Laboratory Tests and Analyses of the Level of Vibration Suppression of Prototype under Ballast Mats (UBM) in the Ballasted Track Systems
Abstract
:1. Introduction
2. Testing Procedures and Requirements for UBM
2.1. Standards and Testing Procedures of UBM
2.2. Requirements for UBM
2.2.1. German Railways
2.2.2. Austrian Railways
2.2.3. Swiss Railways
3. Laboratory Tests of Static and Dynamic Characteristics of UBM according to DIN 45673-5 and EN 17282
- UBM 042—thickness 25 mm, density 850 kg/m3, very stiff type, main function: the ballast protection;
- UBM 045—thickness 20 mm, density 700 kg/m3, medium type, main function: vibration isolation.
3.1. Static Bedding Modulus
3.2. Dynamic Bedding Modulus in Low Frequencies
3.3. Dynamic Bedding Modulus in High Frequencies
3.4. Discussion of Results
- The results differ because of two different ballast plates applied in both testing procedures—a flat plate (DIN) and GBP (EN); the use of GBP leads to more reliable results as this plate simulates the conditions under the ballast layer, but it requires creating new requirements by the railway infrastructure managers;
- The same load applied concentrically to the UBM sample (300 mm × 300 mm) with GBP causes much bigger deflections than in the case of the flat plate;
- Big differences in the values of static and dynamic (in low frequencies) bedding moduli determined using two approaches (from over 30% up to ~75%) were observed in the case of very stiff and medium types of UBM (Table 8 and Table 9); the identification of dynamic bedding moduli in high frequencies revealed smaller discrepancies of results—for the medium type below 25% (Table 10);
- The fact that smaller discrepancies of the values CH than Cdyn were obtained, is a positive effect because it results in smaller influence on the analysis of vibration isolation effectiveness—the values that are used in the rheological model are CH, not Cdyn;
- Small discrepancies of bedding moduli obtained for softer mats is a positive effect, as these mats (soft and medium types) are dedicated to be used as vibration isolators and for these mats the insertion loss (IL) should be determined; in the case of stiffer mats, for which the differences of the bedding moduli are bigger, there is no need to analyze IL, as they are dedicated for protection of the ballast layer;
- The protective function of UBM (protection against track degradation) dominates over the isolating function (vibration isolation) when the mat is stiff enough—it should have a high bedding modulus; according to Table 1 mats no. 42 and 45 tested according to DIN could be applied as the protection of the ballast, however if they were tested according to EN, they would be too soft for this function (see values in Table 8).
4. Mechanical Model of the Structure
- 31.5–63 Hz—vibration;
- 63–125 Hz—secondary structure-borne noise.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UIC (Union International of Railway). UIC CODE 719-1 R: Recommendations for the use of Under Ballast Mats—UBM; UIC: Paris, France, 2011. [Google Scholar]
- Wettschureck, R.G. Unterschottermatten auf einer Eisenbahnbrücke in Stahlbeton-Verbundbauweise. DAGA 1987, 87, 217–220. [Google Scholar]
- Wettschureck, R.G.; Heim, M.; Mühlbachler, S. Reduction of structure-borne noise emissions from above-ground railway lines by means of ballast mats. In Proceedings of the INTER-NOISE and NOISE-CON Congress and Conference, Budapest, Hungary, 25–27 August 1997; Volume 97, pp. 577–580. [Google Scholar]
- Wettschureck, R.G.; Breuer, F.; Tecklenburg, M.; Widmann, H. Installation of highly effective vibration mitigation measures in a railway tunnel in Cologne, Germany. Rail Eng. Int. 1999, 4, 12–16. [Google Scholar]
- Hansona, C.E.; Singleton, H.L., Jr. Performance of ballast mats on passenger railroads: Measurement vs. projections. J. Sound Vib. 2006, 293, 873–877. [Google Scholar] [CrossRef]
