Study on Supramolecules in Traditional Chinese Medicine Decoction
Abstract
:1. Introduction
2. Research on Supramolecules
2.1. The Essence of Supramolecules
2.2. Separation Method for the Supramolecules
2.3. Characterization Method for Supramolecules
2.4. Structural Analysis Method for the Supramolecular Structure
3. Study of the Supramolecules of Traditional Chinese Medicine Decoctions
3.1. Research on the Supramolecules in the Prescription Decoctions
3.1.1. Baihu Decoction
3.1.2. Huanglian Jiedu Decoction
3.1.3. Gegen Qinlian Decoction
3.1.4. Maxing Shigan Decoction
3.1.5. Siwu Decoction
3.1.6. Shaoyao Gancao Decoction
3.2. Research into the Supramolecules of Medicinal–Pair Decoction
3.2.1. Aconiti Laterdis and Glycyrrhizae Radix Co-Decoction
3.2.2. Glycyrrhizae Radix–Coptis Chinensis Co-Decoction
3.3. Research into the Supramolecules of a Single-Drug Decoction
3.3.1. Banlangen Decoction
3.3.2. Taizishen Decoction
4. Mechanism of Formation of Supramolecules in Traditional Chinese Medicine Decoction
4.1. Alkaloids and Acidic–Form Supramolecules
4.2. Self-Assembly of Proteins
4.3. Self-Assembly of Polysaccharides
4.4. Self-Assembly of Triterpenoids
4.5. Decoctosome
4.6. Others
5. The Influence of the Supramolecular Structure on Drug Efficacy
6. Research Significance of the Supramolecular Structure
6.1. Combination of Supramolecular Chemistry and Basic Theories of Traditional Chinese Medicine
6.2. The Guiding Role of Supramolecular Structures for Clinical Preparations
7. Identifying the Current Research Gap and Prospective Research Direction
8. Application Prospects of Supramolecular Structure
9. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, F.; Anslyn, E.V. Introduction: Supramolecular Chemistry. Chem. Rev. 2015, 115, 6999–7000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xueli, Q. Study on the Formation of Micro-Nano Colloidal Structure of Tuna Head Soup and Its Anti-Oxidative Effect. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2019. [Google Scholar]
- Jianwu, Z.; Lijing, K.; Biao, S.; Guanzhen, G.; Huiqin, W.; Pingfan, R. The Power of Soup: New Perspectives on Food Science. J. Chin. Inst. Food Sci. Technol. 2011, 11, 9–15. [Google Scholar] [CrossRef]
- Zhengyan, Z.; Xinyi, F.; Ningping, T. Effect of Salt Concentration on the Formation of Micro/Nano Particles in Tuna Head Soup. Food Sci. 2021, 42, 21–29. [Google Scholar]
- Huiqin, W. Study on Micro-nano Particles in He Clam Decoction and Pig Bone Decoction. Ph.D. Thesis, Zhejiang Gongshang University, Hangzhou, China, 2019. [Google Scholar]
- Gao, G.; Wang, H.; Zhou, J.; Rao, P.; Ke, L.; Lin, J.J.; Pan, B.S.; Zhang, Y.; Wang, Q. Isolation and Characterization of Bioactive Proteoglycan-Lipid Nanoparticles from Freshwater Clam (Corbicula fluminea Muller) Soup. J. Agric. Food Chem. 2021, 69, 1610–1618. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, G.; Wang, H.; Ke, L.; Zhou, J.; Rao, P.; Chen, T.; Peng, Z.; Zou, J.; Luo, S. Identification of protein-polysaccharide nanoparticles carrying hepatoprotective bioactives in freshwater clam (Corbicula fluminea Muller) soup. Int. J. Biol. Macromol. 2020, 151, 781–786. [Google Scholar] [CrossRef]
- Zhaoshuo, Y.; Huiqin, W.; Guanzhen, G.; Lijing, K.; Jianwu, Z.; Pingfan, R.; Chenhuan, Y. Effects of Freshwater Clam Soup Nanoparticles on Non-alcoholic Fatty Liver Diseaseof Meriones unguieulataus. J. Chin. Inst. Food Sci. Technol. 2021, 21, 116–120. [Google Scholar] [CrossRef]
