Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Animal Studies
3.2. Human Studies
3.3. Analytical Methods to Detect Withanolides in Plasma
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.; Bhalla, M.; de Jager, P.; Gilca, M. An overview on Ashwagandha: A Rasayana (Rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.G.; Efferth, T.; Shikov, A.N.; Pozharitskaya, O.N.; Kuchta, K.; Mukherjee, P.K.; Banerjee, S.; Heinrich, M.; Wu, W.; Guo, D.A.; et al. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress- and aging-related diseases. Med. Res. Rev. 2021, 41, 630–703. [Google Scholar] [CrossRef] [PubMed]
- Speers, A.B.; Cabey, K.A.; Soumyanath, A.; Wright, K.M. Effects of Withania somnifera (Ashwagandha) on Stress and the Stress- Related Neuropsychiatric Disorders Anxiety, Depression, and Insomnia. Curr. Neuropharmacol. 2021, 19, 1468–1495. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J. Here’s What Experts Say About Using Ashwagandha as a Stress Treatment. Available online: https://www.huffpost.com/entry/ashwagandha-stress-insomnia-anxiety_l_646e14b8e4b0ab2b97eb8e58 (accessed on 28 February 2023).
- Blum, D. All About Ashwagandha, the Stress Relief Supplement of the Moment. Available online: https://www.nytimes.com/2023/04/05/well/mind/ashwagandha-supplement-benefits.html (accessed on 28 February 2023).
- Smith, T.; Gillespie, M.; Eckl, V.; Knepper, J.; Morton Reynolds, C. Herbal Supplement Sales in US Increase by 9.4% in 2018. Herbalgram 2019, 123, 62–73. [Google Scholar]
- Smith, T.; Bauman, H.; Resetar, H. US Sales of Herbal Supplements Decline Slightly in 2022. Herbalgram 2024, 139, 52–69. [Google Scholar]
- Tandon, N.; Yadav, S.S. Safety and clinical effectiveness of Withania somnifera (Linn.) Dunal root in human ailments. J. Ethnopharmacol. 2020, 255, 112768. [Google Scholar] [CrossRef]
- Bokan, G.; Glamočanin, T.; Mavija, Z.; Vidović, B.; Stojanović, A.; Björnsson, E.S.; Vučić, V. Herb-Induced Liver Injury by Ayurvedic Ashwagandha as Assessed for Causality by the Updated RUCAM: An Emerging Cause. Pharmaceuticals 2023, 16, 1129. [Google Scholar] [CrossRef]
- Philips, C.A.; Valsan, A.; Theruvath, A.H.; Ravindran, R.; Oommen, T.T.; Rajesh, S.; Bishnu, S.; Augustine, P. Ashwagandha-induced liver injury-A case series from India and literature review. Hepatol. Commun. 2023, 7, e0270. [Google Scholar] [CrossRef]
- Javidi, N.; Khorasani, Z.M.; Salari, R.; Niroumand, S.; Yousefi, M. Achievements in Hypothyroidism Treatment with Herbal Medicine: A Systematic Review of Randomized Controlled Trials. Curr. Drug Discov. Technol. 2023, 20, e030423215393. [Google Scholar] [CrossRef]
- Ahmad, M.K.; Mahdi, A.A.; Shukla, K.K.; Islam, N.; Rajender, S.; Madhukar, D.; Shankhwar, S.N.; Ahmad, S. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil. Steril. 2010, 94, 989–996. [Google Scholar] [CrossRef]