- Daiminger, W.; Dold, M. Long-term effectiveness of under-ballast mats confirmed 30 years after installation. Rail Eng. Int. 2014, 4, 10–14. [Google Scholar]
- Wettschureck, R.; Heim, M.; Tecklenburg, M. Long-term properties of Sylomer ballast mats installed in the rapid transit railway tunnel near the Philharmonic Hall of Munich, Germany. Rail Eng. Int. 2002, 4, 6–11. [Google Scholar]
- Alves Costa, P.; Calcada, R.; Silva Cardoso, A. Ballast mats for the reduction of railway traffic vibrations. Numer. Study. Soil Dyn. Earthq. Eng. 2012, 42, 137–150. [Google Scholar] [CrossRef]
- Xin, T.; Ding, Y.; Wang, P.; Gao, L. Application of rubber mats in transition zone between two different slab tracks in high-speed railway. Constr. Build. Mater. 2020, 243, 118219. [Google Scholar] [CrossRef]
- Indraratna, B.; Nimbalkar, S.; Navaratnarajah, S.K.; Rujikiatkamjorn, C.; Neville, T. Use of shock mats for mitigating degradation of railroad ballast. Sri Lankan Geotech. J. Spec. Issue Ground Improv. 2014, 6, 32–41. [Google Scholar]
- Kumar, N.; Suhr, B.; Marschnig, S.; Dietmaier, P.; Marte, C.; Six, K. Micro-mechanical investigation of railway ballast behavior under cyclic loading in a box test using DEM: Effects of elastic layers and ballast types. Granul. Matter 2019, 21, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.; Ma, M.; Li, M.; Cao, Y.; Liu, W. Analysis of the Vibration Mitigation Characteristics of the Ballasted Ladder Track with Elastic Elements. Sustainability 2019, 11, 6780. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Lima, A.; Dersch, M.S.; Edwards, J.R. Comparison of Ballast Mat Performance with Different Support Conditions. In Proceedings of the APTA 2017 Rail Conference, Baltimore, MD, USA, 11–14 June 2017. [Google Scholar]
- Sheng, X.W.; Zheng, W.Q.; Zhu, Z.H.; Luo, T.J.; Zheng, Y.H. Properties of rubber under-ballast mat used as ballastless track isolation layer in high-speed railway. Constr. Build. Mater. 2020, 240, 117822. [Google Scholar] [CrossRef]
- Sol-Sánchez, M. Development of Elastic Elements from End-of-Life Tire Layers to be Applied in Railway Tracks. Ph.D. Thesis, University of Granada, Granada, Spain, 2014. [Google Scholar]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. Viability of using end-of-life tire pads as under sleeper pads in railway. Constr. Build. Mater. 2014, 64, 150–156. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Pirozzolo, L.; Moreno-Navarro, F.; Rubio-Gámez, C. A study into the mechanical performance of different configurations for the railway track section: A laboratory approach. Eng. Struct. 2016, 119, 13–23. [Google Scholar] [CrossRef]
- Onorii, C. Mechanical Behaviour of Traditional and Antivibration Railway Tracks with Recycled Rubber Materials. Ph.D. Thesis, Universita Degli Studi Di Napoli Federico II, Neapol, Italy, 2009. [Google Scholar]
- Zheng, W.; Sheng, X.; Zhu, Z.; Luo, T.; Liu, Z. Experimental Study on Vibration Characteristics of Unit-Plate Ballastless Track Systems Laid on Long-Span Bridges Using Full-Scale Test Rigs. Sensors 2020, 20, 1744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Yao, C.; Li, C.; Miao, M.; Zhong, Y.; Lu, Y.; Liu, T. Review of Application and Innovation of Geotextiles in Geotechnical Engineering. Materials 2020, 13, 1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmaeili, M.; Salajegheh, M.; Famenin, S.J. Experimental assessment of geotextile serviceability lifetime as ballasted railway filter focusing on clogging phenomenon. Constr. Build. Mater. 2019, 211, 675–687. [Google Scholar] [CrossRef]
- Singh, R.; Nimbalkar, S.; Singh, S.; Choudhury, D. Field assessment of railway ballast degradation and mitigation using geotextile. Geotext. Geomembr. 2020, 48, 275–283. [Google Scholar] [CrossRef]
- DIN 45673-5:2010-08 Mechanical Vibration. Resilient Elements Used in Railway Tracks. Part 5: Laboratory Test Procedures for Under-Ballast Mats; DIN: Berlin, Germany, 2010.
- EN 17282:2020-10 Railway Applications—Infrastructure—Under Ballast Mats; CEN: Brussels, Belgium, 2020.