- Elcock, A.H. Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr. Opin. Struc. Biol. 2010, 20, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, Y.; Yan, J.; Zhu, W.; Chen, L.; Liang, D.; Xu, X. Can the aggregation be a new approach for understanding the mechanism of Traditional Chinese Medicine? J. Ethnopharmacol. 2008, 117, 378–384. [Google Scholar] [CrossRef]
- Zhi, K.K.; Yang, X. Natural Product Gels and Their Gelators. Prog. Chem. 2019, 31, 1314–1328. [Google Scholar] [CrossRef]
- Morgan, C.M.; Julius, R. Self-Assembling Capsules. Chem. Rev. 1997, 97, 1647–1668. [Google Scholar] [CrossRef]
- Yiping, N.; Jianding, C. Research progress of supramolecular polymers. China Synth. Resin Plast. 2008, 25, 73–77. [Google Scholar]
- Zhang, C.; Zhao, R.; Yan, W.; Wang, H.; Jia, M.; Zhu, N.; Zhu, Y.; Zhang, Y.; Wang, P.; Lei, H. Compositions, Formation Mechanism, and Neuroprotective Effect of Compound Precipitation from the Traditional Chinese Prescription Huang-Lian-Jie-Du-Tang. Molecules 2016, 21, 1094. [Google Scholar] [CrossRef]
- Huang, X.; Wang, P.; Li, T.; Tian, X.; Guo, W.; Xu, B.; Huang, G.; Cai, D.; Zhou, F.; Zhang, H.; et al. Self-Assemblies Based on Traditional Medicine Berberine and Cinnamic Acid for Adhesion-Induced Inhibition Multidrug-Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces 2020, 12, 227–237. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, R.; Wu, H.; Yao, H.; Yan, Y.; Liu, J.; Ran, L.; Sun, Z.; Yi, L.; Dang, L.; et al. Directed self-assembly of herbal small molecules into sustained release hydrogels for treating neural inflammation. Nat. Commun. 2019, 10, 1604. [Google Scholar] [CrossRef]
- Tian, X.; Wang, P.; Li, T.; Huang, X.; Guo, W.; Yang, Y.; Yan, M.; Zhang, H.; Cai, D.; Jia, X.; et al. Self-assembled natural phytochemicals for synergistically antibacterial application from the enlightenment of traditional Chinese medicine combination. Acta Pharm. Sin. B 2020, 10, 1784–1795. [Google Scholar] [CrossRef]
- Wang, G.; Yang, C.; Zhang, K.; Hu, J.; Pang, W. Molecular clusters size of Puerariae thomsonii radix aqueous decoction and relevance to oral absorption. Molecules 2015, 20, 12376–12388. [Google Scholar] [CrossRef] [Green Version]
- Ping, Y.; Li, Y.; Lu, S.; Sun, Y.; Zhang, W.; Wu, J.; Liu, T.; Li, Y. A study of nanometre aggregates formation mechanism and antipyretic effect in Bai-Hu-Tang, an ancient Chinese herbal decoction. Biomed. Pharmacother. 2020, 124, 109826. [Google Scholar] [CrossRef]
- Lin, D.; Du, Q.; Wang, H.; Gao, G.; Zhou, J.; Ke, L.; Chen, T.; Shaw, C.; Rao, P. Antidiabetic Micro-/Nanoaggregates from Ge-Gen-Qin-Lian-Tang Decoction Increase Absorption of Baicalin and Cellular Antioxidant Activity In Vitro. Biomed. Res. Int. 2017, 2017, 9217912. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Wu, Z.; Yan, J.; Pang, W.; Liang, D.; Xu, X. A promising approach for understanding the mechanism of Traditional Chinese Medicine by the aggregation morphology. J. Ethnopharmacol. 2009, 123, 267–274. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, G.; Chu, Q.; Wang, H.; Rao, P.; Ke, L. Chromatographic isolation of nanoparticles from Ma-Xing-Shi-Gan-Tang decoction and their characterization. J. Ethnopharmacol. 2014, 151, 1116–1123. [Google Scholar] [CrossRef]
- Xun, Z. Protective Effect of Siwu Decoction and Its Nanoparticles on Zebrafish Blood System Injury. Master’s Thesis, Minzu University of China, Beijing, China, 2020. [Google Scholar]
- Shen, C.Y.; Zhu, J.J.; Dai, B.; Li, X.F.; Shen, B.D.; Yuan, H.L. Effect of self-assembled nanoparticles from Shaoyao Gancao Decoction on release and absorption of main components of Baishao. Zhongguo Zhong Yao Za Zhi 2021, 46, 2190–2196. [Google Scholar] [CrossRef]