- Durg, S.; Shivaram, S.B.; Bavage, S. Withania somnifera (Indian ginseng) in male infertility: An evidence-based systematic review and meta-analysis. Phytomedicine 2018, 50, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Haron, M.H.; Dale, O.; Martin, K.; Avula, B.; Chittiboyina, A.G.; Khan, I.A.; Gurley, B.J.; Khan, S.I. Evaluation of the Herb-Drug Interaction Potential of Commonly Used Botanicals on the US Market with Regard to PXR- and AhR-Mediated Influences on CYP3A4 and CYP1A2. J. Diet. Suppl. 2023, 20, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Bouic, P.J.; Rosenkranz, B. Investigation of CYP2B6, 3A4 and β-esterase interactions of Withania somnifera (L.) dunal in human liver microsomes and HepG2 cells. J. Ethnopharmacol. 2021, 270, 113766. [Google Scholar] [CrossRef] [PubMed]
- Kasarla, S.S.; Borse, S.P.; Kumar, Y.; Sharma, N.; Dikshit, M. In vitro effect of Withania somnifera, AYUSH-64, and remdesivir on the activity of CYP-450 enzymes: Implications for possible herb-drug interactions in the management of COVID-19. Front. Pharmacol. 2022, 13, 973768. [Google Scholar] [CrossRef]
- Savai, J.; Varghese, A.; Pandita, N.; Chintamaneni, M. Investigation of CYP3A4 and CYP2D6 interactions of Withania somnifera and centella asiatica in human liver microsomes. Phytother. Res. 2015, 29, 785–790. [Google Scholar] [CrossRef]
- Savai, J.; Varghese, A.; Pandita, N.; Chintamaneni, M. In vitro assessment of CYP1A2 and 2C9 inhibition potential of Withania somnifera and Centella asiatica in human liver microsomes. Drug Metab. Pers. Ther. 2015, 30, 137–141. [Google Scholar] [CrossRef]
- Xu, Q.Q.; Wang, K.W. Natural Bioactive New Withanolides. Mini Rev. Med. Chem. 2020, 20, 1101–1117. [Google Scholar] [CrossRef]
- Paul, S.; Chakraborty, S.; Anand, U.; Dey, S.; Nandy, S.; Ghorai, M.; Saha, S.C.; Patil, M.T.; Kandimalla, R.; Proćków, J.; et al. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed. Pharmacother. 2021, 143, 112175. [Google Scholar] [CrossRef]
- Tetali, S.D.; Acharya, S.; Ankari, A.B.; Nanakram, V.; Raghavendra, A.S. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. J. Ethnopharmacol. 2021, 267, 113469. [Google Scholar] [CrossRef]
- Kaul, S.C.; Ishida, Y.; Tamura, K.; Wada, T.; Iitsuka, T.; Garg, S.; Kim, M.; Gao, R.; Nakai, S.; Okamoto, Y.; et al. Novel Methods to Generate Active Ingredients-Enriched Ashwagandha Leaves and Extracts. PLoS ONE 2016, 11, e0166945. [Google Scholar] [CrossRef]
- Lavie, D.; Glotter, E.; Shvo, Y. Constituents of Withania somnifera Dun. Part IV. The structure of withaferin A. J. Chem. Soc. 1965, 1, 7517–7531. [Google Scholar] [CrossRef]
- Behl, T.; Sharma, A.; Sharma, L.; Sehgal, A.; Zengin, G.; Brata, R.; Fratila, O.; Bungau, S. Exploring the Multifaceted Therapeutic Potential of Withaferin A and Its Derivatives. Biomedicines 2020, 8, 571. [Google Scholar] [CrossRef]
- Tiwari, T.; Mishra, M.; Singaravel, M. Effect of Withanolide-A on Mice Subjected to Simulated Chronic Jetlag/Shift Work. Chronobiol. Med. 2023, 5, 71–81. [Google Scholar] [CrossRef]
- Tiwari, T.; Basu, P.; Singaravel, M. Withanolide-A Accelerates Re-entrainment of Circadian Locomotor Activity Rhythm and Preserves Spatial Memory in Mice Following Acute Phase Inversion of Light-Dark Cycles. Chronobiol. Med. 2022, 4, 99–104. [Google Scholar] [CrossRef]
- Akhoon, B.A.; Pandey, S.; Tiwari, S.; Pandey, R. Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp. Gerontol. 2016, 78, 47–56. [Google Scholar] [CrossRef]
