Full versus Trophic Feeds in Critically Ill Adults with High and Low Nutritional Risk Scores: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Study Design and Sample Size Calculation
2.2. Subjects and Feeding Procedure
2.3. Data Collection and Outcome Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
APACHE II | acute physiology and chronic health evaluation II |
ASPEN | American Society for Parenteral and Enteral Nutrition |
ESPEN | European Society for Clinical Nutrition and Metabolism |
ICU | intensive care unit |
IL-6 | interleukin-6 |
mNUTRIC | modified Nutrition Risk in the Critically Ill |
NRS 2002 | Nutritional Risk Screening 2002 |
NUTRIC | Nutrition Risk in the Critically Ill |
SCCM | Society of Critical Care Medicine |
SOFA | Sequential Organ Failure Assessment |
References
- Rubinson, L.; Diette, G.B.; Song, X.; Brower, R.G.; Krishnan, J.A. Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit. Care Med. 2004, 32, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villet, S.; Chiolero, R.L.; Bollmann, M.D.; Revelly, J.P.; Cayeux, R.N.M.; Delarue, J.; Berger, M.M. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin. Nutr. 2005, 24, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Petros, S.; Engelmann, L. Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin. Nutr. 2006, 25, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Faisy, C.; Lerolle, N.; Dachraoui, F.; Savard, J.F.; Abboud, I.; Tadie, J.M.; Fagon, J.Y. Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Brit. J. Nutr. 2009, 101, 1079–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberda, C.; Gramlich, L.; Jones, N.; Jeejeebhoy, K.; Day, A.G.; Dhaliwal, R.; Heyland, D.K. The relationship between nutritional intake and clinical outcomes in critically ill patients: Results of an international multicenter observational study. Intensive Care Med. 2009, 35, 1728–1737. [Google Scholar] [CrossRef] [PubMed]
- Heyland, D.K.; Stephens, K.E.; Day, A.G.; McClave, S.A. The success of enteral nutrition and ICU-acquired infections: A multicenter observational study. Clin. Nutr. 2011, 30, 148–155. [Google Scholar] [CrossRef]
- Heyland, D.K.; Cahill, N.; Day, A.G. Optimal amount of calories for critically ill patients: Depends on how you slice the cake! Crit. Care Med. 2011, 39, 2619–2626. [Google Scholar] [CrossRef]
- Hartl, W.H.; Bender, A.; Scheipl, F.; Kuppinger, D.; Day, A.G.; Kuchenhoff, H. Calorie intake and short-term survival of critically ill patients. Clin. Nutr. 2019, 38, 660–667. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef] [Green Version]
- Dickerson, R.N.; Boschert, K.J.; Kudsk, K.A.; Brown, R.O. Hypocaloric enteral tube feeding in critically ill obese patients. Nutrition 2002, 18, 241–246. [Google Scholar] [CrossRef]
- Ibrahim, E.H.; Mehringer, L.; Prentice, D.; Sherman, G.; Schaiff, R.; Fraser, V.; Kollef, M.H. Early versus late enteral feeding of mechanically ventilated patients: Results of a clinical trial. J. Parenter. Eenteral Nutr. 2002, 26, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.A.; Parce, P.B.; Martinez, A.; Diette, G.B.; Brower, R.G. Caloric intake in medical ICU patients: Consistency of care with guidelines and relationship to clinical outcomes. Chest 2003, 124, 