- Bing-Jie, L.; Yong, S.; Ri-Tao, L.; Guan-Zhen, G.; Li-Jing, K.; Jian-Wu, Z.; Ping-Fan, R. Investigating mechanism of toxicity reduction by combination of Glycyrrhizae Radix et Rhizoma and Aconiti Lateralis Radix Preparata on terms of proteins self-assembly. China J. Chin. Mater. Med. 2015, 40, 661–666. [Google Scholar]
- Wen, L.; Zhi-Jia, W.; Xiao-Jing, L.; Na-Na, H.; Tong, L.; Hai-Min, L.; Peng-Long, W. Based on weak bond chemistry, the interaction mechanism between glycyrrhiza protein and berberine in water decocting process of Rhizoma Coptidis and Liquorice was investigated. Acta Pharm. Sin. 2021, 56, 2119–2126. [Google Scholar] [CrossRef]
- Na, L. Effects of Different pH on Biological Activities and Colloidal Properties of Radix Isatidis Decoction. Master’s Thesis, Fuzhou University, Fuzhou, China, 2011. [Google Scholar]
- Xixi, C.; Shaoyun, W. Self-assembled particles with immunomodulatory effect from Radix Pseudostellaria decoction. In Proceedings of the 15th Annual Meeting of the Chinese Society of Food Science and Technology, Qingdao, China, 6–8 November 2018; p. 420. [Google Scholar]
- Han, N.; Huang, X.; Tian, X.; Li, T.; Liu, X.; Li, W.; Huo, S.; Wu, Q.; Gu, Y.; Dai, Z.; et al. Self-Assembled Nanoparticles of Natural Phytochemicals (Berberine and 3,4,5-Methoxycinnamic Acid) Originated from Traditional Chinese Medicine for Inhibiting Multidrug-Resistant Staphylococcus aureus. Curr. Drug Deliv. 2021, 18, 914–921. [Google Scholar] [CrossRef]
- Xian, L. Study on the Self-Assembly Behavior of Protein Derived from Licorice. Master’s Thesis, Fuzhou University, Fuzhou, China, 2018. [Google Scholar]
- Wang, P.; Guo, W.; Huang, G.; Zhen, J.; Li, Y.; Li, T.; Zhao, L.; Yuan, K.; Tian, X.; Huang, X.; et al. Berberine-Based Heterogeneous Linear Supramolecules Neutralized the Acute Nephrotoxicity of Aristolochic Acid by the Self-Assembly Strategy. ACS Appl. Mater. Interfaces 2021, 13, 32729–32742. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Gao, G.; Wang, H.; He, X.; Chen, T.; Ke, L.; Rao, P.; Wang, Q. Boiling Licorice Produces Self-Assembled Protein Nanoparticles: A Novel Source of Bioactive Nanomaterials. J. Agric. Food Chem. 2019, 67, 9354–9361. [Google Scholar] [CrossRef]
- Wenjun, R. A Novel Astragaluus Protein and Its Self-Assembly. Master’s Thesis, Fuzhou University, Fuzhou, China, 2013. [Google Scholar]
- Chao, H.; Yi-Qiong, P. Phase Difference of Traditional Chinese Medicine Compound Decoction: A Review. Chin. J. Exp. Tradit. Med. Formulae 2021, 1–10. [Google Scholar] [CrossRef]
- Dan, W. Study on the Characterization System of Decoction Processing of Cordyceps Militars and Anti-Tumor Effect. Master’s Thesis, Fujian Normal University, Fuzhou, China, 2013. [Google Scholar]
- Lina, C. Study on the Intestinal Absorption and Aggregate Characteristics of Saikosaponins and the Dermination Method of Acyl-saikosaponin. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2015. [Google Scholar]
- Ling, D.; Hongmei, L.; Yeshou, S.; Zhiping, Z.; Xiaoguang, Z. Observation of Structure Morphology and Self-assembly of Polysaccharide PSM2b-A by Atomic Force Microscopy. Acta Laser Biol. Sin. 2007, 749–750; 752–753. [Google Scholar]
- Shao-wa, L.; Yin-qi, W.; Ying-peng, L.; Yang-hong, W.; Zhi-xin, Y.; Rui, W.; Qing-xia, G.; Yong-ji, L. Determination of Main Components in Baihutang with Separation of Different Phase States and Different Phase States. Chin. J. Exp. Tradit. Med. Formulae 2020, 26, 154–160. [Google Scholar] [CrossRef]
- Yin-Qi, W.; Shao-Wa, L.; Ying-Peng, L.; Shuang, S.; Da-Yu, Y.; Yu-Yan, G.; Yang, P.; Hong, S.; Yong-Ji, L. Separation and Characterization of Nano Phase in Baihu Decoction. Chin. Arch. Tradit. Chin. Med. 2021, 39, 121–124; 286–289. [Google Scholar] [CrossRef]
