Recent Advances in the Chemical Composition of Propolis
Abstract
:1. Introduction
2. Chemical Compounds in Propolis
3. Flavonoids
No. | Chemical Name | Geographical Location | Reference |
---|---|---|---|
Flavones | |||
1 | Luteolin | China | [33] |
2 | 6-Cinnamylchrysin | China | [34] |
3 | 3',5-Dihydroxy-4',7-dimenthoxy flavone | Poland | [26] |
4 | Hexamethoxy flavone | Egypt | [35] |
5 | (7''R)-8-[1-(4'-Hydroxy-3'-methoxyphenyl) prop-2-en-1-yl]chrysin | Mexico | [36] |
Flavonols | |||
6 | 2'-(8"-Hydroxy-3",8"-dimethyl-oct-2"-enyl)-quercetin | Solomon Island | [31] |
7 | 8-(8"-Hydroxy-3",8"-dimethyl-oct-2"-enyl)-quercetin | Solomon Island | [31] |
8 | 2'-Geranylquercetin | Solomon Island | [31] |
9 | Macarangin | Kenya | [37] |
10 | (7"R)-8-[1-(4'-Hydroxy-3'-methoxyphenyl)prop-2-en-1-yl]-galangin | Mexico | [36] |
Flavanones | |||
11 | 3-O-[(S)-2-Methylbutyroyl]pinobanksin | China | [34] |
12 | (2S)-5,7-Dihydroxy-4'-methoxy-8-prenylflavanone | Solomon Island | [31] |
13 | Hesperitin-5,7-dimethyl ether | Portugal | [38] |
14 | Pinobanksin-5-methyl-ether-3-O-pentanoate | Portugal | [38] |
15 | 7-O-Prenylstrobopinin | Greek | [39] |
16 | 7-O-Prenylpinocembrin | Greek | [39] |
17 | (2R,3R)-3,5-Dihydroxy-7-methoxyflavanone 3-(2-methyl)-butyrate | Mexico | [36] |
18 | (2R,3R)-6[1-(4'-Hydroxy-3'-methoxyphenyl) prop-2en-1-yl] pinobanksin | Mexico | [40] |
19 | (2R,3R)-6[1-(4'-Hydroxy-3'-methoxyphenyl) prop-2en-1-yl]-pinobanksin-3-acetate | Mexico | [40] |
20 | 3',4',6-Trihydroxy-7-methoxy flavanone | Nepal | [41] |
21 | 5,7,3',4'-Tetrahydroxy-5'-C-geranylflavanone | Japan | [42] |
22 | 5,7,3',4'-Tetrahydroxy-6-C-geranylflavanone | Japan | [42] |
23 | 5,7,3',4'-Tetrahydroxy-2'-C-geranylflavanone | Japan | [42] |
24 | 5,7,3',4'-Tetrahydroxy-2'-C-geranyl-6-prenlyflavanone | Japan | [42] |
25 | Propolin A | Taiwan | [43] |
26 | Propolin B | Taiwan | [43] |
27 | Propolin E | Taiwan | [43] |
28 | Sigmoidin B | Taiwan | [43] |
29 | Bonannione A | Taiwan | [31] |
30 | Solophenol A | Solomon Island | [31] |
31 | Sophoraflavanone A | Solomon Island | [31] |
32 | (2S)-7-Hydroxyflavanone | Brazil | [44] |
33 | (2S)-Liquiritigenin | Brazil | [44] |
34 | (2S)-7-Hydroxy-6-methoxyflavanone | Brazil | [44] |
35 | (2S)-Naringenin | Brazil | [44] |
36 | (2S)-Dihydrobaicalein | Brazil | [44] |
37 | (2S)-Dihydrooroxylin A | Brazil | [44] |
38 | (2R,3R)-3,7-Dihydroxyflavanone | Brazil | [44] |
39 | Garbanzol | Brazil | [44] |
40 | (2R,3R)-3,7-Dihydroxy-6-methoxyflavanone | Brazil | [44] |
41 | Alnustinol | Brazil | [44] |
42 | (2R, 3R)-3,6,7-Trihydroxyflavanone | Nepal | [41] |
43 | 5-Methoxy-3-hidroxyflavanone | Portugal | [38] |
44 | 5,7-Dihydroxy-6-methoxy-2,3-Dihydroflavonol-3-acetate | Australia | [45] |
Isoflavones | |||
45 | Odoratin | Nepal | [41] |
46 | 7,3',4'-Trihydroxy-5'-methoxyisoflavonoid | Nepal | [41] |
47 | 6,7,3'-Trihydroxy-4'-methoxyisoflavonoid | Nepal | [41] |
48 | 7,3'-Dihydroxy-6,5'- methoxyisoflavonoid | Nepal | [41] |
49 | 7-Hydroxy-4'-methoxyisoflavonoid | Cuba | [46] |
50 | 5,7-Dihydroxy-4'-methoxyisoflavonoid | Cuba | [46] |
51 | Calycosin | Brazil | [44] |
52 | 7,4'-Dihydroxyisoflavone | Brazil | [24] |
53 | Homopterocarpin | Brazil | [24] |
54 | Medicarpin | Brazil | [24] |
55 | 4',7-Dimethoxy-2'-isoflavonol | Brazil | [24] |
Isodihydroflavones | |||
56 | Daidzein | Brazil | [44] |
57 | Formononetin | Brazil | [44] |
58 | Xenognosin B | Brazil | [44] |
59 | Biochanin A | Brazil | [44] |
60 | Pratensein | Brazil | [44] |
61 | 2'-Hydroxybiochanin A | Brazil | [44] |
62 | (3S)-Vestitone- | Brazil | [44] |
63 | (3S)-Violanone | Brazil | [44] |
64 | (3S)-Ferreirin | Brazil | [44] |
65 | (3R)-4'-Methoxy-2',3,7-trihydroxyisoflavanone | Brazil | [44] |
66 | Biochanin | Cuba | [25] |
Chalcones | |||
67 | 3,4,2',3'-Tetrahydroxychalcone | Brazil | [30] |
68 | Isoliquiritigenin | Brazil | [44] |
69 | 4,4'-Dihydroxy-2'-methoxychalcone | Brazil | [44] |
Dihydrochalcones | |||
70 | (αS)-α,2',4,4'-Tetrahydroxydihydrochalcone | Brazil | [44] |
71 | 2',4'-Dihydroxychalcone | Brazil | [44] |
72 | 2',6'-Dihydroxy-4',4-dimethoxydihydrochalcone | Canada | [47] |
73 | 2',4',6'-Trihydroxy-4-methoxydihydrochalcone | Canada | [47] |
74 | 2',6',4-Tryhydroxy-4'-methoxydihydrochalcone | Canada | [47] |
Flavans | |||
75 | 8-[(E)-4-Phenylprop-2-en-1-one]-(2R,3S)-2-(3,5-dihydroxyphenyl)-3,4-dihydro-2H-2-be-nzopyran-5-methoxyl-3,7-diol, | China | [48] |
76 | 8-[(E)-4-Phenylprop-2-en-1-one]-(2S,3R)-2-(3,5-dihydroxyphenyl)-3,4-dihydro-2H-2-benzopyran-5-methoxyl-3,7-diol | China | [48] |
77 | 8-[(E)-4-Phenylprop-2-en-1-one]-(2R,3S)-2-(3-methoxyl-4-hydroxyphenyl)-3,4-dihydro-2H-2-benzopyran-5-methoxyl-3,7-diol | China | [48] |
