Caffeine Boosts Weight-Lifting Performance in Rats: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. The Squat Machine
- Using a platform-type grid electrode with conductor gel, the stimuli site was transferred from the tail to the rat’s hind paw, allowing more freedom of movement.
- We installed a control circuit to measure the complete squat movement.
- Red and yellow LEDs were added to the electric control system, allowing the most accurate protocol evaluation. A red LED indicated when a pulse was administered, and a yellow LED was connected to a sensor on the machine’s main lever (activated when the rat performed an entire squat) (Figure 1).
2.3. The Exercise Protocol
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barone, J.J.; Roberts, H. Human Consumption of Caffeine; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar] [CrossRef]
- Bailey, R.L.; Saldanha, L.G.; Dwyer, J.T. Estimating caffeine intake from energy drinks and dietary supplements in the United States. Nutr. Rev. 2014, 72 (Suppl. 1), 9–13. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., 3rd; Keast, D.R.; Lieberman, H.R. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am. J. Clin. Nutr. 2015, 101, 1081–1087. [Google Scholar] [CrossRef]
- Mesquita, M.; Santos, E.; Kassuya, C.A.; Salvador, M.J. Chimarrão, terere and mate-tea in legitimate technology modes of preparation and consume: A comparative study of chemical composition, antioxidant, anti-inflammatory and anti-anxiety properties of the mostly consumed beverages of Ilex paraguariensis St. Hil. J. Ethnopharmacol. 2021, 279, 114401. [Google Scholar] [CrossRef]
- Heck, C.I.; de Mejia, E.G. Yerba Mate Tea (Ilex paraguariensis): A comprehensive review on chemistry, health implications, and technological considerations. J. Food Sci. 2007, 72, R138–R151. [Google Scholar] [CrossRef]
- Reyes, C.M.; Cornelis, M.C. Caffeine in the Diet: Country-Level Consumption and Guidelines. Nutrients 2018, 10, 1772. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.; Xiao, X.; Sui, H.; Yang, D.; Yong, L.; Song, Y. Trends of caffeine intake from food and beverage among Chinese adults: 2004–2018. Food Chem. Toxicol. 2023, 173, 113629. [Google Scholar] [CrossRef]
- Clark, I.; Landolt, H.P. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep. Med. Rev. 2017, 31, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Keisler, B.D.; Armsey, T.D., 2nd. Caffeine as an ergogenic aid. Curr. Sports Med. Rep. 2006, 5, 215–219. [Google Scholar] [CrossRef]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef]
- Higaki, K.; Choe, S.Y.; Löbenberg, R.; Welage, L.S.; Amidon, G.L. Mechanistic understanding of time-dependent oral absorption based on gastric motor activity in humans. Eur. J. Pharm. Biopharm. 2008, 70, 313–325. [Google Scholar] [CrossRef]
- Han, J.Y.; Moon, Y.J.; Han, J.H.; Kim, J.H.; Woo, J.H.; Yoo, H.S.; Hong, J.T.; Ahn, H.Y.; Hong, J.M.; Oh, K.W. (-)-Epigallocatechin-3-O-gallate (EGCG) attenuates the hemodynamics stimulated by caffeine through decrease of catecholamines release. Arch. Pharm. Res. 2016, 39, 1307–1312. [Google Scholar] [CrossRef]
- Bonati, M.; Latini, R.; Tognoni, G.; Young, J.F.; Garattini, S. Interspecies comparison of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat, and mouse. Drug Metab. Rev. 1984, 15, 1355–1383. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.B.; Santos, N.S.; Santos, A.P.T.; da Panatta, G.; Speck, A.E.; Cunha, R.A.; Aguiar, A.S., Jr. Adenosine A(2A) and dopamine D(2) receptor interaction controls fatigue resistance. Front. Pharmacol. 2024, 15, 1390187. [Google Scholar] [CrossRef] [PubMed]
- de Bem Alves, A.C.; Speck, A.E.; Farias, H.R.; Martins, L.M.; Dos Santos, N.S.; Pannata, G.; Tavares, A.P.; de Oliveira, J.; Tomé, Â.R.; Cunha, R.A.; et al. The striatum drives the ergogenic effects of caffeine. Purinergic Signal 2023, 19, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, A.S., Jr.; Speck, A.E.; Canas, P.M.; Cunha, R.A. Neuronal adenosine A(2A) receptors signal ergogenic effects of caffeine. Sci. Rep. 2020, 10, 13414. [Google Scholar] [CrossRef] [PubMed]