- Shao-Wa, L.; Yin-Qi, W.; Ying-Peng, L.; Shuang, S.; Da-Yu, Y.; Yu-Yan, G.; Hong, S.; Yong-Ji, L. Effects of different phase Baihu decoction on the serum TNF-α, IL-1β and IL-6 level in fever model rabbits. J. Int. Pharm. Res. 2020, 47, 870–875. [Google Scholar] [CrossRef]
- Linmei, P.; Jia, F.; Huaxu, Z.; Liwei, G. Preliminary study to investigate dynamic extract process of Huanglian Jiedu Tang and the mechanism of subsidence produce. China J. Chin. Mater. Med. 2010, 35, 40–43. [Google Scholar]
- Kang, F.; Gao-Rong, W.; Hui, W.; Rui, Z.; Xin-Yu, Z.; Nan-Nan, X.; Meng, C.; Wen-Bo, G.; Fu-Hao, C.; Bing, X.; et al. Study on chemical constituents of self-settling from Huanglian Jiedu Decoction and effects on PC12 induced by CoCl2. Chin. Tradit. Herb. Drugs 2017, 48, 3714–3719. [Google Scholar]
- Tong, L.; Hui, W.; Hao, Z.; Xue-Hao, T.; Qi-He, C.; Kang, F.; Gao-Rong, W.; Bing, X.; Fu-Hao, C.; Peng-Long, W.; et al. Formation mechanism of precipitation in Huanglian Jiedu Decoction based on molecular thermodynamic characteristics. Chin. Tradit. Herb. Drugs 2017, 48, 3505–3510. [Google Scholar]
- Chen, M.; Wang, P.; Li, T.; Li, L.; Li, J.; Bai, H.; Lei, H.; Ma, Q. Comprehensive analysis of Huanglian Jiedu decoction: Revealing the presence of a self-assembled phytochemical complex in its naturally-occurring precipitate. J. Pharm. Biomed. Anal. 2021, 195, 113820. [Google Scholar] [CrossRef]
- Yu-Yu, W.; Hui-Ya, Y.; Xiao-Hui, C.; Kai-Shun, B.; Wei, L. Content Change of Main Components of Coptis Rhizome and Scutellaria Radix Couples among Different Compatibilities of Medicinal Materials in Xiexin Decoction and Gegen Qinlian Decoction. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 91–95. [Google Scholar]
- Zui, G. Separation and Characterization of Gegen Qinlian Decoction. Master’s Thesis, Fuzhou University, Fuzhou, China, 2014. [Google Scholar]
- Dai, L. Stydy on the Proteins Formed by Self-Assembly from Gegen Qinlian Decoction. Master’s Thesis, Fuzhou University, Fuzhou, China, 2013. [Google Scholar]
- Qian, D.; Yun, H.; Huiqin, W.; Guanzhen, G.; Jianwu, Z.; Lijing, K.; Pingfan, R. Influence of Maxing Shigan Decoction and its aggregates on the anti-influenza virus A activity in vitro. China J. Tradit. Chin. Med. Pharm. 2014, 29, 3746–3750. [Google Scholar]
- Shen, L.; Hu, R.W.; Lin, X.; Cong, W.J.; Hong, Y.L.; Feng, Y.; Xu, D.S.; Ruan, K.F. Pharmacokinetics of characteristic effective ingredients from individual and combination Shaoyao and Gancao treatment in rats using HPLC fingerprinting. Eur. J. Drug Metab. Pharmacokinet. 2012, 37, 133–140. [Google Scholar] [CrossRef]
- Shen, C.; Shen, B.; Zhu, J.; Wang, J.; Yuan, H.; Li, X. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev. Ind. Pharm. 2021, 47, 207–214. [Google Scholar] [CrossRef]
- Qiu-Wei, C.; Jin-Ming, Z.; Ning-Ping, J.; Chao-Mei, F.; Yan-Jun, L. Comparative Studies between Physicochemical Properties in Aconiti Laterdis Radix Praeparata and Glycyrrhizae Radix et Rhizoma Decoction before and after Combination. Chin. J. Exp. Tradit. Med. Formulae 2014, 20, 92–95. [Google Scholar]
- Jin-ming, Z.; Ling, L.; Fei, G.; Ying, L.; Yao, H.; Chao-mei, F. Chemical ingredient analysis of sediments from both single Radix Aconiti Lateralis decoction and Radix Aconiti Lateralis—Radix Glycyrrhizae decoction by HPLC-MS. Acta Pharm. Sinica 2012, 47, 1527–1533. [Google Scholar] [CrossRef]
- Jin-Ming, Z.; Chao-Mei, F.; Yu-Xin, H.; Jun-Rong, L.; Fei, G.; Ji-Sen, W.; Wan, L. Comparison on chemical components in sediments of Aconiti Lateralis Radix Preparata-Glycyrrhizae Radix before and after their compatibility. Chin. Tradit. Herb. Drugs 2013, 44, 165–169. [Google Scholar]