78 | 3-Hydroxy-5,6-dimethoxyflavan | Mexico | [49] |
Isoflavans | |||
79 | (3S)-Vestitol | Brazil | [44] |
80 | (3S)-Isovestitol | Brazil | [44] |
81 | (3S)-7-O-Methylvestitol | Brazil | [44] |
82 | (3S)-Mucronulatol | Brazil | [44] |
83 | 7,4'-Dihydroxy-2'-methoxyisoflavone | Cuba | [46] |
84 | Neovestitol | Cuba | [25] |
Pterocarpins (a type of neoflavonoid) | |||
85 | Medicarpin | Cuba | [46] |
86 | 4-Hydroxymedicarpin | - | [46] |
87 | Homopterocarpin | Cuba | [46] |
88 | 4'-Methoxy-5'hydroxyvesticarpan | - | [46] |
89 | 3,8-Dihydroxy-9-methoxypterocarpan | Cuba | [46] |
90 | 3-Hydroxy-8,9-dimethoxypterocarpan | Cuba | [46] |
91 | 3,4-Dihydroxy-9-methoxypterocarpan | Cuba | [46] |
92 | 3,10-Dihydroxy-9-methoxypterocarpan | Brazil | [44] |
93 | 6a-Ethoxymedicarpin | Brazil | [44] |
94 | (6aR,11aR)-4-Methoxymedicarpin | Brazil | [44] |
Open-chain neoflavonoids | |||
95 | Neoflavonoid 1 | Nepal | [50] |
96 | Neoflavonoid 2 | Nepal | [50] |
97 | Neoflavonoid 3 | Nepal | [50] |
98 | Neoflavonoid 4 | Nepal | [50] |
99 | Neoflavonoid 5 | Nepal | [50] |
100 | Neoflavonoid 6 | Nepal | [50] |
101 | Neoflavonoid 7 | Nepal | [50] |
102 | Neoflavonoid 8 | Nepal | [50] |
103 | Neoflavonoid 9 | Nepal | [50] |
104 | Neoflavonoid 10 | Nepal | [50] |
105 | (S)-3'-hydroxy-4-methoxydalbergione | Nepal | [51] |
106 | (S)-3',4'-dihydroxy-4-methoxydalbergione | Nepal | [51] |
107 | (S)-4-methoxydalbergione | Nepal | [51] |
Other flavonoids | |||
108 | 2,6-Dihydroxy-2-[(4-hydroxyphenyl)methyl]-3-benzofuranone | Brazil | [44] |
109 | 2-(2',4'-Dihydroxyphenyl)-3-methyl-6-methoxybenzofuran | Brazil | [44] |
110 | 1-(3',4'-Dihydroxy-2'-methoxyphenyl)-3-(phenyl)propane | Mexico | [49] |
111 | (Z)-1-(2'-Methoxy-4',5'dihydroxyphenyl)-2-(3-phenyl)propene | Mexico | [49] |
4. Terpenoids
No. | Chemical Name | Geographical Location | Reference |
---|---|---|---|
Monoterpenes | |||
112 | trans-β-Terpineol | Greece | [54] |
113 | Linalool | Brazil | [52] |
114 | Camphor | Iran | [55] |
Sesquiterpenes | |||
115 | Junipene | Greece | [54] |
116 | γ-Elemene | Brazil | [52] |
117 | α-Ylangene | Brazil | [52] |
118 | Valencene | Brazil | [52] |
119 | 8-βH-Cedran-8-ol | Turkey | [53] |
120 | 4-βH,5α-Eremophil-1(10)-ene | Turkey | [53] |
121 | α-Bisabolol | Turkey | [23] |
122 | α-Eudesmol | Turkey | [23] |
123 | α-Cadinol | Turkey | [23] |
124 | Patchoulene | Indonesia | [56] |
Diterpenes | |||
125 | Manoyl oxide | Greece | [57] |
126 | Ferruginol | Greece | [57] |
127 | Ferruginolone | Greece | [57] |
128 | 2-Hydroxyferruginol | Greece | [57] |
129 | 6/7-Hydroxyferruginol | Greece | [57] |
130 | Sempervirol | Greece | [57] |
131 | Abietic acid | Greece | [57] |
132 | 18-Succinyloxyabietadiene | Greece | [57] |
133 | 18-Succinyloxyhydroxyabietatriene | Greece | [57] |
134 | 18-Hydroxyabieta-8,11,13-triene | Greece | [57] |
135 | Imbricataloic acid | Greece | [57] |
136 | Imbricatoloic acid | Greece | [57] |
137 | Diterpenic acid | Greece | [57] |
138 | Neoabietic acid | Greece | [57] |
139 | Labda-8(17),12,13-triene | Greece | [57] |
140 | Hydroxydehydroabietic acid | Greece | [57] |
141 | Dihydroxyabieta-8,11,13-triene | Greece | [57] |
142 | 13(14)-Dehydrojunicedric acid | Greece | [57] |
143 | Dehydroabietic acid | Greece | [57] |
144 | 18-Hydroxyabieta-8,11,13-triene | Greece | [57] |
145 | Junicedric acid | Greece | [29] |
146 | 14,15-Dinor-13-oxo-8(17)-labden-19-oic acid | Greece | [29] |
147 | tran-Communal | Greece | [29] |
148 | Palmitoyl isocupressic acid | Greece | [29] |
149 | Oleoyl isocupressic acid | Greece | [29] |
150 | 13-Hydroxy-8(17),14-labdadien-19-oic acid | Greece | [29] |
151 | 15-Oxolabda-8(17),13(E)-dien-19-oic acid | Greece | [29] |
152 | Pimaric acid | Greece | [29] |
153 | Totarolone | Greece | [29] |
Triterpenes | |||
154 | Lupeol alkanoates | Brazil | [58] |
155 | Lupeol | Brazil | [58] |
156 | Lupeol acetate | Cuba | [59] |
157 | Lanosterol acetate | Egypt | [35] |
158 | Lanosterol | Cuba | [59] |
159 | Germanicol acetate | Cuba | [59] |
160 | Germanicol | Cuba | [59] |
161 | β-Amyrin acetate | Cuba | [59] |
162 | β-Amyrone | Cuba | [59] |
163 | α-Amyrin acetate | Cuba | [59] |
164 | α-Amyrone | Cuba | [59] |
165 | 24-Methylene-9,19-ciclolanostan-3β-ol | Brazil | [58] |
166 | (22Z,24E)-3-Oxocycloart-22,24-dien-26-oic acid | Burma | [60] |
167 | (24E)-3-Oxo-27,28-dihydroxycycloart-24-en-26-oic acid | Burma | [60] |
168 | 3,4-seco-Cycloart-12-hydroxy-4(28),24-dien-3-oicacid | Greece | [29] |
169 | Cycloart-3,7-dihydroxy-24-en-28-oic acid | Greece | [29] |
170 | 3-Oxo-triterpenic acid methyl ester | Egypt | [61] |
5. Phenolics
No. | Chemical Name | Geographical Location | Reference |