- Yanik, G.; Glaum, S.; Radulovacki, M. The dose-response effects of caffeine on sleep in rats. Brain Res. 1987, 403, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of caffeine on sport-specific endurance performance: A systematic review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ding, L.; Qin, Q.; Lei, T.H.; Girard, O.; Cao, Y. Effect of caffeine ingestion on time trial performance in cyclists: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2024, 21, 2363789. [Google Scholar] [CrossRef] [PubMed]
- Saavedra Velásquez, N.; Cuadrado Peñafiel, V.; de la Vega Marcos, R. Can caffeine improve your performance? Psychophysiological effects—A systematic review. Nutr. Hosp. 2024, 41, 677–685. [Google Scholar] [CrossRef]
- Giráldez-Costas, V.; Ruíz-Moreno, C.; González-García, J.; Lara, B.; Del Coso, J.; Salinero, J. Pre-exercise Caffeine Intake Enhances Bench Press Strength Training Adaptations. Front. Nutr. 2021, 8, 622564. [Google Scholar] [CrossRef]
- Giráldez-Costas, V.; González-García, J.; Lara, B.; Coso, J.D.; Wilk, M.; Salinero, J.J. Caffeine Increases Muscle Performance During a Bench Press Training Session. J. Hum. Kinet. 2020, 74, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, A.; Tucker, M.; Butts, C.; McDermott, B.; Vingren, J.; Kunces, L.; Lee, E.; Munoz, C.; Williamson, K.; Armstrong, L.; et al. Effect of Caffeine on Perceived Soreness and Functionality Following an Endurance Cycling Event. J. Strength Cond. Res. 2017, 31, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Tallis, J.; Guimaraes-Ferreira, L.; Clarke, N. Not Another Caffeine Effect on Sports Performance Study-Nothing New or More to Do? Nutrients 2022, 14, 4696. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, D.; Rodricks, J.V.; Mariano, G.F.; Chowdhury, F. Caffeine and cardiovascular health. Regul. Toxicol. Pharmacol. 2017, 89, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. What Should We Do About Habitual Caffeine Use in Athletes? Sports Med. 2019, 49, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, S.L.; Díaz-Lara, J.; Pareja-Galeano, H.; Del Coso, J. Caffeinated Drinks and Physical Performance in Sport: A Systematic Review. Nutrients 2021, 13, 2944. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Grgic, I.; Pickering, C.; Schoenfeld, B.J.; Bishop, D.J.; Pedisic, Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br. J. Sports Med. 2020, 54, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef]
- RB Leipzig: How Did Red Bull Build a Champions League Side from Scratch? Available online: https://www.bbc.com/sport/football/51475532 (accessed on 19 May 2024).
- McLaren Racing Announces Monster Energy As an Official Partner of McLaren Formula 1 Team. Available online: https://www.mclaren.com/racing/formula-1/2023/mclaren-racing-announces-monster-energy-as-an-official-partner-of-mclaren-formula-1-team/ (accessed on 19 May 2024).
- Monster Energy Continuing to Sponsor UFC Fighter Conor McGregor. Available online: https://www.miamiherald.com/sports/fighting/article167315472.html (accessed on 19 May 2024).
- WADA. World Anti-Doping Code International Standard Prohibited List. 2024. Available online: https://www.wada-ama.org/sites/default/files/2023-09/2024list_en_final_22_september_2023.pdf (accessed on 25 June 2024).
- Ferré, S.; Orrú, M.; Guitart, X. Paraxanthine: Connecting Caffeine to Nitric Oxide Neurotransmission. J. Caffeine Res. 2013, 3, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Purpura, M.; Wells, S.D.; Liao, K.; Godavarthi, A. Paraxanthine Supplementation Increases Muscle Mass, Strength, and Endurance in Mice. Nutrients 2022, 14, 893. [Google Scholar] [CrossRef]
- de Almeida, R.D.; Prado, E.S.; Llosa, C.D.; Magalhães-Neto, A.; Cameron, L.C. Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br. J. Nutr. 2010, 104, 1438–1442. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.T.; Gonçalves, S.C.; Pedrosa, M.L.; Silva, M.E.; Bassini, A.; Coelho, W.S.; de Magalhães-Neto, A.M.; Prado, E.S.; Cameron, L.C. Keto analogues and amino acid supplementation and its effects on ammonaemia during extenuating endurance exercise in ketogenic diet-fed rats. Br. J. Nutr. 2018, 120, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Timson, B.F. Evaluation of animal models for the study of exercise-induced muscle enlargement. J. Appl. Physiol. 1990, 69, 1935–1945. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Uchiyama, S.; Nakano, S. A weight-lifting exercise model for inducing hypertrophy in the hindlimb muscles of rats. Med. Sci. Sports Exerc. 1992, 24, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Kavouras, S.A. Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Rush, J.W.; van Soeren, M.H. Caffeine and exercise: Metabolism and performance. Can. J. Appl. Physiol. 1994, 19, 111–138. [Google Scholar] [CrossRef] [PubMed]