- Zhang, J.M.; Liao, W.; He, Y.X.; He, Y.; Yan, D.; Fu, C.M. Study on intestinal absorption and pharmacokinetic characterization of diester diterpenoid alkaloids in precipitation derived from fuzi-gancao herb-pair decoction for its potential interaction mechanism investigation. J. Ethnopharmacol. 2013, 147, 128–135. [Google Scholar] [CrossRef]
- Ke, L.J.; Gao, G.Z.; Shen, Y.; Zhou, J.W.; Rao, P.F. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo. Nanoscale Res. Lett. 2015, 10, 449. [Google Scholar] [CrossRef] [Green Version]
- Sai-Jun, L.; Fan, W.; Jing-Jing, Z.; Hui, C.; Jin-Guang, W. Study on the Interactions between Rhizoma Coptidis and Radix Glycyrrhiza. Spectrosc. Spectr. Anal. 2007, 27, 730–734. [Google Scholar]
- Jun, Z. Study on the Chemical Constituents of Glycyrrhiza-Coptis chinensis, Nepeta cataria-Cinnamomum cassia and Zingiber officinale—Cinnamomum cassia. Master’s Thesis, Central South University, Changsha, China, 2008. [Google Scholar]
- Chuanqi, H. Isolation and Characterization of Nanoparticles from Radix Isatidis Decoction. Master’s Thesis, Fuzhou University, Fuzhou, China, 2013. [Google Scholar]
- Zhou, J.; Liu, J.; Lin, D.; Gao, G.; Wang, H.; Guo, J.; Rao, P.; Ke, L. Boiling-induced nanoparticles and their constitutive proteins from Isatis indigotica Fort. root decoction: Purification and identification. J. Tradit. Complement Med. 2017, 7, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Qingxia, W.; Shaoyun, W. The Construction and Characterization of Pseudostellaria heterophylla Protein Nanoparticles. In Proceedings of the 14th Annual Meeting of the Chinese Society of Food Science and Technology and the 9th China-US Food Industry Forum, Wuxi, China; 2017; p. 334. [Google Scholar]
- Li, T.; Wang, P.; Guo, W.; Huang, X.; Tian, X.; Wu, G.; Xu, B.; Li, F.; Yan, C.; Liang, X.J.; et al. Natural Berberine-Based Chinese Herb Medicine Assembled Nanostructures with Modified Antibacterial Application. ACS Nano 2019, 13, 6770–6781. [Google Scholar] [CrossRef]
- Zhang, C.H.; Yu, R.Y.; Liu, Y.H.; Tu, X.Y.; Tu, J.; Wang, Y.S.; Xu, G.L. Interaction of baicalin with berberine for glucose uptake in 3T3-L1 adipocytes and HepG2 hepatocytes. J. Ethnopharmacol. 2014, 151, 864–872. [Google Scholar] [CrossRef]
- Li, L.; Cui, H.; Li, T.; Qi, J.; Chen, H.; Gao, F.; Tian, X.; Mu, Y.; He, R.; Lv, S.; et al. Synergistic Effect of Berberine-Based Chinese Medicine Assembled Nanostructures on Diarrhea-Predominant Irritable Bowel Syndrome In Vivo. Front Pharmacol. 2020, 11, 1210. [Google Scholar] [CrossRef]
- Chun-tao, L. Analyzing and exploring the clinic effect of the herb medicine compatibility which contains alkaloid and tannin ingredients. Pharm. Clin. Chin. Mater. Med. 2013, 4, 30–31, 46. [Google Scholar]
- Weng, Q.; Cai, X.; Zhang, F.; Wang, S. Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin. Food Chem. 2019, 274, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Xuefei, Y.; Ye, Y.; Dengke, Y. Progress on amphiphilic polysaccharide self-assembly micelle delivery system. Chin. J. Biochem. Pharm. 2014, 34, 175–178, 183. [Google Scholar]
- Zhao, Y.; Wan, P.; Wang, J.; Li, P.; Hu, Q.; Zhao, R. Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine. Carbohydr. Polym. 2020, 229, 115473. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Shi, X.; Wang, Y.; Qiao, Y. Solubilization of saikosaponin a by ginsenoside Ro biosurfactant in aqueous solution: Mesoscopic simulation. J. Colloid Interface Sci. 2012, 384, 73–80. [Google Scholar] [CrossRef]