---|---|---|---|
Phenylpropanoids | |||
171 | cis-3-Methoxy-4-hydroxycinnamic acid | Brazil | [65] |
172 | trans-3-Methoxy-4-hydroxycinnamic acid | Brazil | [65] |
173 | 3-Prenyl cinnamic acid allyl ester | Brazil | [66] |
174 | p-Methoxycinnamic acid | Brazil | [66] |
175 | Dihydrocinnamic acid | Brazil | [66] |
176 | 3-Prenyl-4-hydroxycinnamic acid | Brazil | [67] |
177 | 3,5-Diprenyl-4-hydroxycinnamic acid | Brazil | [67] |
178 | 3-Methyl-2-butenyl isoferulate | Brazil | [66] |
179 | 3-Methyl-3-butenyl caffeate | Brazil | [66] |
180 | Hexadecyl caffeate | Brazil | [66] |
181 | Methyl(E)-4-(4'-hydroxy-3'-methylbut-(E)-2'-enyloxy) cinnamate | Australia | [63] |
182 | Tetradecenyl caffeate (isomer) | Egypt | [35] |
183 | Tetradecenyl caffeate | Egypt | [35] |
184 | 2-Methyl-2-butenyl ferulate | Uruguay | [68] |
Chlorogenic acids | |||
185 | 4-Feruoyl quinic acid | Brazil | [62] |
186 | 5-Ferruoyl quinic acid | Brazil | [33] |
187 | 3,4,5-tri-O-Caffeoylquinic acid | Brazil | [69] |
Stilbenes | |||
188 | Schweinfurthin A | Kenya | [37] |
189 | Schweinfurthin B | Kenya | [37] |
190 | 5'-Farnesyl-3'-hydroxyresveratrol | Solomon Island | [31] |
191 | 5,4'-Dihydroxy-3'-methoxy-3-prenyloxy-E-stilbene. | Australia | [63] |
192 | 3,5,3',4'-Tetrahydroxy-2-prenyl-E-stilbene | Australia | [63] |
193 | 3,5,4'-Trihydroxy-3'-methoxy-2-prenyl-E-stilbene | Australia | [63] |
194 | 5,3',4'-Trihydroxy-3-methoxy-2-prenyl-E-stilbene | Australia | [63] |
195 | 5,4'-Dihydroxy-3,3'-dimethoxy-2-prenyl-E-stilbene | Australia | [63] |
196 | 5,4'-Dihydroxy-3-prenyloxy-E-stilbene | Australia | [63] |
197 | 3',4'-Dihydroxy-E-stilbene | Australia | [63] |
198 | 3',4'-Dihydroxy-3,5-dimethoxy-E-stilbene | Australia | [63] |
199 | Diprenylated dihydrostilbene | Australia | [63] |
200 | 3,5-Dihydroxy-2-prenyl-E-stilbene | Australia | [63] |
201 | 4-Prenyldihydroresveratrol | Australia | [63] |
202 | 3-Prenylresveratrol | Australia | [63] |
203 | (+)-Pinoresinol dimethyl ether | Brazil | [44] |
204 | (+)-Pinoresinol | Brazil | [44] |
205 | (+)-Syringaresinol | Brazil | [44] |
Lignans | |||
206 | Tetrahydrojusticidin B | Kenya | [37] |
207 | 6-Methoxydiphyllin | Kenya | [37] |
208 | Phyllam ricin C | Kenya | [37] |
Other phenolics | |||
209 | 8-(Methyl-butanechromane)-6-propenoic acid | Brazil | [70] |
210 | 3-Hydroxy-2,2-dimethyl-8-prenylchromane-6-propenoic acid | Brazil | [70] |
211 | 2,2-Dimethyl-8-prenylchromene-6-propenoic acid | Brazil | [70] |
212 | 2,2-Dimethylchromene-6-propenoic acid | Brazil | [70] |
213 | 2,2-Dimethyl-6-carboxyethnyl-2H-1-benzopyran | Brazil | [70] |
214 | 2,2-Dimethyl-6-carboxyethenyl-8-prenyl-2H-1-benzopyran | Brazil | [70] |
215 | Nemorosone | Brazil | [9] |
216 | 7-epi-clusianone | Brazil | [9] |
217 | Xanthochymol | Brazil | [9] |
218 | Gambogenone | Brazil | [9] |
219 | Hyperibone A | Brazil | [71] |
220 | 5-Pentadecylresorcinol | Indonesia | [72] |
221 | 5-(8'Z,11'Z-Heptadecadienyl)-resorcinol | Indonesia | [72] |
222 | 5-(11'Z-Heptadecenyl)-resorcinol | Indonesia | [72] |
223 | 5-Heptadecylresorcinol | Indonesia | [72] |
224 | 1,3-Bis(trimethylsilylloxy)-5,5-proylbenzene | Indonesia | [56] |
225 | 3,4-Dimethylthioquinoline | Indonesia | [56] |
226 | 4-Oxo-2-thioxo-3-thiazolidinepropionic acid | Indonesia | [56] |
227 | D-glucofuranuronic acid | Indonesia | [56] |
228 | Dofuranuronic acid | Indonesia | [56] |
229 | 3-Quinolinecarboxamine | Indonesia | [56] |
230 | Baccharin | France | [73] |
231 | Suberosin | Iran | [55] |
232 | Tschimgin | Iran | [55] |
233 | Tschimganin | Iran | [55] |
234 | Bornyl p-hydroxybenzoate | Iran | [55] |
235 | Bornyl vanillate | Iran | [55] |
236 | Ferutinin | Iran | [55] |
237 | Tefernin | Iran | [55] |
238 | Ferutinol p-hydroxybenzoate | Iran | [55] |
239 | Ferutinol vanillate | Iran | [55] |
240 | 2-Acetoxy-6-p-methoxybenzoyl jaeschkeanadiol | Malta | [74] |
241 | 2-Acetoxy-6-p-hydroxybenzoyl jaeschkeanadiol | Malta | [74] |
6. Sugars
7. Hydrocarbons
8. Mineral Elements
9. The Chemical Categories Reported in Propolis
Chemical Category | Example Compound | Geographical Origin | Plant Source | Bee Species | References |
---|---|---|---|---|---|
Flavonoids | Luteolin | Australia, Brazil, Burma, Canada, Chinese, Cuba, Egypt, Greece, Japan, Kenya, Mexico, Nepal, Poland, Portugal, Solomon Island, Taiwan | Populus, Macaranga, Dalbergia | Apis mellifera | [26,31,34,36,37,38,39,41,42,43,44,45,46,47,61] |
Prenylated flavanones | 7-O-prenylpino-cembrin | Greece, Japan | Apis mellifera | [39,42] | |
Neo-flavonoids | Cearoin | Nepal | Dalbergia | Apis mellifera | [50] |
