; Vummidi, D.; Khanna, D. Management of connective tissue diseases associated interstitial lung disease: A review of the published literature. Curr. Opin. Rheumatol. 2016, 28, 236–245. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, N.R. The future of pulmonary function testing. Respir. Care 2012, 57, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Goh, N.S.L.; Desai, S.R.; Veeraraghavan, S.; Hansell, D.M.; Copley, S.J.; Maher, T.M.; Corte, T.J.; Sander, C.R.; Ratoff, J.; Devaraj, A.; et al. Interstitial lung disease in systemic sclerosis: A simple staging system. Am. J. Respir. Crit. Care Med. 2008, 177, 1248–1254. [Google Scholar] [CrossRef]
- Moore, O.A.; Goh, N.; Corte, T.; Rouse, H.; Hennessy, O.; Thakkar, V.; Byron, J.; Sahhar, J.; Roddy, J.; Gabbay, E.; et al. Extent of disease on high-resolution computed tomography lung is a predictor of decline and mortality in systemic sclerosis-related interstitial lung disease. Rheumatology 2013, 52, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.D.; Wells, A.U.; Hansell, D.M.; Morgan, R.A.; MacSweeney, J.E.; Du Bois, R.M.; Rubens, M.B. Observer variation in pattern type and extent of disease in fibrosing alveolitis on thin section computed tomography and chest radiography. Clin. Radiol. 1994, 49, 236–240. [Google Scholar] [CrossRef]
- Sverzellati, N.; Devaraj, A.; Desai, S.R.; Quigley, M.; Wells, A.U.; Hansell, D.M. Method for minimizing observer variation for the quantitation of high-resolution computed tomographic signs of lung disease. J. Comput. Assist. Tomogr. 2011, 35, 596–601. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Hao, Y.; Hudson, M.; Baron, M.; Carreira, P.; Stevens, W.; Rabusa, C.; Tatibouet, S.; Carmona, L.; Joven, B.E.; Huq, M.; et al. Early Mortality in a Multinational Systemic Sclerosis Inception Cohort. Arthritis Rheumatol. 2017, 69, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Mukerjee, D.; St George, D.; Coleiro, B.; Knight, C.; Denton, C.P.; Davar, J.; Black, C.M.; Coghlan, J.G. Prevalence and outcome in systemic sclerosis associated pulmonary arterial hypertension: Application of a registry approach. Ann. Rheum. Dis. 2003, 62, 1088–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hachulla, E.; Carpentier, P.; Gressin, V.; Diot, E.; Allanore, Y.; Sibilia, J.; Launay, D.; Mouthon, L.; Jego, P.; Cabane, J.; et al. Risk factors for death and the 3-year survival of patients with systemic sclerosis: The French ItinérAIR-Sclérodermie study. Rheumatology 2009, 48, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Galiè, N.; Hoeper, M.M.; Humbert, M.; Torbicki, A.; Vachiery, J.-L.; Barbera, J.A.; Beghetti, M.; Corris, P.; Gaine, S.; Gibbs, J.S.; et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: The Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2009, 30, 2493–2537. [Google Scholar] [CrossRef] [PubMed]
- Bruni, C.; De Luca, G.; Lazzaroni, M.-G.; Zanatta, E.; Lepri, G.; Airò, P.; Dagna, L.; Doria, A.; Matucci-Cerinic, M. Screening for pulmonary arterial hypertension in systemic sclerosis: A systematic literature review. Eur. J. Intern. Med. 2020, 78, 17–25. [Google Scholar] [CrossRef]
- Bauer, Y.; de Bernard, S.; Hickey, P.; Ballard, K.; Cruz, J.; Cornelisse, P.; Chadha-Boreham, H.; Distler, O.; Rosenberg, D.; Doelberg, M.; et al. Identifying early pulmonary arterial hypertension biomarkers in systemic sclerosis: Machine learning on proteomics from the DETECT cohort. Eur. Respir. J. 2021, 57, 2002591. [Google Scholar] [CrossRef] [PubMed]
- Connolly, M.K. Systemic sclerosis (scleroderma): Remaining challenges. Ann. Transl. Med. 2021, 9, 438. [Google Scholar] [CrossRef] [PubMed]