- Dai, X.; Ding, H.; Yin, Q.; Wan, G.; Shi, X.; Qiao, Y. Dissipative particle dynamics study on self-assembled platycodin structures: The potential biocarriers for drug delivery. J. Mol. Graph. Model 2015, 57, 20–26. [Google Scholar] [CrossRef]
- Ding, H.; Yin, Q.; Wan, G.; Dai, X.; Shi, X.; Qiao, Y. Solubilization of menthol by platycodin D in aqueous solution: An integrated study of classical experiments and dissipative particle dynamics simulation. Int. J. Pharm. 2015, 480, 143–151. [Google Scholar] [CrossRef]
- Yuxia, G.; Jun, H.; Yong, J. Supramolecular Self-Assembly Based on Natural Small Molecule Compounds. Acta Chim. Sin. 2016, 74, 312–329. [Google Scholar]
- Saha, A.; Adamcik, J.; Bolisetty, S.; Handschin, S.; Mezzenga, R. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features. Angew Chem. Int. Ed. Engl. 2015, 54, 5408–5412. [Google Scholar] [CrossRef]
- Fan, L. The Research on Solubilization and Stabilization Effect of Glycyrrhizic Acid Self-Assembly System to TCM Active Ingredients and Molecular Mechanism for Compatibility. Master’s Thesis, Tianjin University of Traditional Chinese Medicine, Tianjin, China, 2020. [Google Scholar]
- Xuan, Y. Study on Solubilization Effect and Mechanism of Licorice on Pueraria lobata and Scutellariae. Master’s Thesis, Beijing University of Traditional Chinese Medicine, Beijing, China, 2013. [Google Scholar]
- You, G.; Feng, T.; Zhang, G.; Chen, M.; Liu, F.; Sun, L.; Wang, M.; Ren, X. Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles. Int. J. Pharm. 2021, 601, 120546. [Google Scholar] [CrossRef]
- Zhi-Qing, L.; Zhi-Qing, W.; Yan-Li, Z.; Cheng-Yu, J. Cellular uptake of dandelion decoctosome is mediated by macropinocytosis. Basic Clin. Med. 2019, 39, 925–931. [Google Scholar] [CrossRef]
- Du, J.; Liang, Z.; Xu, J.; Zhao, Y.; Li, X.; Zhang, Y.; Zhao, D.; Chen, R.; Liu, Y.; Joshi, T.; et al. Plant-derived phosphocholine facilitates cellular uptake of anti-pulmonary fibrotic HJT-sRNA-m7. Sci. China Life Sci. 2019, 62, 309–320. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, L.; Shen, G.; Chang, R.; Zhang, Y.; Yan, X. Coordination self-assembly of natural flavonoids into robust nanoparticles for enhanced in vitro chemo and photothermal cancer therapy. Colloids Surf. A Physicochem. Eng. Asp. 2020, 598, 124805. [Google Scholar] [CrossRef]
- Hau-Xu, Z.; Lin-Sheng, D. Study on constituents in sediment of Decoction Pulsatilla. Chin. Tradit. Pat. Med. 2002, 53–56. [Google Scholar]
- Shao, B.A.; Wang, S.Y.; Zhou, J.W.; Ke, L.J.; Rao, P.F. A novel lectin from fresh rhizome of Alisma orientale (Sam.) Juzep. Process. Biochem. 2011, 46, 1554–1559. [Google Scholar] [CrossRef]
- Yu-yan, G.; Wen-bao, M.; Hong-bin, X.; Jing, Y.; Guo-yu, L.; Shuang, S.; Da-yu, Y.; Shao-wa, L. Changes of toxic substance in different phase of compatibility decoction Strychni Semen and Glycyrrhizae Radix et Rhizoma based on UPLC-MS technique. Chin. Tradit. Herb. Drugs 2017, 48, 4880–4884. [Google Scholar]
- Jinfa, T. Changes of alkaloid content in decoction before and after strychnids combined with licorice. J. Aerosp. Med. 2010, 21, 1529. [Google Scholar]
- Eryu, S.; Xiaoqian, M.; Xin, Y.; Shuang, S.; Guotao, S. Study on phase separation and characterization of Liujunzi Decoction. J. Pharm. Res. 2021, 40, 216–220. [Google Scholar] [CrossRef]
- Dalin, W. Precipitation reaction of Coptis alkaloids with licorice and rhubarb in traditional decoction. Foreign Pharm. Bot. Med. 1981, 14–17. [Google Scholar]
- La-Mei, Q.; Zhuang, Z.; Fu-Ling, N.; Rui-Yuan, D.; Yan-Fang, Y.; Fu-He, L.; Guo-Ping, F. Study on Flocculants Used in the Extraction of Chinese Herbs. Chin. J. Exp. Tradit. Med. Formulae 2000, 6, 3–5. [Google Scholar] [CrossRef]
