Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Eat and Track Smartphone Application (EaT App)
2.3. Procedures
2.4. Data Cleaning
2.5. Data Analysis
3. Results
3.1. Comparing Intakes between 24-h Recalls and EaT App
3.2. Correlation Coefficients and Cross-Classification
3.3. Bland–Altman Plots for 24-h Recalls and EaT App
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allman-Farinelli, M.A.; Chey, T.; Bauman, A.E.; Gill, T.; James, W.P. Age, period and birth cohort effects on prevalence of overweight and obesity in Australian adults from 1990 to 2000. Eur. J. Clin. Nutr. 2008, 62, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Laska, M.N.; Hearst, M.O.; Lust, K.; Lytle, L.A.; Story, M. How we eat what we eat: Identifying meal routines and practices most strongly associated with healthy and unhealthy dietary factors among young adults. Public Health Nutr. 2015, 18, 2135–2145. [Google Scholar] [CrossRef]
- Mohr, P.; Wilson, C.; Dunn, K.; Brindal, E.; Wittert, G. Personal and lifestyle characteristics predictive of the consumption of fast foods in Australia. Public Health Nutr. 2007, 10, 1456–1463. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 6530.0-Household Expenditure Survey, Australia: Summary of Results, 2015–16. Available online: http://www.webcitation.org/72AkC0CBc (accessed on 9 July 2018).
- Wellard-Cole, L.; Jung, J.; Kay, J.; Rangan, A.; Chapman, K.; Watson, W.L.; Hughes, C.; Ni Mhurchu, C.; Bauman, A.; Gemming, L.; et al. Examining the Frequency and Contribution of Foods Eaten Away from Home in the Diets of 18- to 30-Year-Old Australians Using Smartphone Dietary Assessment (MYMeals): Protocol for a Cross-Sectional Study. JMIR Res. Protoc. 2018, 7, e24. [Google Scholar] [CrossRef] [PubMed]
- Allman-Farinelli, M. Using digital media to measure diet. Cab Rev. 2018, 13. [Google Scholar] [CrossRef]
- Deloitte Australia. Smart Everything, Everywhere. Mobile Consumer Survey 2017. The Australian Cut; Deloitte Australia: Sydney, Australia, 2017. [Google Scholar]
- Rollo, M.E.; Williams, R.L.; Burrows, T.; Kirkpatrick, S.I.; Bucher, T.; Collins, C.E. What Are They Really Eating? A Review on New Approaches to Dietary Intake Assessment and Validation. Curr. Nutr. Rep. 2016, 5, 307–314. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mittl, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A Resource for Researchers, Clinicians and Educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Cade, J.E.; Allman-Farinelli, M. The Most Popular Smartphone Apps for Weight Loss: A Quality Assessment. JMIR Mhealth Uhealth 2015, 3, e104. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, C.; Harnack, L.; Pereira, M.A. Assessment of the accuracy of nutrient calculations of five popular nutrition tracking applications. Public Health Nutr. 2018, 21, 1495–1502. [Google Scholar] [CrossRef]
- Chen, J.; Berkman, W.; Bardouh, M.; Ng, C.Y.K.; Allman-Farinelli, M. The use of a food logging app in the naturalistic setting fails to provide accurate measurements of nutrients and poses usability challenges. Nutrition 2018. [Google Scholar] [CrossRef]
- Carter, M.C.; Burley, V.J.; Nykjaer, C.; Cade, J.E. ‘My Meal Mate’ (MMM): Validation of the diet measures captured on a smartphone application to facilitate weight loss. Br. J. Nutr. 2013, 109, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Rangan, A.M.; O’Connor, S.; Giannelli, V.; Yap, M.L.; Tang, L.M.; Roy, R.; Louie, J.C.; Hebden, L.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Comparison of a Mobile Phone Digital Entry App for Dietary Data Collection With 24-Hour Dietary Recalls. JMIR Mhealth Uhealth 2015, 3, e98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rangan, A.M.; Tieleman, L.; Louie, J.C.; Tang, L.M.; Hebden, L.; Roy, R.; Kay, J.; Allman-Farinelli, M. Electronic Dietary Intake Assessment (e-DIA): Relative validity of a mobile phone application to measure intake of food groups. Br. J. Nutr. 2016, 12, 2219–2226. [Google Scholar] [CrossRef]
- Ambrosini, G.; Hurworth, M.; Giglia, R.; Trapp, G.; Strauss, P. Feasibility of a commercial smartphone application for dietary assessment in epidemiological research and comparison with 24-h dietary recalls. Nutr. J. 2018, 17. [Google Scholar] [CrossRef]
- Bucher Della Torre, S.; Carrard, I.; Farina, E.; Danuser, B.; Kruseman, M. Development and Evaluation of e-CA, an Electronic Mobile-Based Food Record. Nutrients 2017, 9, 76. [Google Scholar] [CrossRef] [PubMed]
- Wellard-Cole, L.; Potter, M.; Jung, J.; Chen, J.; Kay, J.; Allman-Farinelli, M. A Tool to Measure Young Adults’ Food Intake: Design and Development of an Australian Database of Foods for the Eat and Track Smartphone App. JMIR Mhealth Uhealth 2018, 6, e12136. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2033.0.55.001-Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, 2011. Available online: http://www.webcitation.org/6v9YcGNub (accessed on 25 July 2018).