297–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabi, Y.M.; Haddad, S.H.; Tamim, H.M.; Rishu, A.H.; Sakkijha, M.H.; Kahoul, S.H.; Britts, R.J. Near-target caloric intake in critically ill medical-surgical patients is associated with adverse outcomes. J. Parenter. Enteral Nutr. 2010, 34, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Doig, G.S.; Simpson, F.; Heighes, P.T.; Bellomo, R.; Chesher, D.; Caterson, I.D.; Reade, M.C.; Harrigan, P.W.; Refeeding Syndrome Trial Investigators Group. Restricted versus continued standard caloric intake during the management of refeeding syndrome in critically ill adults: A randomised, parallel-group, multicentre, single-blind controlled trial. Lancet Respir. Med. 2015, 3, 943–952. [Google Scholar] [CrossRef]
- Rice, T.W.; Wheeler, A.P.; Thompson, B.T.; Steingrub, J.; Hite, R.D.; Moss, M.; Morris, A.; Dong, N.; Rock, P. Initial trophic vs full enteral feeding in patients with acute lung injury: The EDEN randomized trial. JAMA 2012, 307, 795–803. [Google Scholar]
- Casaer, M.P.; Mesotten, D.; Hermans, G.; Wouters, P.J.; Schetz, M.; Meyfroidt, G.; Van Cromphaut, S.; Ingels, C.; Meersseman, P.; Muller, J.; et al. Early versus late parenteral nutrition in critically ill adults. N. Engl. J. Med. 2011, 365, 506–517. [Google Scholar] [CrossRef] [Green Version]
- Singer, P.; De Waele, E.; Sanchez, C.; Ruiz Santana, S.; Montejo, J.C.; Laterre, P.F.; Soroksky, A.; Moscovici, E.; Kagan, I. TICACOS international: A multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study. Clin. Nutr. 2020, 10. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Aldawood, A.S.; Haddad, S.H.; Al-Dorzi, H.M.; Tamim, H.M.; Jones, G.; Mehta, S.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; et al. Permissive underfeeding or standard enteral feeding in critically ill adults. N. Engl. J. Med. 2015, 372, 2398–2408. [Google Scholar] [CrossRef]
- TARGET Investigators, for the ANZICS Clinical Trials Group; Chapman, M.; Peake, S.L.; Bellomo, R.; Davies, A.; Deane, A.; Horowitz, M.; Hurford, S.; Lange, K.; Little, L.; et al. Energy-dense versus routine enteral nutrition in the critically ill. N. Engl. J. Med. 2018, 379, 1823–1834. [Google Scholar]
- Kondrup, J.; Rasmussen, H.H.; Hamberg, O.; Stanga, Z. Nutritional risk screening (NRS 2002): A new method based on an analysis of controlled clinical trials. Clin. Nutr. 2003, 22, 321–336. [Google Scholar] [CrossRef]
- Heyland, D.K.; Dhaliwal, R.; Jiang, X.; Day, A.G. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit. Care 2011, 15, R268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClave, S.A.; Taylor, B.E.; Martindale, R.G.; Warren, M.M.; Johnson, D.R.; Braunschweig, C.; McCarthy, M.S.; Davanos, E.; Rice, T.W.; Cresci, G.A.; et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J. Parenter. Enteral Nutr. 2016, 40, 159–211. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Hasan, R.M.; Agarwala, R.; Martin, C.; Day, A.G.; Heyland, D.K. Identifying critically-ill patients who will benefit most from nutritional therapy: Further validation of the “modified NUTRIC” nutritional risk assessment tool. Clin. Nutr. 2016, 35, 158–162. [Google Scholar] [CrossRef]