Monoterpenes Sesquiterpenes Diterpenes | Linalool abietic acid | Brazil, Greece, Indonesia, Iran, Malta, Turkey | Ferula Pinaceae Cupressaceae | Apis mellifera | [37,52,53,55,56,74] |
Triterpenes | Lupeol acetate | Burma, Brazil, Cuba, Egypt, Greece | Apis mellifera | [29,35,58,59,60] | |
Phenylpropanoids and esters | p-Methoxycinnamic acid | Australia, Brazil, Egypt, Uruguay | Citrus | Apis mellifera | [61,63,66,68] |
Prenylated phenylpropanoids | 3-Prenyl-4-hydroxycinnamic acid | Brazilian Green propolis | Baccharies | Africanized Apis mellifera | [67] |
Stilbenes and prenylated stilbenes | 3-Prenylresveratrol | Australia, Brazil, Greece, Indonesia, Kenya | Macaranga | Apis mellifera | [31,37,44,63,72] |
Lignans | 6-Methoxydiphyllin | Kenya | Apis mellifera | [37] | |
Coumarins | Prenylated coumarin suberosin | Iran | Apis mellifera | [55] |
10. Bee Species and Propolis
11. The Geographical Origins of Propolis
12. The Plant Sources of Propolis
13. Summary and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mello, B.C.B.S.; Hubinger, M.D. Antioxidant activity and polyphenol contents in Brazilian green propolis extracts prepared with the use of ethanol and water as solvents in different pH values. Int. J. Food Sci. Technol. 2012, 47, 2510–2518. [Google Scholar] [CrossRef]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S.; Vladimir-Knezevic, S. Quantitative analysis of the flavonoids in raw propolis from northern Croatia. Acta Pharm. 2004, 54, 65–72. [Google Scholar] [PubMed]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Burdock, G. Review of the biological properties and toxicity of bee propolis (propolis). Food Chem. Toxicol. 1998, 36, 347–363. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.J.; Chen, M.L.; Xuan, H.Z.; Hu, F.L. Effects of encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus rats. Evid. Based Complement. Alternat. Med. 2012, 2012, 981896. [Google Scholar] [PubMed]
- Zhu, W.; Chen, M.L.; Shou, Q.Y.; Li, Y.H.; Hu, F.L. Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats. Evid. Based Complement. Alternat. Med. 2011, 2011, 468529. [Google Scholar] [PubMed]
- Zhu, W.; Li, Y.H.; Chen, M.L.; Hu, F.L. Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. Hum. Exp. Toxicol. 2011, 30, 1246–1255. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.L.; Hepburn, H.R.; Li, Y.H.; Chen, M.; Radloff, S.E.; Daya, S. Effects of ethanol and water extracts of propolis (bee glue) on acute inflammatory animal models. J. Ethnopharmacol. 2005, 100, 276–283. [Google Scholar] [CrossRef] [PubMed]
- De Castro Ishida, V.F.; Negri, G.; Salatino, A.; Bandeira, M.F.C.L. A new type of Brazilian propolis: Prenylated benzophenones in propolis from Amazon and effects against cariogenic bacteria. Food Chem. 2011, 125, 966–972. [Google Scholar] [CrossRef]
- Wang, K.; Ping, S.; Huang, S.; Hu, L.; Xuan, H.Z.; Zhang, C.P.; Hu, F.L. Molecular mechanisms underlying the in vitro anti-inflammatory effects of a Ffavonoid-rich ethanol extract from Chinese propolis (poplar type). Evid. Based Complement. Alternat. Med. 2013, 2013, 127672. [Google Scholar] [PubMed]
- Xuan, H.Z.; Zhao, J.; Miao, J.Y.; Li, Y.J.; Chu, Y.F.; Hu, F.L. Effect of Brazilian propolis on human umbilical vein endothelial cell apoptosis. Food Chem. Toxicol. 2011, 49, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Xuan, H.Z.; Zhu, R.L.; Li, Y.J.; Hu, F.L. Inhibitory effect of Chinese propolis on phosphatidylcholine-specific phospholipase C activity in vascular endothelial cells. Evid. Based Complement. Alternat. Med. 2010, 2011, 985278. [Google Scholar] [PubMed]
- Ito, J.; Chang, F.R.; Wang, H.K.; Park, Y.K.; Ikegaki, M.; Kilgore, N.; Lee, K.H. Anti-AIDS agents. 48. 1 Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J. Nat. Prod. 2001, 64, 1278–1281. [Google Scholar] [CrossRef] [PubMed]
- Amoros, M.; Simoes, C.M.; Girre, L.; Sauvager, F.; Cormier, M. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. J. Nat. Prod. 1992, 55, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Sforcin, J.M.; Orsi, R.O.; Bankova, V. Effect of propolis, some isolated compounds and its source plant on antibody production. J. Ethnopharmacol. 2005, 98, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.; Alencar, S.M.; Koo, H.; Ikegaki, M.; Silva, G.V.; Napimoga, M.H.; Rosalen, P.L. Anti-inflammatory and antimicrobial evaluation of neovestitol and vestitol isolated from brazilian red propolis. J. Agric. Food Chem. 2013, 61, 4546–4550. [Google Scholar] [CrossRef] [PubMed]
- Ghisalberti, E. Propolis: A review. Bee World 1979, 60, 59–84. [Google Scholar]
- Marcucci, M.C. Propolis: Chemical composition, biological properties and therapeutic activity. Apidologie 1995, 26, 83–99. [Google Scholar] [CrossRef]