- Mao-Lin, W.; Li, L.; Hong-Fei, W.; Chuan-Hua, L.; Yan-Ni, F.; Hui, H. Dispersion Behavior of Effective Ingredients in Chinese Medicine Decoctions. J. Chin. Med. Mater. 2011, 34, 455–458. [Google Scholar] [CrossRef]
- Li, X.Y.; Liang, Z.; Du, J.C.; Wang, Z.Q.; Mei, S.; Li, Z.Q.; Zhao, Y.; Zhao, D.D.; Ma, Y.M.; Ye, J.; et al. Herbal decoctosome is a novel form of medicine. Sci. China-Life Sci. 2019, 62, 333–348. [Google Scholar] [CrossRef]
- Zhejie, C.; Wen, L.; Meisi, L.; Yao, H.; Chaomei, F.; Fei, G.; Jinming, Z. Research status of Sanhuang Xiexin Decoction and analyses of key technologies and core issues. Chin. Tradit. Herb. Drugs 2016, 47, 4111–4117. [Google Scholar]
- Zhe-jie, C.; Wen, L.; Li-juan, W.; Chao-mei, F.; Jie, L.; Yu-meng, L. Research on the different liquid phase of mixed medicine decoction and respective decoction of Sanhuang Xiexin Decoction. Pharm. Clin. Chin. Mater. Med. 2017, 8, 31–33, 37. [Google Scholar]
- Zhe-Jie, C.; Jing, W.; Shuai, G.; Jie, L.; Xiao, W.; Yan-fen, C.; Wen, L. Preliminarily study on thescientific connotation of combined decocting preparation method of SanhuangXiexin Decoction byinvestigatinganti-inflammatory, analgesic and antipyretic effect. Pharm. Clin. Chin. Mater. Med. 2018, 9, 23–27, 56. [Google Scholar]
- Zhaodan, T.; Bing, L.; Weiying, G.; Yan, S. Effect of decoction methods on the content of key components of Coptidis Rhizome and Evodiae Fructus with different proportions. Chin. J. Hosp. Pharm. 2020, 40, 2238–2242, 2250. [Google Scholar] [CrossRef]
- Yeh, P.; Ellens, H.; Smith, P.L. Physiological considerations in the design of particulate dosage forms for oral vaccine delivery. Adv. Drug Deliv. Rev. 1998, 34, 123–133. [Google Scholar] [CrossRef]
- Lu, S.; Su, H.; Sun, S.; Guo, Y.; Liu, T.; Ping, Y.; Li, Y. Isolation and characterization of nanometre aggregates from a Bai-Hu-Tang decoction and their antipyretic effect. Sci. Rep. 2018, 8, 12209. [Google Scholar] [CrossRef]
- Nakayama, K.; Fujino, H.; Kasai, R.; Mitoma, Y.; Yata, N.; Tanaka, O. Solubilizing properties of saponins from Sapindus mukurossi Gaertn. Chem. Pharm. Bull. 1986, 34, 3279–3283. [Google Scholar] [CrossRef]
- Nakayama, K.; Fujino, H.; Kasai, R.; Tanaka, O.; Zhou, J. Saponins of pericarps of Chinese Sapindus delavayi (Pyi-shiau-tzu), a source of natural surfactants. Chem. Pharm. Bull. 1986, 34, 2209–2213. [Google Scholar] [CrossRef] [Green Version]
Source | Biophysical | Biochemical | Therapeutic |
---|---|---|---|
co-decoction of Coptidis rhizoma and Cinnamomi cortex [15] | spherical particles; average particle size: 66 nm; zeta potential: −32.1 mV | ingredients: berberine and cinnamic acid; characteristics: pH sensitive, well biocompatibility | bacteriostatic activity |
Huanglian Jiedu decoction [14] | spherical particles; average particle size: 174 nm; | ingredients: baicalin (42.12%), berberine (31.17%), coptis (5.89%), wogonoside (1.50%), palmatine (0.60%) | neuroprotective activity; regulate glucose uptake; good therapeutic effect in visceral allergy and diarrhea |
Rheum palmatum decoction [16] | nanofibers; average diameter: 30 nm; length: several micrometers; | ingredients: rhein; characteristics: thixotropy; thermo-reversibility | neuroinflammatory prevention activity |
co-decoction of Coptis chinensis and Rheum palmatum [17] | spherical particles; average particle size: 174 nm; | ingredients: rhein and berberine | antibacterial effect |
Puerariae thomsonii Radix Aqueous decoction [18] | spherical particles; average particle size: 120 nm (0.07 g/mL); 185 nm (0.1 g/mL) | ingredients: Puerarin starch | ameliorate the hemorheological parameters |