- Bahn-Norm BN 918 071-1: Unterschottermatten zur Minderung der Schotterbeanspruchung; Bahn-Norm: Berlin, Germany, 2000.
- DB Netz AG. DBS 918 071-01: Unterschottermatten zur Minderung der Schotterbeanspruchung; DBS: Berlin, Germany, 2006. [Google Scholar]
- UNI 11059:2013 Elementi Antivibranti—Materassini Elastomerici per Armamenti Ferrotranviari—Indagini di Qualifica e Controllo delle Caratteristiche Meccaniche e delle Prestazioni. Antivibrating Elements—Elastomeric Mats for Railway/Tramway Tracks—Qualification and Check Tests to Determine Their Mechanical Characteristics and Performance Parameters; UNI: Milano, Italy, 2013.
- UNI 10570:1997 Prodotti per L’isolamento delle Vibrazioni—Determinazione delle Caratteristiche Meccaniche di Materassini e Piastre. Vibration Isolation Products—Determination of Mechanical Characteristics of Mats and Pad; UNI: Milano, Italy, 1997.
- PN-EN 16730:2016-08 Railway Applications—Track—Concrete Sleepers and Bearers with under Sleeper Pads; CEN: Brussels, Belgium, 2016.
- Kraśkiewicz, C.; Oleksiewicz, W.; Płudowska-Zagrajek, M.; Piotrowski, A. Testing procedures of the Under Sleeper Pads applied in the ballasted rail track systems. In Proceedings of the MATEC Web of Conferences, XXVII R-S-P Seminar Theoretical Foundation of Civil Engineering (TFoCE 2018), Rostov-on-Don, Russia, 17–21 September 2018; Volume 196, pp. 1–8. [Google Scholar]
- Iliev, D.L. Die Horizontale Gleislagestabilität des Schotteroberbaus mit Konventionellen und Elastisch Besohlten Schwellen. Ph.D. Thesis, Technische Universität München, München, Germany, 2012. [Google Scholar]
- TL 918 071, Technischen Lieferbedingungen: Unterschottermatten; TL: Berlin, Germany, 1988.
- DB Netz AG. Einsatz von Schallminderungsmaßnahmen an Bestehenden und Neuen Eisenbahnbrücken im Netz der DB AG—Brückenleitfaden I.NVS4 (Version 2018); DBS: Berlin, Germany, 2018. [Google Scholar]
- DB Netz AG. Technische Mitteilung TM 2010-1564 I.NVT 4; DBS: Berlin, Germany, 2010. [Google Scholar]
- ÖBB Infrastruktur AG. B 50-1: Oberbauformen; ÖBB: Vienna, Austria, 2009. [Google Scholar]
- SBB CFF FFS. Unterschottermatten (I-AM 05/2002); SBB CFF FFS: Bern, Switzerland, 2002. [Google Scholar]
- EN ISO 10846-2:2008 Acoustics and Vibration—Laboratory Measurement of Vibro-Acoustic Transfer Properties of Resilient Elements—Part 2: Direct Method for Determination of the Dynamic Stiffness of Resilient Supports for Translatory Motion; CEN: Brussels, Belgium, 2009.
- Zbiciak, A.; Kraśkiewicz, C.; Oleksiewicz, W.; Płudowska-Zagrajek, M.; Lipko, C. Mechanical modelling and application of vibroacoustic isolators in railway tracks. In Proceedings of the MATEC Web of Conferences, RSP 2017–XXVI R-S-P Seminar 2017: Theoretical Foundation of Civil Engineering, Warsaw, Poland, 21–25 August 2017; Volume 117. [Google Scholar]
- DIN V 45673-4:2010-08 Mechanical Vibration—Resilient Elements Used in Railway Tracks. Part 4: Analytical Evaluation of Insertion Loss of Mounted Track Systems; DIN: Berlin, Germany, 2010.