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [Green Version]
- Food Standards Australia New Zealand. AUSNUT 2011–2013. Available online: http://www.webcitation.org/6v9Z4xkkv (accessed on 25 July 2018).
- Dunford, E.K.; Wu, J.H.Y.; Wellard-Cole, L.; Watson, W.; Crino, M.; Petersen, K.; Neal, B. A comparison of the Health Star Rating system when used for restaurant fast foods and packaged foods. Appetite 2017, 117, 1–8. [Google Scholar] [CrossRef]
- Wellard-Cole, L.; Goldsbury, D.; Havill, M.; Hughes, C.; Watson, W.L.; Dunford, E.K.; Chapman, K. Monitoring the changes to the nutrient composition of fast foods following the introduction of menu labelling in New South Wales, Australia: An observational study. Public Health Nutr. 2017, 21, 1194–1199. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Australian Health Survey Food Model. Booklet; Australian Bureau of Statistics: Canberra, Australia, 2010. [Google Scholar]
- National Cancer Institute. Epidemiology and Genomics Research Program. Available online: http://www.webcitation.org/6v9ZgmxyQ (accessed on 28 June 2017).
- National Cancer Institute. ASA24-Australia. Available online: https://epi.grants.cancer.gov/asa24/respondent/australia.html (accessed on 23 January 2019).
- National Cancer Institute. Dietary Assessment Primer. Learn More about Energy Adjustment. Available online: https://dietassessmentprimer.cancer.gov/learn/adjustment.html (accessed on 15 January 2019).
- Altman, D.G.; Bland, J.M. Measurement in Medicine: The Analysis of Method Comparison Studies. J. R. Stat. Soc. 1983, 32, 307–317. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Goldberg, G.R.; Black, A.E.; Jebb, S.A.; Cole, T.J.; Murgatroyd, P.R.; Coward, W.A.; Prentice, A.M. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur. J. Clin. Nutr. 1991, 45, 569–581. [Google Scholar] [PubMed]
- Black, A.E. The sensitivity and specificity of the Goldberg cut-off for EI:BMR for identifying diet reports of poor validity. Eur. J. Clin. Nutr. 2000, 54, 395. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. 2024.0-Census of Population and Housing: Australia Revealed, 2016. Available online: http://www.webcitation.org/6v9Y4HIWI (accessed on 28 June 2017).