- Beedie, C.J.; Stuart, E.M.; Coleman, D.A.; Foad, A.J. Placebo effects of caffeine on cycling performance. Med. Sci. Sports Exerc. 2006, 38, 2159–2164. [Google Scholar] [CrossRef] [PubMed]
- Pollo, A.; Carlino, E.; Benedetti, F. The top-down influence of ergogenic placebos on muscle work and fatigue. Eur. J. Neurosci. 2008, 28, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Lyons, M.; Hankey, J. Placebo effects of caffeine on short-term resistance exercise to failure. Int. J. Sports Physiol. Perform. 2009, 4, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Uchiyama, S.; Uchiyama, Y.; Akatsuka, A.; Roy, R.R.; Edgerton, V.R. Anabolic steroids increase exercise tolerance. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E973–E981. [Google Scholar] [CrossRef]
- Tamaki, T.; Uchiyama, S.; Uchiyama, Y.; Akatsuka, A.; Yoshimura, S.; Roy, R.R.; Edgerton, V.R. Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am. J. Physiol. Cell Physiol. 2000, 278, C1143–C1152. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Akatsuka, A.; Tokunaga, M.; Ishige, K.; Uchiyama, S.; Shiraishi, T. Morphological and biochemical evidence of muscle hyperplasia following weight-lifting exercise in rats. Am. J. Physiol. 1997, 273, C246–C256. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Tsukamoto, H.; Yoshimura, S.; Tamaki, T. Relationship between oxidative stress in muscle tissue and weight-lifting-induced muscle damage. Pflug. Arch. 2006, 452, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.S.; Jung, J.H.; Cho, H.Y.; In, T.S. Effects of Transcutaneous Electrical Nerve Stimulation with Taping on Wrist Spasticity, Strength, and Upper Extremity Function in Patients with Stroke: A Randomized Control Trial. J. Clin. Med. 2024, 13, 2229. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef]
- Weitz, J.E.; Ritchlin, C.T. Mechanistic insights from animal models of psoriasis and psoriatic arthritis. Curr. Rheumatol. Rep. 2013, 15, 377. [Google Scholar] [CrossRef]
- Kenney, H.M.; Wood, R.W.; Ramirez, G.; Bell, R.D.; Chen, K.L.; Schnur, L.; Rahimi, H.; Korman, B.D.; Xing, L.; Ritchlin, C.T.; et al. Implementation of automated behavior metrics to evaluate voluntary wheel running effects on inflammatory-erosive arthritis and interstitial lung disease in TNF-Tg mice. Arthritis Res. Ther. 2023, 25, 17. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Gudjonsson, J.E.; Le, S.; Maverakis, E.; Plazyo, O.; Ritchlin, C.; Scher, J.U.; Singh, R.; Ward, N.L.; Bell, S.; et al. New Frontiers in Psoriatic Disease Research, Part I: Genetics, Environmental Triggers, Immunology, Pathophysiology, and Precision Medicine. J. Investig. Dermatol. 2021, 141, 2112–2122.e3. [Google Scholar] [CrossRef]
- Zheng, X.; Hasegawa, H. Administration of caffeine inhibited adenosine receptor agonist-induced decreases in motor performance, thermoregulation, and brain neurotransmitter release in exercising rats. Pharmacol. Biochem. Behav. 2016, 140, 82–89. [Google Scholar] [CrossRef]
- Zheng, X.; Takatsu, S.; Wang, H.; Hasegawa, H. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise. Pharmacol. Biochem. Behav. 2014, 122, 136–143. [Google Scholar] [CrossRef]
- Boyer, M.; Rees, S.; Quinn, J.; Grattan-Miscio, K.; McCallum, M.; Saari, M.J. Caffeine as a performance-enhancing drug in rats: Sex, dose, housing, and task considerations. Percept. Mot. Ski. 2003, 97, 259–270. [Google Scholar] [CrossRef]
- Ryu, S.; Choi, S.-K.; Joung, S.-S.; Suh, H.; Cha, Y.-S.; Lee, S.; Lim, K. Caffeine as a Lipolytic Food Component Increases Endurance Performance in Rats and Athletes. J. Nutr. Sci. Vitaminol. 2001, 47, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Rader, E.P.; Miller, G.R.; Chetlin, R.D.; Wirth, O.; Baker, B.A. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass. Environ. Health Insights 2014, 8, EHI-S15257. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, H.; Yan, Y.; Yang, W.; Chen, S.; Song, G.; Li, X.; Gu, Y.; Yun, H.; Li, Y. Synergistic Effect of Rhodiola rosea and Caffeine Supplementation on the Improvement of Muscle Strength and Muscular Endurance: A Pilot Study for Rats, Resistance Exercise-Untrained and -Trained Volunteers. Nutrients 2023, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, M.J. Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2011; pp. 33–91. [Google Scholar] [CrossRef]