- Zbiciak, A.; Kraśkiewicz, C.; Al Sabouni-Zawadzka, A.; Pełczyński, J.; Dudziak, S. A novel approach to the analysis of under sleeper pads (USP) applied in the ballasted track structures. Materials 2020, 13, 2438. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.M. Theory of Viscoelasticity; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
Vmax [km/h] | Static Bedding Modulus Cstat (N/mm3) |
---|---|
>230 | <0.10; 0.15> |
≤230 | <0.10; 0.25> |
Vmax [km/h] | Axle Load [kN] | Static Bedding Modulus Cstat [N/mm3] |
---|---|---|
≤120 | ≤160 | 0.02 |
≤120 | >160 * | 0.03 |
(120; 200) | 0.06 | |
≥200 | 0.10 |
Vmax [km/h] | Line Type | Static Bedding Modulus Cstat [N/mm3] |
---|---|---|
≤120 | Main lines | ≥0.025 |
(120; 200>) | ≥0.060 | |
>200 | ≥0.100 |
Vmax [km/h] | Function | Static Bedding Modulus Cstat [N/mm3] |
---|---|---|
≤120 | Vibration isolation | ≥0.03 |
(120; 200) | ≥0.06 | |
≥200 | ≥0.10 |
Very soft for 0 < Cstat < 0.03 N/mm3 | |
Soft for 0.03 ≤ Cstat < 0.06 N/mm3; for Vmax ≤ 120 km/h | |
Medium for 0.06 ≤ Cstat < 0.10 N/mm3, for 120 km/h < Vmax < 200 km/h | |
Stiff for 0.10 ≤ Cstat < 0.15 N/mm3, for Vmax ≥ 200 km/h | |
Very stiff for 0.15 ≤ Cstat < 0.25 N/mm3 |
UBM Sample No. | UBM Material | Density [kg/m3] | Thickness [mm] |
---|---|---|---|
37 | mineral wool | 230 | 35 |
38 | mineral wool | 230 | 35 |
39 | mineral wool | 230 | 35 |
42 | SBR | 850 | 25 |
43 | SBR | 650 | 25 |
44 | SBR | 700 | 15 |
45 | SBR | 700 | 20 |
46 | SBR | 700 | 25 |
47 | SBR | 700 | 30 |
48 | SBR | 600 | 15 |
49 | SBR | 600 | 20 |
50 | SBR | 600 | 25 |
51 | SBR | 600 | 30 |
52 | SBR | 500 | 15 |
53 | SBR | 500 | 20 |
54 | SBR | 500 | 25 |
55 | SBR | 500 | 30 |
56 | SBR | 550 | 20 |
ΔC < 25% | |
25% ≤ ΔC < 50% | |
50% ≤ ΔC < 75% | |
ΔC ≥ 75% |
UBM Sample No. | UBM Type | Cstat DIN [N/mm3] | Ctend DIN [N/mm3] | Cstat EN [N/mm3] | Ctend EN [N/mm3] | ΔCstat [%] | ΔCtend [%] |
---|---|---|---|---|---|---|---|
37 | Very soft | 0.028 | 0.043 | 0.027 | 0.041 | −3.6 | −4.7 |
38 | Very soft | 0.026 | 0.037 | 0.028 | 0.040 | 7.7 | 8.1 |
39 | Very soft | 0.023 | 0.034 | 0.026 | 0.038 | 13.0 | 11.8 |
42 | Very stiff | 0.231 | 0.256 | 0.066 | 0.083 | −71.4 | −67.6 |
43 | Medium | 0.072 | 0.072 | 0.037 | 0.045 | −48.6 | −37.5 |
44 | Very stiff | 0.158 | 0.158 | 0.056 | 0.074 | −64.6 | −53.2 |
45 | Medium | 0.079 | 0.080 | 0.041 | 0.051 | −48.1 | −36.3 |
46 | Medium | 0.075 | 0.073 | 0.039 | 0.047 | −48.0 | −35.6 |
47 | Medium | 0.065 | 0.062 | 0.037 | 0.043 | −43.1 | −30.6 |
48 | Soft | 0.056 | 0.067 | 0.040 | 0.053 | −28.6 | −20.9 |