- Stoel, B. Use of artificial intelligence in imaging in rheumatology—Current status and future perspectives. RMD Open 2020, 6, e001063. [Google Scholar] [CrossRef] [Green Version]
- Bellando-Randone, S.; Russo, E.; Venerito, V.; Matucci-Cerinic, M.; Iannone, F.; Tangaro, S.; Amedei, A. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J. Pers. Med. 2021, 11, 625. [Google Scholar] [CrossRef]
- Matuchansky, C. Deep medicine, artificial intelligence, and the practising clinician. Lancet 2019, 394, 736. [Google Scholar] [CrossRef] [Green Version]
Authors | Year of Publishing | Journal | No. of Patients | Aim of ML Use |
---|---|---|---|---|
Leeuwen N.M. van, et al. [24] | 2021 | RMD Open | 248 | To predict risk of disease progression in order to develop a tailor-made follow-up |
Franks J.M., et al. [25] | 2019 | Arthritis Rheumatol. | 102 | To identify specific molecular signatures from skin biopsies which can be related to disease outcome |
Xu X., et al. [26] | 2020 | PLoS ONE | 221 | To identify molecular pathways from skin biopsies in order to obtain a finer SSc stratification |
Showalter K., et al. [27] | 2021 | Ann. Rheum. Dis. | 26 | To identify molecular signatures able to predict the treatment response (improvers vs. nonimprovers) |
Murdaca G., et al. [28] | 2021 | Diagnostics | 38 | To predict early pulmonary involvement in asymptomatic patients |
Andrade D.S.M., et al. [29] | 2021 | Biomed. Eng. OnLine | 82 | To examinate lung function data coming from respiratory oscillometry test |
Chassagnon G., et al. [30] | 2020 | Radiol. Artif. Intell. | 208 | To quantify lung disease extension from HRCT images |
Taroni J.N., et al. [31] | 2017 | J. Invest. Dermatol. | Meta-analysis (total 35) | To evaluate gene expressions on skin biopsies and predict response to different treatments |
Ebata S., et al. [32] | 2022 | Rheumatol. Oxf. Engl. | 54 | To find possible predictors of favorable response to RTX |
Zamanian R.T., et al. [33] | 2021 | Am. J. Respir. Crit. Care Med. | 57 | To evaluate RTX response in SSc-related PAH |
Franks J.M., et al. [34] | 2020 | Ann. Rheum. Dis. | 63 | To evaluate stem cell response in severe SSc |
Schniering J., et al. [35] | 2022 | Eur. Respir. J. | 118 | To identify homogeneous imaging-based ILD clusters through a radiomic analysis of lung CT in SSc patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonomi, F.; Peretti, S.; Lepri, G.; Venerito, V.; Russo, E.; Bruni, C.; Iannone, F.; Tangaro, S.; Amedei, A.; Guiducci, S.; et al. The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review. J. Pers. Med. 2022, 12, 1198. https://doi.org/10.3390/jpm12081198
Bonomi F, Peretti S, Lepri G, Venerito V, Russo E, Bruni C, Iannone F, Tangaro S, Amedei A, Guiducci S, et al. The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review. Journal of Personalized Medicine. 2022; 12(8):1198. https://doi.org/10.3390/jpm12081198
Chicago/Turabian StyleBonomi, Francesco, Silvia Peretti, Gemma Lepri, Vincenzo Venerito, Edda Russo, Cosimo Bruni, Florenzo Iannone, Sabina Tangaro, Amedeo Amedei, Serena Guiducci, and et al. 2022. "The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review" Journal of Personalized Medicine 12, no. 8: 1198. https://doi.org/10.3390/jpm12081198
APA StyleBonomi, F., Peretti, S., Lepri, G., Venerito, V., Russo, E., Bruni, C., Iannone, F., Tangaro, S., Amedei, A., Guiducci, S., Matucci Cerinic, M., & Bellando Randone, S. (2022). The Use and Utility of Machine Learning in Achieving Precision Medicine in Systemic Sclerosis: A Narrative Review. Journal of Personalized Medicine, 12(8), 1198. https://doi.org/10.3390/jpm12081198