- Subar, A.F.; Freedman, L.S.; Tooze, J.A.; Kirkpatrick, S.I.; Boushey, C.; Neuhouser, M.L.; Thompson, F.E.; Potischman, N.; Guenther, P.M.; Tarasuk, V.; et al. Addressing Current Criticism Regarding the Value of Self-Report Dietary Data. J. Nutr. 2015, 145, 2639–2645. [Google Scholar] [CrossRef]
- Pendergast, F.J.; Ridgers, N.D.; Worsley, A.; McNaughton, S.A. Evaluation of a smartphone food diary application using objectively measured energy expenditure. Int. J. Behav. Nutr. Phys. Act. 2017, 14. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Under-reporting in nutrition surveys. In 4363.0.55.001-Australian Health Survey: Users’ Guide, 2011–13; Australian Bureau of Statistics: Canberra, Australia, 2014. [Google Scholar]
- Carter, C.M.; Hancock, N.; Albar, A.S.; Brown, H.; Greenwood, C.D.; Hardie, J.L.; Frost, S.G.; Wark, A.P.; Cade, E.J. Development of a New Branded UK Food Composition Database for an Online Dietary Assessment Tool. Nutrients 2016, 8, 480. [Google Scholar] [CrossRef] [PubMed]
- Glanz, K.; Resnicow, K.; Seymour, J.; Hoy, K.; Stewart, H.; Lyons, M.; Goldberg, J. How Major Restaurant Chains Plan Their Menus: The role of profit, demand, and health. Am. J. Prev. Med. 2007, 32, 383–388. [Google Scholar] [CrossRef]
Participant Characteristics | N (%) a | |
---|---|---|
Gender | Female | 102 (54) |
Male | 87 (46) | |
Age bracket | 18–24 years | 105 (56) |
25–30 years | 84 (44) | |
Body mass index | Underweight (≤18.49 kg/m2) | 4 (2) |
Healthy weight (18.5–24.9 kg/m2) | 116 (61) | |
Overweight (25–29.9 kg/m2) | 47 (25) | |
Obese (≥30 kg/m2) | 22 (12) | |
Highest education attained | Primary school or less | 2 (1) |
Secondary school | 64 (34) | |
Trade or diploma qualification | 31 (16) | |
University degree | 92 (49) | |
Socioeconomic status a | Higher | 114 (60) |
Lower | 75 (40) |
Energy and Nutrient Densities | Median 24-h Recall (IQR) c | Median EaT App (IQR) | pd |
---|---|---|---|
Entire Sample n = 189 | |||
Total energy, kJ a | 9611 (7947–11,764) | 8813 (7051–10,828) | <0.001 * |
Protein, % energy b | 18.3 (15.2–21.6) | 18.0 (15.1–21.7) | 0.14 |
Total fat, % energy a | 35.8 (32.0–40.5) | 35.6 (31.4–40.5) | 0.47 |
Saturated fat, % energy a | 12.8 (10.6–15.5) | 12.3 (10.5–15.1) | 0.21 |
Carbohydrate, % energy a | 40.4 (35.3–45.7) | 41.8 (35.0–47.4) | 0.03 * |
Sugars, % energy b | 15.4 (11.7–21.4) | 16.4 (11.8–19.2) | 0.81 |
Sodium, mg/1000 kJ b | 294.3 (239.5–349.3) | 294.5 (237.2–362.3) | 0.89 |
Females n = 102 | |||
Total energy, kJ a | 9001 (7752–11,122) | 8209 (6818–10,399) | <0.01 * |
Protein, % energy a | 17.5 (14.9–20.3) | 17.6 (14.8–21.0) | 0.14 |
Total fat, % energy a | 36.2 (32.0–41.1) | 36.6 (32.0–40.8) | 0.97 |
Saturated fat, % energy a | 12.9 (10.6–16.0) | 12.4 (10.6–15.6) | 0.39 |
Carbohydrate, % energy a | 41.3 (35.6–47.1) | 42.2 (34.6–47.6) | 0.57 |
Sugars, % energy a | 18.1 (12.9–22.4) | 17.2 (12.2–21.0) | 0.14 |
Sodium, mg/1000 kJ a | 282.8 (229.0–354.8) | 282.0 (225.3–363.9) | 0.56 |
Males n = 87 | |||
Total energy, kJ a | 10479 (8424–12985) | 9140 (7359–11740) | <0.001 * |
Protein, % energy a | 19.0 (15.5–22.7) | 19.2 (15.4–21.9) | 0.92 |
Total fat, % energy a | 34.9 (32.0–40.0) | 34.9 (30.6–39.8) | 0.29 |