49 | Soft | 0.037 | 0.046 | 0.029 | 0.039 | −21.6 | −15.2 |
50 | Soft | 0.037 | 0.043 | 0.028 | 0.036 | −24.3 | −16.3 |
51 | Soft | 0.03 | 0.035 | 0.024 | 0.030 | −20.0 | −14.3 |
52 | Soft | 0.032 | 0.047 | 0.032 | 0.046 | 0.0 | −2.1 |
53 | Very soft | 0.025 | 0.036 | 0.025 | 0.036 | 0.0 | 0.0 |
54 | Very soft | 0.02 | 0.029 | 0.020 | 0.029 | 0.0 | 0.0 |
55 | Very soft | 0.016 | 0.023 | 0.016 | 0.023 | 0.0 | 0.0 |
56 | Soft | 0.031 | 0.041 | 0.025 | 0.035 | −19.4 | −14.6 |
No. | Cdyn DIN [N/mm3] | Cdyn EN [N/mm3] | ΔCdyn [%] | ||||||
---|---|---|---|---|---|---|---|---|---|
5 Hz | 10 Hz | 20 Hz | 5 Hz | 10 Hz | 20 Hz | 5 Hz | 10 Hz | 20 Hz | |
37 | 0.038 | 0.040 | 0.051 | 0.033 | 0.034 | 0.039 | −13.2 | −15.0 | −23.5 |
38 | 0.032 | 0.034 | 0.044 | 0.034 | 0.036 | 0.042 | 6.3 | 5.9 | −4.5 |
39 | 0.030 | 0.031 | 0.046 | 0.032 | 0.033 | 0.040 | 6.7 | 6.5 | −13.0 |
42 | 0.383 | 0.406 | 0.439 | 0.093 | 0.097 | 0.111 | −75.7 | −76.1 | −74.7 |
43 | 0.114 | 0.121 | 0.134 | 0.055 | 0.058 | 0.071 | −51.8 | −52.1 | −47.0 |
44 | 0.258 | 0.272 | 0.298 | 0.081 | 0.085 | 0.099 | −68.6 | −68.8 | −66.8 |
45 | 0.123 | 0.130 | 0.143 | 0.059 | 0.062 | 0.076 | −52.0 | −52.3 | −46.9 |
46 | 0.116 | 0.123 | 0.136 | 0.055 | 0.057 | 0.070 | −52.6 | −53.7 | −48.5 |
47 | 0.100 | 0.105 | 0.117 | 0.054 | 0.057 | 0.068 | −46.0 | −45.7 | −41.9 |
48 | 0.089 | 0.094 | 0.107 | 0.061 | 0.064 | 0.078 | −31.5 | −31.9 | −27.1 |
49 | 0.059 | 0.062 | 0.073 | 0.044 | 0.046 | 0.057 | −25.4 | −25.8 | −21.9 |
50 | 0.059 | 0.062 | 0.073 | 0.042 | 0.045 | 0.056 | −28.8 | −27.4 | −23.3 |
51 | 0.048 | 0.050 | 0.060 | 0.036 | 0.038 | 0.046 | −25.0 | −24.0 | −23.3 |
52 | 0.058 | 0.061 | 0.074 | 0.051 | 0.054 | 0.066 | −12.1 | −11.5 | −10.8 |
53 | 0.045 | 0.048 | 0.059 | 0.040 | 0.043 | 0.055 | −11.1 | −10.4 | −6.8 |
54 | 0.036 | 0.038 | 0.048 | 0.033 | 0.035 | 0.046 | −8.3 | −7.9 | −4.2 |
55 | 0.028 | 0.030 | 0.047 | 0.027 | 0.029 | 0.038 | −3.6 | −3.3 | −19.1 |
56 | 0.054 | 0.057 | 0.069 | 0.043 | 0.045 | 0.057 | −20.4 | −21.1 | −17.4 |
No. | CH DIN [N/mm3] | CH EN [N/mm3] | ΔCH [%] | ||||||
---|---|---|---|---|---|---|---|---|---|
12.5 Hz | 16 Hz | 20 Hz | 12.5 Hz | 16 Hz | 20 Hz | 12.5 Hz | 16 Hz | 20 Hz | |
37 | 0.169 | 0.178 | 0.194 | 0.152 | 0.162 | 0.168 | −10.1 | −9.0 | −13.4 |
38 | 0.113 | 0.119 | 0.125 | 0.100 | 0.104 | 0.111 | −11.5 | −12.6 | −11.2 |
39 | 0.123 | 0.129 | 0.136 | 0.118 | 0.124 | 0.130 | −4.1 | −3.9 | −4.4 |
42 | 0.596 | 0.636 | 0.682 | 0.212 | 0.226 | 0.239 | −64.4 | −64.5 | −65.0 |
43 | 0.176 | 0.185 | 0.195 | 0.134 | 0.141 | 0.149 | −23.9 | −23.8 | −23.6 |
