Zinc Content in Breast Milk and Its Association with Maternal Diet
Abstract
:1. Introduction
2. Materials and Methods
- currently living in Latvia;
- singleton pregnancy;
- baby’s birth weight above 2.50 kg;
- at least one month postpartum;
- currently exclusively breastfeeding or partially breastfeeding (breast milk + infant formula and/or complementary food);
- currently breastfeeding only one child;
- mother and baby currently in good health (without metabolic disorders, no acute illnesses, etc.).
3. Results
3.1. Characteristics of Participants
3.2. Zinc Content in Breast Milk
3.3. Maternal Diet during Lactation and Zinc Content in Breast Milk
3.4. Association among Characteristics of Participants and Zinc Content in Breast Milk
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ackland, M.L.; Michalczyk, A.A. Zinc and infant nutrition. Arch. Biochem. Biophys. 2016, 611, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Kienast, A.; Roth, B.; Bossier, C.; Hojabri, C.; Hoeger, P.H. Zinc-deficiency dermatitis in breast-fed infants. Eur. J. Pediatr. 2007, 166, 189–194. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO) Programme of Nutrition. Complementary Feeding of Young Children Developing Countries: A Review of Current Scientific Knowledge. Available online: http://apps.who.int/iris/handle/10665/65932 (accessed on 21 September 2018).
- Fischer, W.C.L.; Ezzati, M.; Black, R.E. Global and regional child mortality and burden of disease attributable to zinc deficiency. Eur. J. Clin. Nutr. 2009, 63, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Miller, L.V.; Hambidge, K.M. Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatr. Int. Child Health 2014, 34, 279–288. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO); United Nations International Children’s Fund (UNICEF). Worldwide Breastfeeding Scorecard 2017. Tracking Progress for Breastfeeding Policies and Programmes. Available online: http://www.who.int/nutrition/publications/infantfeeding/global-bf-scorecard-2017.pdf (accessed on 21 September 2018).
- European Food Safety Authority (EFSA). Scientific Opinion on Dietary Reference Values for Zinc. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2014.3844 (accessed on 21 September 2018).
- Brown, K.H.; Engle-Stone, R.; Krebs, N.F.; Peerson, J.M. Dietary intervention strategies to enhance zinc nutrition: Promotion and support of breastfeeding for infants and young children. Food Nutr. Bull. 2009, 30, 144–171. [Google Scholar] [CrossRef] [PubMed]
- Dorea, J.G. Is zinc a first limiting nutrient in human milk? Nutr. Res. 1993, 13, 659–666. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A. Cadmium, lead, copper and zinc in breast milk in Poland. Biol. Trace Elem. Res. 2014, 157, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Javad, M.T.; Vahidinia, A.; Samiee, F.; Elaridi, J.; Leili, M.; Faradmal, J.; Rahmani, A. Analysis of aluminum, minerals and trace elements in the milk samples from lactating mothers in Hamadan, Iran. J. Trace Elem. Med. Biol. 2018, 50, 8–15. [Google Scholar] [CrossRef]
- Qian, J.; Chen, T.; Lu, W.; Wu, S.; Zhu, J. Breast milk macro- and micronutrient composition in lactating mothers from suburban and urban Shanghai. J. Paediatr. Child Health 2010, 46, 115–120. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Scientific Opinion on Nutrient Requirements and Dietary Intakes of Infants and Young Children in the European Union. Available online: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/j.efsa.2013.3408 (accessed on 21 September 2018).
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Available online: https://www.nal.usda.gov/sites/default/files/fnic_uploads//vitamin_a_full_report.pdf (accessed on 21 September 2018).
- Ministry of Health of the Republic of Latvia. Recommended Intake of Energy and Nutrients for Latvians. 2017. Available online: http://www.vm.gov.lv/images/userfiles/Tava%20veseliba/Ieteicam%C4%81s_ener%C4%A3ijas_un_uzturvielu_devas.pdf (accessed on 21 September 2018).