Saturated fat, % energy a | 12.7 (10.5–14.7) | 12.3 (9.8–14.6) | 0.36 |
Carbohydrate, % energy a | 40.1 (35.1–43.7) | 40.6 (35.9–47.2) | 0.01 * |
Sugars, % energy b | 14.2 (11.0–18.1) | 15.0 (11.6–18.5) | 0.13 |
Sodium, mg/1000 kJ b | 297.1 (249.1–349.0) | 301.1 (245.0–362.1) | 0.91 |
Energy and Nutrient Densities | Correlation Coefficients c | Cross-Classification into Quartiles (%) | ||
---|---|---|---|---|
Same | Same or Adjacent | Extreme | ||
Entire Sample n = 189 | ||||
Total energy, kJ a | 0.67 | 50.3 | 90.5 | 2.1 |
Protein, % energy b | 0.73 | 53.4 | 93.7 | 2.1 |
Total fat, % energy a | 0.56 | 46.0 | 84.1 | 4.2 |
Saturated fat, % energy a | 0.59 | 49.2 | 84.7 | 3.7 |
Carbohydrate, % energy a | 0.79 | 52.4 | 95.2 | 0 |
Sugars, % energy b | 0.82 | 59.8 | 95.8 | 1.1 |
Sodium, mg/1000 kJ b | 0.56 | 43.3 | 84.7 | 3.2 |
Females n = 102 | ||||
Total energy, kJ a | 0.69 | 46.1 | 90.2 | 2.0 |
Protein, % energy a | 0.71 | 52.9 | 93.1 | 1.0 |
Total fat, % energy a | 0.61 | 48.0 | 86.3 | 2.9 |
Saturated fat, % energy a | 0.62 | 56.9 | 86.3 | 2.9 |
Carbohydrate, % energy a | 0.83 | 55.9 | 95.1 | 0 |
Sugars, % energy a | 0.82 | 53.9 | 88.2 | 0 |
Sodium, mg/1000 kJ a | 0.51 | 42.2 | 84.3 | 2.9 |
Males n = 87 | ||||
Total energy, kJ a | 0.64 | 54.0 | 85.1 | 2.3 |
Protein, % energy a | 0.72 | 56.3 | 90.8 | 2.3 |
Total fat, % energy a | 0.50 | 36.8 | 80.5 | 4.6 |
Saturated fat, % energy a | 0.53 | 43.7 | 85.1 | 4.6 |
Carbohydrate, % energy a | 0.75 | 50.6 | 93.1 | 1.1 |
Sugars, % energy b | 0.74 | 58.6 | 90.8 | 2.3 |
Sodium, mg/1000 kJ b | 0.56 | 40.2 | 85.1 | 4.6 |
Nutrient | EaT Mean (SD) | 24-h Recall Mean (SD) | Mean Difference (SD) | 95% LOA a |
---|---|---|---|---|
Total energy, kJ | 9071 (2908) | 9949 (2916) | −878 (2363) | (−5510, 3755) |
Protein, % energy | 18.8 (5.0) | 18.5 (4.5) | 0.3 (3.6) | (−6.8, 7.4) |
Total fat, % energy | 36.0 (7.0) | 36.3 (6.8) | −0.3 (6.5) | (−13.0, 12.3) |
Saturated fat, % energy | 12.7 (3.4) | 13.0 (3.4) | −0.3 (3.1) | (−6.3, 5.7) |
Carbohydrate, % energy | 41.3 (8.6) | 40.5 (7.6) | 0.9 (5.3) | (−9.5, 11.2) |
Sugars, % energy | 16.5 (6.5) | 16.7 (6.4) | −0.2 (4.1) | (−8.2, 7.9) |
Sodium, mg/1000 kJ | 299.9 (89.4) | 303.3 (102.5) | −3.4 (97.5) | (−194.5, 187.7) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wellard-Cole, L.; Chen, J.; Davies, A.; Wong, A.; Huynh, S.; Rangan, A.; Allman-Farinelli, M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients 2019, 11, 621. https://doi.org/10.3390/nu11030621
Wellard-Cole L, Chen J, Davies A, Wong A, Huynh S, Rangan A, Allman-Farinelli M. Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients. 2019; 11(3):621. https://doi.org/10.3390/nu11030621
Chicago/Turabian StyleWellard-Cole, Lyndal, Juliana Chen, Alyse Davies, Adele Wong, Sharon Huynh, Anna Rangan, and Margaret Allman-Farinelli. 2019. "Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds" Nutrients 11, no. 3: 621. https://doi.org/10.3390/nu11030621
APA StyleWellard-Cole, L., Chen, J., Davies, A., Wong, A., Huynh, S., Rangan, A., & Allman-Farinelli, M. (2019). Relative Validity of the Eat and Track (EaT) Smartphone App for Collection of Dietary Intake Data in 18-to-30-Year Olds. Nutrients, 11(3), 621. https://doi.org/10.3390/nu11030621