- Fernandes-Silva, C.; Freitas, J.; Salatino, A.; Salatino, M. Cytotoxic activity of six samples of Brazilian propolis on Sea Urchin (Lytechinus variegatus) Eggs. Evid. Based Complement. Altern. Med. 2013, 2013, 619361. [Google Scholar]
- Salatino, A.; Fernandes-Silva, C.C.; Righi, A.A.; Salatino, M.L.F. Propolis research and the chemistry of plant products. Nat. Prod. Rep. 2011, 28, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent progress of propolis for its biological and chemical compositions and its botanical origin. Evid. Based Complement. Alternat. Med. 2013, 2013, 697390. [Google Scholar] [CrossRef] [PubMed]
- Bankova, V.S. Recent trends and important developments in propolis research. Evid. Based Complement. Alternat. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Silici, S.; Kutluca, S. Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. J. Ethnopharmacol. 2005, 99, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Alencar, S.; Oldoni, T.; Castro, M.; Cabral, I.; Costa-Neto, C.; Cury, J.; Rosalen, P.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Campo Fernandez, M.; Cuesta-Rubio, O.; Rosado Perez, A. GC-MS determination of isoflavonoids in seven red Cuban propolis samples. J. Agric. Food Chem. 2008, 56, 9927–9932. [Google Scholar] [CrossRef] [PubMed]
- Maciejewicz, W. Isolation of flavonoid aglycones from propolis by a column chromatography method and their identification by GC-MS and TLC methods. J. Liq. Chromatogr. Relat. Technol. 2001, 24, 1171–1179. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, S.; Wei, W.; Ping, S.; Shen, X.; Li, Y.; Hu, F. Development of High-Performance Liquid Chromatographic for Quality and Authenticity Control of Chinese Propolis. J. Food Sci. 2014, 79, C1315–C1322. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [PubMed]
- Popova, M.; Chinou, I.; Marekov, I.; Bankova, V. Terpenes with antimicrobial activity from Cretan propolis. Phytochemistry 2009, 70, 1262–1271. [Google Scholar] [CrossRef] [PubMed]
- Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities. J. Sci. Food Agric. 2011, 91, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Inui, S.; Shimamura, Y.; Masuda, S.; Shirafuji, K.; Moli, R.T.; Kumazawa, S. A new prenylflavonoid isolated from propolis collected in the Solomon Islands. Biosci. Biotechnol. Biochem. 2012, 76, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Raghukumar, R.; Vali, L.; Watson, D.; Fearnley, J.; Seidel, V. Antimethicillin-resistant Staphylococcus aureus (MRSA) activity of 'pacific propolis' and isolated prenylflavanones. Phytother. Res. 2010, 24, 1181–1187. [Google Scholar] [PubMed]
- Cao, Y.; Wang, Y.; Yuan, Q. Analysis of flavonoids and phenolic acid in propolis by capillary electrophoresis. Chromatographia 2004, 59, 135–140. [Google Scholar]
- Usia, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Constituents of Chinese propolis and their antiproliferative activities. J. Nat. Prod. 2002, 65, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.G.; El Hady, F.K.A. Egyptian propolis: 3. Antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z. Naturforsch. C 2002, 57, 395–402. [Google Scholar] [PubMed]
- Li, F.; Awale, S.; Tezuka, Y.; Esumi, H.; Kadota, S. Study on the constituents of Mexican propolis and their cytotoxic activity against PANC-1 human pancreatic cancer cells. J. Nat. Prod. 2010, 73, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Petrova, A.; Popova, M.; Kuzmanova, C.; Tsvetkova, I.; Naydenski, H.; Muli, E.; Bankova, V. New biologically active compounds from Kenyan propolis. Fitoterapia 2010, 81, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Falcão, S.I.; Vilas-Boas, M.; Estevinho, L.M.; Barros, C.; Domingues, M.R.; Cardoso, S.M. Phenolic characterization of Northeast Portuguese propolis: Usual and unusual compounds. Anal. Bioanal. Chem. 2010, 396, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Melliou, E.; Chinou, I. Chemical analysis and antimicrobial activity of Greek propolis. Planta Med. 2004, 70, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; He, Y.M.; Awale, S.; Kadota, S.; Tezuka, Y. Two new cytotoxic phenylallylflavanones from Mexican propolis. Chem. Pharm. Bull. 2011, 59, 1194–1196. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.P.; Narukawa, Y.; Takeda, T. Chemical constituents of Nepalese propolis (II). Chem. Pharm. Bull. 2007, 55, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Goto, H.; Hamasaka, T.; Fukumoto, S.; Fujimoto, T.; Nakayama, T. A new prenylated flavonoid from propolis collected in Okinawa, Japan. Biosci. Biotechnol. Biochem. 2004, 68, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.N.; Wu, C.L.; Shy, H.S.; Lin, J.K. Cytotoxic prenylflavanones from Taiwanese propolis. J. Nat. Prod. 2003, 66, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Awale, S.; Tezuka, Y.; Kadota, S. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship. Bioorg. Med. Chem. 2008, 16, 5434–5440. [Google Scholar] [CrossRef] [PubMed]