- Krebs, N.F. Zinc transfer to the breastfed infant. J. Mammary Gland Biol. Neoplasia 1999, 4, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Fung, E.B.; Ritchie, L.D.; Woodhouse, L.R.; Roehl, R.; King, J.C. Zinc absorption in women during pregnancy and lactation: A longitudinal study. Am. J. Clin. Nutr. 1997, 66, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.L.; Seo, Y.A.; Lopez, V. Mammary gland zinc metabolism: Regulation and dysregulation. Genes Nutr. 2009, 4, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Sazawal, S.; Black, R.E.; Dhingra, P.; Jalla, S.; Krebs, N.; Malik, P.; Dhingra, U.; Bhan, M.K. Zinc supplementation does not affect the breast milk zinc concentration of lactating women belonging to low socioeconomic population. J. Hum. Nutr. Food Sci. 2013, 1, 1014. [Google Scholar]
- The Centre for Disease Prevention and Control of Latvia. Mother’s and Child’s Health. Statistical Data about Child’s Health 2010–2017. Available online: https://www.spkc.gov.lv/lv/statistika-un-petijumi/statistika/veselibas-aprupes-statistika1 (accessed on 21 September 2018).
- Nordic Nutrition Recommendations 2012. Available online: https://www.norden.org/en/publication/nordic-nutrition-recommendations-2012-0 (accessed on 21 September 2018).
- Ministry of Health of the Republic of Latvia. Recommended Intake of Energy and Nutrients for Latvians. 2008. Available online: http://www.vm.gov.lv/images/userfiles/ieud.pdf (accessed on 21 September 2018).
- Joffe, R.; Ozoliņš, G.; Šantare, D.; Bartkevičš, V.; Miķe, L.; Briška, I. The National Food Consumption Survey of Latvia, 2007–2009. Available online: https://zenodo.org/record/806947#.W6TqtPloTDc (accessed on 21 September 2018).
- Aumeistere, L.; Ciprovica, I.; Zavadska, D.; Bavrins, K. A preliminary study on essential minerals in human milk: Association with dietary habits. In Proceedings of the 23rd Annual International Scientific Conference Research for Rural Development, Jelgava, Latvia, 17–19 May 2017; Latvia University of Life Sciences and Technologies: Jelgava, Latvia, 2017; pp. 230–236. [Google Scholar]
- Aumeistere, L.; Ciprovica, I.; Zavadska, D.; Bavrins, K.; Borisova, A. Zinc content in breast milk: Report from Latvia. In Proceedings of the 2nd EuroSciCon Conference on Food Technology, Rome, Italy, 14–16 May 2018. [Google Scholar]
- Online Sample Size Calculator for Pilot Studies. Available online: http://www.pilotsamplesize.com (accessed on 27 September 2018).
- Viechtbauer, W.; Smits, L.; Kotz, D.; Budé, L.; Spigt, M.; Serroyen, J.; Crutzen, R. A simple formula for the calculation of sample size in pilot studies. J. Clin. Epidemiol. 2015, 68, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- A Photographic Atlas of Food Portions for the Emirate of Abu Dhabi. Available online: https://www.adfca.ae/English/MediaCenter/Publications/Documents/atlas_en.pdf (accessed on 21 September 2018).
- World Health Organization (WHO). Fourth WHO Coordinated Survey of Human Milk for Persistent Organic Pollutants in Cooperation with UNEP. Guidelines for Developing A National Protocol. Available online: http://www.who.int/foodsafety/chem/POPprotocol.pdf (accessed on 21 September 2018).
- United States Department of Agriculture (USDA). Branded Food Products Database. Available online: https://ndb.nal.usda.gov/ndb/search/list (accessed on 21 September 2018).