- Rousseau, E.; Ladine, J.; Liu, Q.Y.; Meissner, G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch. Biochem. Biophys. 1988, 267, 75–86. [Google Scholar] [CrossRef]
- Weber, A. The mechanism of the action of caffeine on sarcoplasmic reticulum. J. Gen. Physiol. 1968, 52, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Herz, R. The Relationship between Caffeine Contracture of Intact Muscle and the Effect of Caffeine on Reticulum. J. General. Physiol. 1968, 52, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Pagala, M.K.; Taylor, S.R. Imaging caffeine-induced Ca2+ transients in individual fast-twitch and slow-twitch rat skeletal muscle fibers. Am. J. Physiol. 1998, 274, C623–C632. [Google Scholar] [CrossRef] [PubMed]
- Mitsumoto, H.; DeBoer, G.E.; Bunge, G.; Andrish, J.T.; Tetzlaff, J.E.; Cruse, R.P. Fiber-Type Specific Caffeine Sensitivities in Normal Human Skinned Muscle Fibers. Anesthesiology 1990, 72, 50–54. [Google Scholar] [CrossRef]
- Polito, M.D.; Souza, D.B.; Casonatto, J.; Farinatti, P. Acute effect of caffeine consumption on isotonic muscular strength and endurance: A systematic review and meta-analysis. Sci. Sports 2016, 31, 119–128. [Google Scholar] [CrossRef]
- Eng, C.M.; Smallwood, L.H.; Rainiero, M.P.; Lahey, M.; Ward, S.R.; Lieber, R.L. Scaling of muscle architecture and fiber types in the rat hindlimb. J. Exp. Biol. 2008, 211, 2336–2345. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Oxford, S.W. Acute caffeine ingestion enhances performance and dampens muscle pain following resistance exercise to failure. J. Sports Med. Phys. Fit. 2012, 52, 280–285. [Google Scholar]
- Duncan, M.J.; Stanley, M.; Parkhouse, N.; Cook, K.; Smith, M. Acute caffeine ingestion enhances strength performance and reduces perceived exertion and muscle pain perception during resistance exercise. Eur. J. Sport. Sci. 2013, 13, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, V.L.; Messias, F.R.; Zanchi, N.E.; Gerlinger-Romero, F.; Duncan, M.J.; Guimarães-Ferreira, L. Effects of acute caffeine ingestion on resistance training performance and perceptual responses during repeated sets to failure. J. Sports Med. Phys. Fit. 2015, 55, 383–389. [Google Scholar]
- Warren, G.L.; Park, N.D.; Maresca, R.D.; McKibans, K.I.; Millard-Stafford, M.L. Effect of caffeine ingestion on muscular strength and endurance: A meta-analysis. Med. Sci. Sports Exerc. 2010, 42, 1375–1387. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Qiu, B.; Gao, J.; Del Coso, J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022, 15, 148. [Google Scholar] [CrossRef] [PubMed]
- Richardson, D.L.; Clarke, N.D. Effect of Coffee and Caffeine Ingestion on Resistance Exercise Performance. J. Strength Cond. Res. 2016, 30, 2892–2900. [Google Scholar] [CrossRef] [PubMed]
- Smirmaul, B.P.; de Moraes, A.C.; Angius, L.; Marcora, S.M. Effects of caffeine on neuromuscular fatigue and performance during high-intensity cycling exercise in moderate hypoxia. Eur. J. Appl. Physiol. 2017, 117, 27–38. [Google Scholar] [CrossRef]
- Astorino, T.A.; Roberson, D.W. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: A systematic review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira-Alves, E.; Machado-Pereira, J.; Monteiro, A.; Costa-Cordeiro, R.; Chandran, V.; Jurisica, I.; Prado, E.; Cameron, L.C. Caffeine Boosts Weight-Lifting Performance in Rats: A Pilot Study. Nutrients 2024, 16, 2022. https://doi.org/10.3390/nu16132022
Pereira-Alves E, Machado-Pereira J, Monteiro A, Costa-Cordeiro R, Chandran V, Jurisica I, Prado E, Cameron LC. Caffeine Boosts Weight-Lifting Performance in Rats: A Pilot Study. Nutrients. 2024; 16(13):2022. https://doi.org/10.3390/nu16132022
Chicago/Turabian StylePereira-Alves, Emanuel, Julia Machado-Pereira, Anibal Monteiro, Roberto Costa-Cordeiro, Vinod Chandran, Igor Jurisica, Eduardo Prado, and L. C. Cameron. 2024. "Caffeine Boosts Weight-Lifting Performance in Rats: A Pilot Study" Nutrients 16, no. 13: 2022. https://doi.org/10.3390/nu16132022