- Tran, V.H.; Duke, R.K.; Abu-Mellal, A.; Duke, C.C. Propolis with high flavonoid content collected by honey bees from Acacia paradoxa. Phytochemistry 2012, 81, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Campo Fernandez, M.; Cuesta-Rubio, O.; Márquez Hernández, I.; de Simone, F.; Rastrelli, L. Isoflavonoids isolated from Cuban propolis. J. Agric. Food Chem. 2005, 53, 9010–9016. [Google Scholar] [CrossRef]
- Christov, R.; Trusheva, B.; Popova, M.; Bankova, V.; Bertrand, M. Chemical composition of propolis from Canada, its antiradical activity and plant origin. Nat. Prod. Res. 2006, 20, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Sha, N.; Guan, S.-H.; Lu, Z.-Q.; Chen, G.-T.; Huang, H.-L.; Xie, F.-B.; Yue, Q.-X.; Liu, X.; Guo, D.-A. Cytotoxic constituents of Chinese propolis. J. Nat. Prod. 2009, 72, 799–801. [Google Scholar] [CrossRef] [PubMed]
- Lotti, C.; Campo Fernandez, M.; Piccinelli, A.L.; Cuesta-Rubio, O.; Hernández, I.M.; Rastrelli, L. Chemical constituents of red Mexican propolis. J. Agric. Food Chem. 2010, 58, 2209–2213. [Google Scholar] [CrossRef] [PubMed]
- Awale, S.; Shrestha, S.P.; Tezuka, Y.; Ueda, J.Y.; Matsushige, K.; Kadota, S. Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity. J. Nat. Prod. 2005, 68, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.P.; Narukawa, Y.; Takeda, T. Chemical constituents of Nepalese propolis: Isolation of new dalbergiones and related compounds. J. Nat. Med. 2007, 61, 73–76. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Franca, H.; Kuster, R.; Teixeira, L.; Rocha, L. Chemical composition and antibacterial activity of Brazilian propolis essential oil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 121–130. [Google Scholar] [CrossRef]
- Kartal, M.; Kaya, S.; Kurucu, S. GC-MS analysis of propolis samples from two different regions of Turkey. Z. Naturforsch. C 2002, 57, 905–909. [Google Scholar] [PubMed]
- Melliou, E.; Stratis, E.; Chinou, I. Volatile constituents of propolis from various regions of Greece-Antimicrobial activity. Food Chem. 2007, 103, 375–380. [Google Scholar] [CrossRef]
- Trusheva, B.; Todorov, I.; Ninova, M.; Najdenski, H.; Daneshmand, A.; Bankova, V. Antibacterial mono-and sesquiterpene esters of benzoic acids from Iranian propolis. Chem. Cent. J. 2010, 4, 8. [Google Scholar] [CrossRef] [PubMed]
- Wiryowidagdo, S.; Simanjuntak, P.; Heffen, W.L. Chemical composition of propolis from different regions in Java and their cytotoxic activity. Am. J. Biochem. Biotechnol. 2009, 5, 180. [Google Scholar] [CrossRef]
- Popova, M.P.; Graikou, K.; Chinou, I.; Bankova, V.S. GC-MS profiling of diterpene compounds in Mediterranean propolis from Greece. J. Agric. Food Chem. 2010, 58, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.S.; Nascimento, E.A.; Aquino Neto, F. Lupeol alkanoates in Brazilian propolis. Z. Naturforsch. C 2002, 57, 721–726. [Google Scholar] [PubMed]
- Márquez Hernández, I.; Cuesta-Rubio, O.; Campo Fernández, M.; Rosado Pérez, A.; Montes de Oca Porto, R.; Piccinelli, A.L.; Rastrelli, L. Studies on the constituents of yellow Cuban propolis: GC-MS determination of triterpenoids and flavonoids. J. Agric. Food Chem. 2010, 58, 4725–4730. [Google Scholar]
- Li, F.; Awale, S.; Zhang, H.; Tezuka, Y.; Esumi, H.; Kadota, S. Chemical constituents of propolis from Myanmar and their preferential cytotoxicity against a human pancreatic cancer cell line. J. Nat. Prod. 2009, 72, 1283–1287. [Google Scholar] [CrossRef] [PubMed]
- El Hady, F.K.A.; Hegazi, A.G. Egyptian propolis: 2. Chemical composition, antiviral and antimicrobial activities of East Nile Delta propolis. Extraction 2000, 57, 386–394. [Google Scholar]
- Dos Santos Pereiraa, A.; de Miranda Pereirab, A.F.; Trugob, L.C.; de Aquino Netoa, F.R. Distribution of Quinic Acid Derivatives and Other Phenolic Compounds in Brazilian Propolis. Z. Naturforsch. C 2003, 58, 590–593. [Google Scholar]
- Abu-Mellal, A.; Koolaji, N.; Duke, R.K.; Tran, V.H.; Duke, C.C. Prenylated cinnamate and stilbenes from Kangaroo Island propolis and their antioxidant activity. Phytochemistry 2012, 77, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Camargo, M.S.; Prieto, A.M.; Resende, F.A.; Boldrin, P.K.; Cardoso, C.R.; Fernández, M.F.; Molina-Molina, J.M.; Olea, N.; Vilegas, W.; Cuesta-Rubio, O. Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis. BMC Complement. Altern. Med. 2013, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, É.W.; Negri, G.; Meira, R.M.; Salatino, A. Plant origin of green propolis: Bee behavior, plant anatomy and chemistry. Evid. Based Complement. Alternat. Med. 2005, 2, 85–92. [Google Scholar]