- Institute of Medicine (US) Committee on Nutritional Status During Pregnancy and Lactation. Milk volume. In Nutrition During Lactation; National Academies Press: Washington, DC, USA, 1991; pp. 80–105, ISBN-10 0-309-04391-3. [Google Scholar]
- Matos, C.; Moutinho, C.; Balcão, V.; Almeida, C.; Ribeiro, M.; Marques, F.A.; Guerra, A. Total antioxidant activity and trace elements in human milk: The first 4 months of breastfeeding. Eur. Food Res. Technol. 2009, 230, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Domellöf, M.; Lönnerdal, B.; Dewey, K.G.; Cohen, R.J.; Hernell, O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am. J. Clin. Nutr. 2004, 79, 111–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doneray, H.; Olcaysu, E.; Yildirim, A.; Ozden, A. The effect of the zinc concentration in breast milk on neonatal weight gain. J. Trace Elem. Med. Biol. 2017, 41, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Hambidge, K.M.; Jacobs, M.A.; Mylet, S. Zinc in human milk: Diurnal and within-feed patterns. J. Pediatr. Gastroenterol. Nutr. 1985, 4, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Neville, M.C.; Keller, R.P.; Seacat, J.; Casey, C.E.; Allen, J.C.; Archer, P. Studies on human lactation. I. Within-feed and between-breast variation in selected components of human milk. Am. J. Clin. Nutr. 1984, 40, 635–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, S.; Hennigar, S.R.; Gallagher, C.; Soybel, D.I.; Kelleher, S.L. Exome sequencing of SLC30A2 identifies novel loss- and gain-of-function variants associated with breast cell dysfunction. J. Mammary Gland Biol. Neoplasia 2015, 20, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, R.; Nikniaz, L.; Gayemmagami, S.J. Association between zinc, copper, and iron concentrations in breast milk and growth of healthy infants in Tabriz, Iran. Biol. Trace Elem. Res. 2010, 135, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Nakamori, M.; Ninh, N.X.; Isomura, H.; Yoshiike, N.; Hien, V.T.; Nhug, B.T.; Nhien, N.V.; Nakano, T.; Khan, N.C.; Yamamoto, S. Nutritional status of lactating mothers and their breast milk concentration of iron, zinc and copper in rural Vietnam. J. Nutr. Sci. Vitaminol. (Tokyo) 2009, 55, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Djurović, D.; Milisavljević, B.; Mugoša, B.; Lugonja, N.; Miletić, S.; Spasić, S.; Vrvić, M. Zinc concentrations in human milk and infant serum during the first six months of lactation. J. Trace Elem. Med. Biol. 2017, 41, 75–78. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, N.; Yamada, M.; Kan-no, T.; Kojima, T.; Kaneko, T.; Yonekubo, A. Macronutrient, mineral and trace element composition of breast milk from Japanese women. J. Trace Elem. Med. Biol. 2005, 19, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, S.L.; Lönnerdal, B. Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells. J. Nutr. 2003, 133, 3378–3385. [Google Scholar] [CrossRef] [PubMed]
- Zlotkin, S.H.; Cherian, M.G. Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr. Res. 1988, 24, 326–329. [Google Scholar] [CrossRef] [PubMed]
- Krebs, N.F.; Westcott, J.E.; Butler, N.; Robinson, C.; Bell, M.; Hambidge, K.M. Meat as a first complementary food for breastfed infants: Feasibility and impact on zinc intake and status. J. Pediatr. Gastroenterol. Nutr. 2006, 42, 207–214. [Google Scholar] [PubMed]