- Wang, C.Y.; Fu, P.K.; Huang, C.T.; Chen, C.H.; Lee, B.J.; Huang, Y.C. Targeted energy intake is the important determinant of clinical outcomes in medical critically ill patients with high nutrition risk. Nutrients 2018, 10, 1731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Compher, C.; Chittams, J.; Sammarco, T.; Nicolo, M.; Heyland, D.K. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: A multicenter, multinational observational study. Crit. Care Med. 2017, 45, 156–163. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Henry, J.; Ong, V.; Leong, C.S.; Teh, A.L.; van Dam, R.M.; Kowitlawakul, Y. Association of modified NUTRIC score with 28-day mortality in critically ill patients. Clin. Nutr. 2017, 36, 1143–1148. [Google Scholar] [CrossRef]
- Lew, C.C.H.; Wong, G.J.Y.; Cheung, K.P.; Fraser, R.J.L.; Chua, A.P.; Chong, M.F.F.; Miller, M. When timing and dose of nutrition support were examined, the modified Nutrition Risk in Critically Ill (mNUTRIC) score did not differentiate high-risk patients who would derive the most benefit from nutrition support: A prospective cohort study. Ann. Intensive Care 2018, 8, 98. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Aldawood, A.S.; Al-Dorzi, H.M.; Tamim, H.M.; Haddad, S.H.; Jones, G.; McIntyre, L.; Solaiman, O.; Sakkijha, M.H.; Sadat, M.; et al. Permissive underfeeding or standard enteral feeding in high- and low-nutritional-risk critically ill adults. Post Hoc Analysis of the PermiT Trial. Am. J. Respir. Crit. Care Med. 2017, 195, 652–662. [Google Scholar] [CrossRef]
- Wolfe, R.R. Regulation of skeletal muscle protein metabolism in catabolic states. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 61–65. [Google Scholar] [CrossRef]
- Van Dyck, L.; Casaer, M.P.; Gunst, J. Autophagy and its implications against early full nutrition support in critical illness. Nutr. Clin. Pract. 2018, 33, 339–347. [Google Scholar] [CrossRef]
- Olthof, L.E.; Koekkoek, W.; van Setten, C.; Kars, J.C.N.; van Blokland, D.; van Zanten, A.R.H. Impact of caloric intake in critically ill patients with, and without, refeeding syndrome: A retrospective study. Clin. Nutr. 2018, 37, 1609–1617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zusman, O.; Theilla, M.; Cohen, J.; Kagan, I.; Bendavid, I.; Singer, P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care 2016, 20, 367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyland, D.K.; Patel, J.; Bear, D.; Sacks, G.; Nixdorf, H.; Dolan, J.; Aloupis, M.; Licastro, K.; Jovanovic, V.; Rice, T.W.; et al. The effect of higher protein dosing in critically ill patients: A multicenter registry-based randomized trial: The EFFORT Trial. J. Parenter. Enteral Nutr. 2019, 43, 326–334. [Google Scholar] [CrossRef] [PubMed]
- Rooyackers, O.; Sundstrom Rehal, M.; Liebau, F.; Norberg, A.; Wernerman, J. High protein intake without concerns? Crit. Care 2017, 21, 106. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, F.R.; Safran, C.; Levkoff, S.E.; Minaker, K.L. Serum albumin level on admission as a predictor of death, length of stay, and readmission. Arch. Intern. Med. 1992, 152, 125–130. [Google Scholar] [CrossRef]
- Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low albumin levels are associated with mortality risk in hospitalized patients. Am. J Med. 2017, 130, 1465.e11–1465.e19. [Google Scholar] [CrossRef] [Green Version]