- Salatino, A.; Teixeira, É.W.; Negri, G. Origin and chemical variation of Brazilian propolis. Evid. Based Complement. Alternat. Med. 2005, 2, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.; Ferreres, F.; García-Viguera, C.; Bankova, V.; De Castro, S.; Dantas, A.; Valente, P.; Paulino, N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [PubMed]
- Kumazawa, S.; Hayashi, K.; Kajiya, K.; Ishii, T.; Hamasaka, T.; Nakayama, T. Studies of the constituents of Uruguayan propolis. J. Agric. Food Chem. 2002, 50, 4777–4782. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Ebuchi, S.; Fujise, T.; Abesundara, K.J.; Doi, S.; Yamada, H.; Matsumoto, K. Strong antihyperglycemic effects of water-soluble fraction of Brazilian propolis and its bioactive constituent, 3, 4, 5-tri-O-caffeoylquinic acid. Biol. Pharm. Bull. 2004, 27, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Marcucci, M.C.; Ferreres, F.; Custódio, A.R.; Ferreira, M.; Bankova, V.S.; García-Viguera, C.; Bretz, W.A. Evaluation of phenolic compounds in Brazilian propolis from different geographic regions. Z. Naturforsch. C 2000, 55, 76–81. [Google Scholar] [PubMed]
- Castro, M.L.; Nascimento, A.M.; Ikegaki, M.; Costa-Neto, C.M.; Alencar, S.M.; Rosalen, P.L. Identification of a bioactive compound isolated from Brazilian propolis type 6. Bioorg. Med. Chem. 2009, 17, 5332–5335. [Google Scholar] [CrossRef] [PubMed]
- Trusheva, B.; Popova, M.; Koendhori, E.B.; Tsvetkova, I.; Naydenski, C.; Bankova, V. Indonesian propolis: Chemical composition, biological activity and botanical origin. Nat. Prod. Res. 2011, 25, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.G.; Abd El Hady, F.; Abd Allah, F. Chemical composition and antimicrobial activity of European propolis. Z. Naturforsch. C 2000, 55, 70–75. [Google Scholar] [PubMed]
- Popova, M.; Trusheva, B.; Antonova, D.; Cutajar, S.; Mifsud, D.; Farrugia, C.; Tsvetkova, I.; Najdenski, H.; Bankova, V. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011, 126, 1431–1435. [Google Scholar] [CrossRef]
- Crane, E. Beekeeping: Science, Practice and World Recourses; Heinemann: London, UK, 1988. [Google Scholar]
- Uzel, A.; Sorkun, K.; Önçağ, Ö.; Çoğulu, D.; Gençay, Ö. Chemical compositions and antimicrobial activities of four different Anatolian propolis samples. Microbiol. Res. 2005, 160, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Negri, G.; Marcucci, C.; Salatino, A.; Salatino, M.L.F. Comb and propolis waxes from Brazil. J. Braz. Chem. Soc. 2000, 11, 453–457. [Google Scholar] [CrossRef]
- Negri, G. Hydrocarbons and monoesters of propolis waxes. Apidologie 1998, 29, 305–314. [Google Scholar] [CrossRef]
- Cvek, J.; Medid-Saric, M.; Vitali, D.; Vedrina-Dragojevik, I.; Smit, Z.; Tomic, S. The content of essential and toxic elements in Croatian propolis samples and their tinctures. J. Apicult. Res. 2008, 47, 35–45. [Google Scholar] [CrossRef]
- Cantarelli, M.A.; Caminia, J.M.; Pettenati, E.M.; Marchevsky, E.J.; Pellerano, R.G. Trace mineral content of Argentinean raw propolis by neutron activation analysis (NAA): Assessment of geographical provenance by chemometrics. LWT Food Sci. Technol. 2011, 44, 256–260. [Google Scholar] [CrossRef]
- Razmovski-Naumovski, V.; Tongkao-on, W.; Kimble, B.; Qiao, V.L.; Beilun, L.; Li, K.M.; Roufogalis, B.; Depo, Y.; Meicun, Y.; Li, G.Q. Multiple chromatographic and chemometric methods for quality standardisation of Chinese herbal medicines. World Sci. Technol. 2010, 12, 99–106. [Google Scholar] [CrossRef]
- Arias, M.C.; Sheppard, W.S. Phylogenetic relationships of honey bees (Hymenoptera: Apinae: Apini) inferred from nuclear and mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 2005, 37, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.C.; Sheppard, W.S. Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol. Phylogenet. Evol. 1996, 5, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, M.G.; Franchin, M.; de Carvalho Galvão, L.C.; de Ruiz, A.L.; de Carvalho, J.E.; Ikegaki, M.; de Alencar, S.M.; Koo, H.; Rosalen, P.L. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement. Altern. Med 2013, 13, 23. [Google Scholar] [Green Version]