- Sirina, I.; Strele, I.; Siksna, I.; Gardovska, D. Eating patterns and food choices of Latvian infants during their first year of life. Medicina 2018, 54, 7. [Google Scholar] [CrossRef]
Age (months) | Daily Zinc Intake (mg) |
---|---|
0–6 | 2.0 1 |
7–12 | 3.0 1–5.0 2 |
11–36 | 3.0 1–6.0 2 |
Nutrient (unit) | Median Value (Interquartile Range) | Spearman Correlation Coefficient r (p Value) |
---|---|---|
Energy (kcal) | 2095.00 (1785.75–2564.50) | r = 0.042 (p = 0.746) |
Energy (kJ) | 8775.10 (7464.44–10,719.61) | r = 0.042 (p = 0.746) |
Protein (g) | 80.77 (55.43–109.26) | r = −0.088 (p = 0.499) |
Total lipid (g) | 91.63 (62.89–126.83) | r = −0.013 (p = 0.922) |
Carbohydrate (g) | 253.34 (194.27–300.70) | r = 0.138 (p = 0.286) |
Fibre, total dietary (g) | 28.90 (19.00–37.18) | r = −0.041 (p = 0.750) |
Sugars (g) | 106.23 (78.45–133.77) | r = 0.055 (p = 0.671) |
Zinc (mg) | 10.70 (7.24–15.27) | r = −0.155 (p = 0.230) |
Food Item or Group | Median (Min–Max) Value of the Consumption Frequency 1 | Spearman Correlation Coefficient r (p Value) |
---|---|---|
Grain-based products (16 food items included) | 20 (0–35) | r = 0.008 (p = 0.953) |
Meat (4 food items included) | 7 (0–15) | r = −0.074 (p = 0.566) |
Milk and milk products (7 food items included) | 19 (0–29) | r = −0.099 (p = 0.446) |
Vegetables and Legumes (10 food items included) | 20 (10–30) | r = −0.212 (p = 0.098) |
Fruits and berries (7 food items included) | 14 (0–26) | r = −0.218 (p = 0.089) |
Vegetable oils and shortenings (4 food items included) | 8 (2–14) | r = −0.190 (p = 0.139) |
Sweets and snacks (10 food items included) | 13 (0–22) | r = 0.015 (p = 0.907) |
Caffeine-containing drinks (3 food items included) | 8 (0–15) | r = −0.014 (p = 0.916) |
Time Postpartum | Zinc Content in Breast Milk | p Value |
---|---|---|
<6 months (n = 37) | 0.14 (0.08–0.17) mg 100 mL−1 | 0.001 |
≥6 months (n = 25) | 0.06 (0.05–0.10) mg 100 mL−1 |
Breastfeeding Pattern | Zinc Content in Breast Milk | p Value |
---|---|---|
Exclusive breastfeeding (n = 35) | 0.13 (0.09–0.17) mg 100 mL−1 | 0.001 |
Partial breastfeeding (n = 27) | 0.06 (0.05–0.11) mg 100 mL−1 |
Characteristic | Spearman Coefficient for Continuous Variables | p Value |
---|---|---|
Time postpartum | r = −0.492 | 0.000 |
Maternal age | r = −0.178 | 0.167 |
Parity | r = 0.190 | 0.137 |
Baby’s birth weight | r = −0.167 | 0.194 |
Baby’s sex | not applicable | 0.589 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aumeistere, L.; Ciproviča, I.; Zavadska, D.; Bavrins, K.; Borisova, A. Zinc Content in Breast Milk and Its Association with Maternal Diet. Nutrients 2018, 10, 1438. https://doi.org/10.3390/nu10101438
Aumeistere L, Ciproviča I, Zavadska D, Bavrins K, Borisova A. Zinc Content in Breast Milk and Its Association with Maternal Diet. Nutrients. 2018; 10(10):1438. https://doi.org/10.3390/nu10101438
Chicago/Turabian StyleAumeistere, Līva, Inga Ciproviča, Dace Zavadska, Konstantīns Bavrins, and Anastasija Borisova. 2018. "Zinc Content in Breast Milk and Its Association with Maternal Diet" Nutrients 10, no. 10: 1438. https://doi.org/10.3390/nu10101438
APA StyleAumeistere, L., Ciproviča, I., Zavadska, D., Bavrins, K., & Borisova, A. (2018). Zinc Content in Breast Milk and Its Association with Maternal Diet. Nutrients, 10(10), 1438. https://doi.org/10.3390/nu10101438