- Jantti, T.; Tarvasmaki, T.; Harjola, V.P.; Parissis, J.; Pulkki, K.; Javanainen, T.; Tolppanen, H.; Jurkko, R.; Hongisto, M.; Kataja, A.; et al. Hypoalbuminemia is a frequent marker of increased mortality in cardiogenic shock. PLoS ONE 2019, 14, e0217006. [Google Scholar] [CrossRef] [Green Version]
- Yap, F.H.; Joynt, G.M.; Buckley, T.A.; Wong, E.L. Association of serum albumin concentration and mortality risk in critically ill patients. Anaesth. Intensive Care 2002, 30, 202–207. [Google Scholar] [CrossRef]
- Pan, S.W.; Kao, H.K.; Yu, W.K.; Lien, T.C.; Chen, Y.W.; Wang, J.H.; Kou, Y.R. Synergistic impact of low serum albumin on intensive care unit admission and high blood urea nitrogen during intensive care unit stay on post-intensive care unit mortality in critically ill elderly patients requiring mechanical ventilation. Geriatr. Gerontol. Int. 2013, 13, 107–115. [Google Scholar] [CrossRef]
- Caironi, P.; Tognoni, G.; Masson, S.; Fumagalli, R.; Pesenti, A.; Romero, M.; Fanizza, C.; Caspani, L.; Faenza, S.; Grasselli, G.; et al. Albumin replacement in patients with severe sepsis or septic shock. N. Engl. J. Med. 2014, 370, 1412–1421. [Google Scholar] [CrossRef] [Green Version]
Characteristics | High Nutrition Risk | Low Nutrition Risk | ||
---|---|---|---|---|
Full Feeding (n = 50) | Trophic Feeding (n = 56) | Full Feeding (n = 24) | Trophic Feeding (n = 20) | |
Age (year) | 72.32 ± 14.18 * | 70.18 ± 12.97 ** | 57.13 ± 16.85 | 58.80 ± 16.30 |
Gender (women/men) | 27/23 * | 37/19 | 16/8 | 7/13 |
Body mass index (kg/m2) | 24.39 ± 5.85 | 23.31 ± 3.84 | 22.82 ± 4.57 | 24.94 ± 7.60 |
Mean 6-day energy intake | ||||
kcal/day | 1260.20 ± 305.18 † | 614.60 ± 109.49 | 1350.49 ± 334.11 † | 645.20 ± 173.28 |
kcal/kg/day | 21.21 ± 5.56 † | 10.48 ± 2.37 | 22.84 ± 5.19 † | 11.31 ± 4.65 |
Mean 6-day protein intake | ||||
g/day | 50.36 ± 15.82 † | 27.89 ± 12.39 | 54.28 ± 14.43 † | 30.18 ± 17.01 |
g/kg/day | 0.84 ± 0.27 † | 0.48 ± 0.21 | 0.92 ± 0.20 † | 0.52 ± 0.35 |
Albumin (g/dL) | 2.89 ± 0.58 * | 2.84 ± 0.58 | 3.22 ± 0.57 | 3.06 ± 0.50 |
C-reactive protein (mg/dL) | 10.60 ± 10.58 * | 13.49 ± 11.29 | 5.97 ± 7.52 | 9.21 ± 8.03 |
APACHE II score | 28.28 ± 4.19 * | 28.29 ± 5.29 ** | 20.67 ± 4.18 | 18.70 ± 4.87 |
mNUTRIC score | 6.66 ± 1.08 * | 6.61 ± 1.19 ** | 3.58 ± 0.88 | 3.25 ± 0.97 |
Length of ventilator dependency (day) | 24.46 ± 25.12 | 21.52 ± 19.46 | 21.0 ± 18.86 | 19.45 ± 19.23 |
Length of ICU stay (day) | 16.88 ± 11.44 | 15.54 ± 13.17 | 11.81 ± 8.68 | 14.35 ± 12.30 |
Length of hospital stay (day) | 36.44 ± 26.84 | 33.16 ± 20.74 | 28.17 ± 18.27 | 32.40 ± 28.38 |
Mortality (n, %) | ||||
Hospital mortality | 12, 24% | 11, 19.64% | 6, 25% | 4, 20% |
14-day mortality | 1, 2% | 2, 3.57% | 1, 4.17% | 0 |
28-day mortality | 8, 16% | 6, 10.71% | 3, 12.5% | 1, 5% |
Comorbidities (n, %) | ||||
Diabetes mellitus | 25, 50% | 32, 57.14% | 9, 37.50% | 5, 25% |
Congestive heart failure | 16, 32% | 19, 33.93% | 3, 12.5% | 2, 10% |
Liver cirrhosis | 2, 4% | 4, 7.14% | 0 | 0 |
COPD | 11, 22% | 22, 39.29% | 7, 29.17% | 7, 35% |
Immunocompromised disorders | 18, 36% | 19, 33.93% | 7, 29.17% | 6, 30% |
End-stage renal disease | 9, 18%† | 13, 23.21% | 2, 8.33% | 2, 10% |
Neurological disorders | 9,18% | 9, 16.07% | 4, 16.67% | 2, 10% |
Hospital Mortality | 14-Day Mortality | 28-Day Mortality | |||||||
---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | OR | 95% CI | p | OR | 95% CI | p | |