- Dutra, R.P.; Abreu, B.V.; Cunha, M.S.; Batista, M.C.; Torres, L.M.; Nascimento, F.R.; Ribeiro, M.N.; Guerra, R.N. Phenolic Acids, Hydrolyzable Tannins, and Antioxidant Activity of Geopropolis from the Stingless Bee Melipona fasciculata Smith. J. Agric. Food Chem. 2014, 62, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Daugsch, A.; Moraes, C.S.; Fort, P.; Park, Y.K. Brazilian red propolis—Chemical composition and botanical origin. Evid. Based Complement. Alternat. Med. 2008, 5, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Russell, F.D. Cerumen of Australian stingless bees (Tetragonula carbonaria): Gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 2011, 98, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Massaro, C.; Katouli, M.; Grkovic, T.; Vu, H.; Quinn, R.; Heard, T.; Carvalho, C.; Manley-Harris, M.; Wallace, H.; Brooks, P. Anti-staphylococcal activity of C-methyl flavanones from propolis of Australian stingless bees (Tetragonula carbonaria) and fruit resins of Corymbia torelliana (Myrtaceae). Fitoterapia 2014, 95, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Leonhardt, S.; Zeilhofer, S.; Blüthgen, N.; Schmitt, T. Stingless bees use terpenes as olfactory cues to find resin sources. Chem. Sens. 2010, 35, 603–611. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Blüthgen, N. A sticky affair: Resin collection by Bornean stingless bees. Biotropica 2009, 41, 730–736. [Google Scholar] [CrossRef]
- Leonhardt, S.; Blüthgen, N.; Schmitt, T. Smelling like resin: Terpenoids account for species-specific cuticular profiles in Southeast-Asian stingless bees. Insectes Sociaux 2009, 56, 157–170. [Google Scholar] [CrossRef]
- Ahn, M.R.; Kumazawa, S.; Usui, Y.; Nakamura, J.; Matsuka, M.; Zhu, F.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of China. Food Chem. 2007, 101, 1383–1392. [Google Scholar] [CrossRef]
- Kosalec, I.; Bakmaz, M.; Pepeljnjak, S. Analysis of propolis from the continental and Adriatic regions of Croatia. Acta Pharm. 2003, 53, 275–285. [Google Scholar]
- Chen, C.N.; Weng, M.S.; Wu, C.L.; Lin, J.K. Comparison of Radical Scavenging Activity, Cytotoxic Effects and Apoptosis Induction in Human Melanoma Cells by Taiwanese Propolis from Different Sources. Evid. Based Complement. Alternat. Med. 2004, 1, 175–185. [Google Scholar] [CrossRef]
- Huang, W.J.; Huang, C.H.; Wu, C.L.; Lin, J.K.; Chen, Y.W.; Lin, C.L.; Chuang, S.E.; Huang, C.Y.; Chen, C.N. Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J. Agric. Food Chem. 2007, 55, 7366–7376. [Google Scholar] [CrossRef] [PubMed]
- Markham, K.R.; Mitchell, K.A.; Wilkins, A.L.; Daldy, J.A.; Yinrong, L. HPLC and GC-MS identification of the major organic constituents in New Zealand propolis. Phytochemistry 1996, 42, 205–211. [Google Scholar] [CrossRef]
- Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M.C.; Miorin, P.L.; Pasin, F.R.; Tsvetkova, I. Bioactive constituents of Brazilian red propolis. Evid. Based Complement. Altern. Med. 2006, 3, 249–254. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Shariatpanahi, M.; Hamedi, M.; Ahmadkhaniha, R.; Samadi, N.; Ostad, S.N. Chemical composition, oral toxicity and antimicrobial activity of Iranian propolis. Food Chem. 2007, 103, 1097–1103. [Google Scholar] [CrossRef]
- Kumazawa, S.; Yoneda, M.; Shibata, I.; Kanaeda, J.; Hamasaka, T.; Nakayama, T. Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem. Pharm. Bull. 2003, 51, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Trusheva, B.; Popova, M.; Naydenski, H.; Tsvetkova, I.; Gregorio Rodriguez, J.; Bankova, V. New polyisoprenylated benzophenones from Venezuelan propolis. Fitoterapia 2004, 75, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, S.; Nakamura, J.; Murase, M.; Miyagawa, M.; Ahn, M.-R.; Fukumoto, S. Plant origin of Okinawan propolis: Honeybee behavior observation and phytochemical analysis. Naturwissenschaften 2008, 95, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Silici, S.; Ünlü, M.; Vardar-Ünlü, G. Antibacterial activity and phytochemical evidence for the plant origin of Turkish propolis from different regions. World J. Microbiol. Biotechnol. 2007, 23, 1797–1803. [Google Scholar] [CrossRef]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610-19632. https://doi.org/10.3390/molecules191219610
Huang S, Zhang C-P, Wang K, Li GQ, Hu F-L. Recent Advances in the Chemical Composition of Propolis. Molecules. 2014; 19(12):19610-19632. https://doi.org/10.3390/molecules191219610
Chicago/Turabian StyleHuang, Shuai, Cui-Ping Zhang, Kai Wang, George Q. Li, and Fu-Liang Hu. 2014. "Recent Advances in the Chemical Composition of Propolis" Molecules 19, no. 12: 19610-19632. https://doi.org/10.3390/molecules191219610
APA StyleHuang, S., Zhang, C. -P., Wang, K., Li, G. Q., & Hu, F. -L. (2014). Recent Advances in the Chemical Composition of Propolis. Molecules, 19(12), 19610-19632. https://doi.org/10.3390/molecules191219610