44 | 0.360 | 0.383 | 0.407 | 0.208 | 0.220 | 0.236 | −42.2 | −42.6 | −42.0 |
45 | 0.188 | 0.200 | 0.211 | 0.143 | 0.150 | 0.159 | −23.9 | −25.0 | −24.6 |
46 | 0.175 | 0.184 | 0.195 | 0.133 | 0.140 | 0.147 | −24.0 | −23.9 | −24.6 |
47 | 0.147 | 0.155 | 0.164 | 0.117 | 0.123 | 0.131 | −20.4 | −20.6 | −20.1 |
48 | 0.203 | 0.218 | 0.233 | 0.179 | 0.191 | 0.204 | −11.8 | −12.4 | −12.4 |
49 | 0.146 | 0.155 | 0.165 | 0.127 | 0.135 | 0.143 | −13.0 | −12.9 | −13.3 |
50 | 0.128 | 0.135 | 0.144 | 0.114 | 0.121 | 0.128 | −10.9 | −10.4 | −11.1 |
51 | 0.103 | 0.108 | 0.116 | 0.094 | 0.100 | 0.107 | −8.7 | −7.4 | −7.8 |
52 | 0.203 | 0.221 | 0.235 | 0.182 | 0.194 | 0.208 | −10.3 | −12.2 | −11.5 |
53 | 0.172 | 0.183 | 0.195 | 0.147 | 0.155 | 0.165 | −14.5 | −15.3 | −15.4 |
54 | 0.133 | 0.141 | 0.151 | 0.102 | 0.109 | 0.119 | −23.3 | −22.7 | −21.2 |
55 | 0.109 | 0.116 | 0.125 | 0.102 | 0.108 | 0.115 | −6.4 | −6.9 | −8.0 |
56 | 0.165 | 0.174 | 0.187 | 0.148 | 0.158 | 0.169 | −10.3 | −9.2 | −9.6 |
UBM Type | Frequencies in 1/3 Octave Bands f [Hz] | |||||||
---|---|---|---|---|---|---|---|---|
31.5 Hz | 63 Hz | 125 Hz | IL > 0 (DIN) [Hz] | IL > 0 (EN) [Hz] | ||||
IL (DIN) [dB] | IL (EN) [dB] | IL (DIN) [dB] | IL (EN) [dB] | IL (DIN) [dB] | IL (EN) [dB] | |||
very stiff | 1.4 | 3.6 | 0.4 | 1.2 | 1.2 | 4.7 | 21.1 | 20.1 |
medium | 4.0 | 4.9 | 1.4 | 1.8 | 5.1 | 6.8 | 19.9 | 19.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraśkiewicz, C.; Zbiciak, A.; Wasilewski, K.; Al Sabouni-Zawadzka, A. Laboratory Tests and Analyses of the Level of Vibration Suppression of Prototype under Ballast Mats (UBM) in the Ballasted Track Systems. Materials 2021, 14, 313. https://doi.org/10.3390/ma14020313
Kraśkiewicz C, Zbiciak A, Wasilewski K, Al Sabouni-Zawadzka A. Laboratory Tests and Analyses of the Level of Vibration Suppression of Prototype under Ballast Mats (UBM) in the Ballasted Track Systems. Materials. 2021; 14(2):313. https://doi.org/10.3390/ma14020313
Chicago/Turabian StyleKraśkiewicz, Cezary, Artur Zbiciak, Kacper Wasilewski, and Anna Al Sabouni-Zawadzka. 2021. "Laboratory Tests and Analyses of the Level of Vibration Suppression of Prototype under Ballast Mats (UBM) in the Ballasted Track Systems" Materials 14, no. 2: 313. https://doi.org/10.3390/ma14020313
APA StyleKraśkiewicz, C., Zbiciak, A., Wasilewski, K., & Al Sabouni-Zawadzka, A. (2021). Laboratory Tests and Analyses of the Level of Vibration Suppression of Prototype under Ballast Mats (UBM) in the Ballasted Track Systems. Materials, 14(2), 313. https://doi.org/10.3390/ma14020313