Total energy intakes (kcal/day) | |||||||||
High nutrition risk with full feeding | 1 | 1.00–1.00 | 0.84 | 1 | 0.91–1.10 | 1 | 1 | 1.00–1.01 | 0.39 |
High nutrition risk with trophic feeding | 1 | 1.00–1.01 | 0.39 | 0.99 | 0.98–1.01 | 0.51 | 1 | 0.99–1.01 | 0.88 |
Low nutrition risk with full feeding | 1 | 0.99–1.00 | 0.23 | 1 | 1.00–1.00 | 0.92 | 1 | 1.00–1.00 | 0.92 |
Low nutrition risk with trophic feeding | 1.19 | 0.68–2.09 | 0.54 | - | - | - | 1.02 | 0.98–1.07 | 0.4 |
Total protein intakes (g/day) | |||||||||
High nutrition risk with full feeding | 1.01 | 0.96–1.06 | 0.77 | 1.41 | <0.00–>999.99 | 0.96 | 1.05 | 0.97–1.14 | 0.22 |
High nutrition risk with trophic feeding | 0.96 | 0.89–1.03 | 0.22 | 0.94 | 0.75–1.18 | 0.57 | 0.98 | 0.91–1.05 | 0.57 |
Low nutrition risk with full feeding | 0.88 | 0.75–1.04 | 0.13 | 0.96 | 0.85–1.08 | 0.52 | 0.22 | 0.01–4.03 | 0.52 |
Low nutrition risk with trophic feeding | 1.1 | 0.91–1.32 | 0.32 | - | - | - | 0.44 | <0.00–269.60 | 0.54 |
Length of Hospital Stay | Length of ICU Stay | Length of Ventilator Dependency | |||||||
---|---|---|---|---|---|---|---|---|---|
β | Standard Error | p | β | Standard Error | p | β | Standard Error | p | |
Total energy intakes (kcal/day) 1 | |||||||||
High nutrition risk with full feeding | −0.01 | 0.01 | 0.53 | −0.001 | 0.01 | 0.82 | −0.002 | 0.01 | 0.89 |
High nutrition risk with trophic feeding | 0.003 | 0.03 | 0.91 | −0.02 | 0.02 | 0.14 | 0.01 | 0.03 | 0.81 |
Low nutrition risk with full feeding | −0.02 | 0.01 | 0.2 | 0.002 | 0.01 | 0.79 | −0.02 | 0.01 | 0.16 |
Low nutrition risk with trophic feeding | 0.04 | 0.03 | 0.24 | 0.03 | 0.02 | 0.21 | 0.06 | 0.03 | 0.07 |
Total protein intakes (g/day) 2 | |||||||||
High nutrition risk with full feeding | −0.48 | 0.26 | 0.07 | −0.13 | 0.11 | 0.23 | −0.26 | 0.25 | 0.31 |
High nutrition risk with trophic feeding | 0.31 | 0.22 | 0.18 | −0.03 | 0.14 | 0.84 | 0.13 | 0.22 | 0.54 |
Low nutrition risk with full feeding | −0.49 | 0.39 | 0.23 | 0.06 | 0.18 | 0.74 | −0.54 | 0.37 | 0.16 |
Low nutrition risk with trophic feeding | 0.79 | 0.27 | 0.01 | −0.04 | 0.22 | 0.87 | 0.88 | 0.22 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-Y.; Fu, P.-K.; Chao, W.-C.; Wang, W.-N.; Chen, C.-H.; Huang, Y.-C. Full versus Trophic Feeds in Critically Ill Adults with High and Low Nutritional Risk Scores: A Randomized Controlled Trial. Nutrients 2020, 12, 3518. https://doi.org/10.3390/nu12113518
Wang C-Y, Fu P-K, Chao W-C, Wang W-N, Chen C-H, Huang Y-C. Full versus Trophic Feeds in Critically Ill Adults with High and Low Nutritional Risk Scores: A Randomized Controlled Trial. Nutrients. 2020; 12(11):3518. https://doi.org/10.3390/nu12113518
Chicago/Turabian StyleWang, Chen-Yu, Pin-Kuei Fu, Wen-Cheng Chao, Wei-Ning Wang, Chao-Hsiu Chen, and Yi-Chia Huang. 2020. "Full versus Trophic Feeds in Critically Ill Adults with High and Low Nutritional Risk Scores: A Randomized Controlled Trial" Nutrients 12, no. 11: 3518. https://doi.org/10.3390/nu12113518
APA StyleWang, C.-Y., Fu, P.-K., Chao, W.-C., Wang, W.-N., Chen, C.-H., & Huang, Y.-C. (2020). Full versus Trophic Feeds in Critically Ill Adults with High and Low Nutritional Risk Scores: A Randomized Controlled Trial. Nutrients, 12(11), 3518. https://doi.org/10.3390/nu12113518