Baihu decoction [19] | spherical particles; average particle size: 100 nm; zeta potential: −3.11 mV | ingredients: new mangiferin, mangiferin, glycyrrhizin, ammonium, glycyrrhizin, polysaccharides, starches, inorganic elements, such as Si, Na, Ca, Mn, Fe, Cu, Fe; characteristics: selective organ targe | antipyretic effect; decrease inflammatory factors levels |
Gegen Qinlian Decoction [20,21] | spherical particles; average particle size: 530 nm; | ingredients: Pueraria protein and Coptis protein, baicalin, berberine, puerarin, glycyrrhizic acid, and liquiritin | hypoglycemic and antioxidant activities |
Maxing Shigan Decoction [22] | spherical particles; average particle size: 138 nm; | ingredients: ephedrine, pseudoephedrine | anti-influenza-virus activity |
Siwu Decoction [23] | particle size distribution: 100–1000 nm | ingredients: protein, polysaccharides, DNA | regeneration-promoting effects on the damage of hematopoietic function |
Shaoyao Gancao Decoction [24] | irregularly spherical particles; average particle size: 200 nm; | ingredients: glycyrrhizic acid, paeoni-florin | |
Aconiti Laterdis and Glycyrrhizae Radix Co-Decoction [25] | average particle size: 238 nm; | ingredients: glycyrrhizae protein, aconitine | eliminates toxicity |
Glycyrrhizae Radix–Coptis Chinensis Co-Decoction [26] | spherical particles; average particle size: 186 nm; zeta potential: −11.1 mV | ingredients: mainly small molecules such as glycyrrhizic acid and berberin | antibacterial effect |
Banlangen Decoction [27] | particle size distribution: 50–500 nm | ingredients: proteins, sugars, amino acids, and fatty acids; characteristics: pH responsiveness, temperature responsiveness | antiviral effects |
Taizishen Decoction [28] | average particle size: 70 nm; | ingredients: protein | immunomodulatory |
Coptis Chinensis and Polygala Co-Decoction [29] | spherical particles; average particle size: 93 nm; zeta potential: −31.6 mV | ingredients: 3,4,5-methoxycinnamic acid, berberine | antibacterial activity |
Angelica sinensis [30] | irregularly spherical particles; average particle size: 130 nm; | ingredients: Angelica sinensis protein | radical scavenging effects |
Coptidis Rhizoma and Aristolochia debilis Co-Decoction [31] | cross-linked network structure; diameter: 50–200 nm; length: tens of micrometers; zeta potential: −38.5 mV | ingredients: berberine, aristolochic acid | reduce the toxicity of aris-tolochic acid |
Glycyrrhizae Radix [32] | spherical particles; average particle size: 74 nm; zeta potential: −24.3 mV | ingredients: glycyrrhizae protein, glycyrrhizic acid | |
Astragalus [33] | spherical or oval particles; average particle size: 151 nm; zeta potential: −26 mV | ingredients: astragalus protein |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Dong, Y.; Guo, Q.; Wang, H.; Feng, M.; Yan, Z.; Bai, D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules 2022, 27, 3268. https://doi.org/10.3390/molecules27103268
Gao Y, Dong Y, Guo Q, Wang H, Feng M, Yan Z, Bai D. Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules. 2022; 27(10):3268. https://doi.org/10.3390/molecules27103268
Chicago/Turabian StyleGao, Yuan, Yingying Dong, Qin Guo, Huanhuan Wang, Mei Feng, Zhengshen Yan, and Dong Bai. 2022. "Study on Supramolecules in Traditional Chinese Medicine Decoction" Molecules 27, no. 10: 3268. https://doi.org/10.3390/molecules27103268
APA StyleGao, Y., Dong, Y., Guo, Q., Wang, H., Feng, M., Yan, Z., & Bai, D. (2022). Study on Supramolecules in Traditional Chinese Medicine Decoction. Molecules, 27(10), 3268. https://doi.org/10.3390/molecules27103268