- Baitharu, I.; Jain, V.; Deep, S.N.; Shroff, S.; Sahu, J.K.; Naik, P.K.; Ilavazhagan, G. Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS ONE 2014, 9, e105311. [Google Scholar] [CrossRef]
- Naß, J.; Abdelfatah, S.; Efferth, T. Induction of stress resistance and extension of lifespan in Chaenorhabditis elegans serotonin-receptor knockout strains by withanolide A. Phytomedicine 2021, 84, 153482. [Google Scholar] [CrossRef]
- Dar, N.J.; Bhat, J.A.; Satti, N.K.; Sharma, P.R.; Hamid, A.; Ahmad, M. Withanone, an Active Constituent from Withania somnifera, Affords Protection Against NMDA-Induced Excitotoxicity in Neuron-Like Cells. Mol. Neurobiol. 2017, 54, 5061–5073. [Google Scholar] [CrossRef]
- Shah, N.; Singh, R.; Sarangi, U.; Saxena, N.; Chaudhary, A.; Kaur, G.; Kaul, S.C.; Wadhwa, R. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS ONE 2015, 10, e0120554. [Google Scholar] [CrossRef]
- Konar, A.; Shah, N.; Singh, R.; Saxena, N.; Kaul, S.C.; Wadhwa, R.; Thakur, M.K. Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS ONE 2011, 6, e27265. [Google Scholar] [CrossRef]
- Pandey, A.; Bani, S.; Dutt, P.; Kumar Satti, N.; Avtar Suri, K.; Nabi Qazi, G. Multifunctional neuroprotective effect of Withanone, a compound from Withania somnifera roots in alleviating cognitive dysfunction. Cytokine 2018, 102, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Naβ, J.; Efferth, T. Withanone ameliorates stress symptoms in caenorhabditis elegans by acting through serotonin receptors. Pharmacopsychiatry 2021, 54, 215–223. [Google Scholar] [CrossRef]
- Joyashiki, E.; Matsuya, Y.; Tohda, C. Sominone improves memory impairments and increases axonal density in Alzheimer’s disease model mice, 5XFAD. Int. J. Neurosci. 2011, 121, 181–190. [Google Scholar] [CrossRef]
- Tohda, C.; Joyashiki, E. Sominone enhances neurite outgrowth and spatial memory mediated by the neurotrophic factor receptor, RET. Br. J. Pharmacol. 2009, 157, 1427–1440. [Google Scholar] [CrossRef]
- Kuboyama, T.; Tohda, C.; Komatsu, K. Withanoside IV and its active metabolite, sominone, attenuate Abeta(25-35)-induced neurodegeneration. Eur. J. Neurosci. 2006, 23, 1417–1426. [Google Scholar] [CrossRef]
- Chandan, G.; Kumar, C.; Chibber, P.; Kumar, A.; Singh, G.; Satti, N.K.; Gulilat, H.; Saini, A.K.; Bishayee, A.; Saini, R.V. Evaluation of analgesic and anti-inflammatory activities and molecular docking analysis of steroidal lactones from Datura stramonium L. Phytomedicine 2021, 89, 153621. [Google Scholar] [CrossRef]
- Yang, B.Y.; Guo, R.; Li, T.; Wu, J.J.; Zhang, J.; Liu, Y.; Wang, Q.H.; Kuang, H.X. New anti-inflammatory withanolides from the leaves of Datura metel L. Steroids 2014, 87, 26–34. [Google Scholar] [CrossRef]
- Gambhir, L.; Checker, R.; Sharma, D.; Thoh, M.; Patil, A.; Degani, M.; Gota, V.; Sandur, S.K. Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A. Toxicol. Appl. Pharmacol. 2015, 289, 297–312. [Google Scholar] [CrossRef]
- Gupta, S.K.; Jadhav, S.; Gohil, D.; Panigrahi, G.C.; Kaushal, R.K.; Gandhi, K.; Patil, A.; Chavan, P.; Gota, V. Safety, toxicity and pharmacokinetic assessment of oral Withaferin-A in mice. Toxicol. Rep. 2022, 9, 1204–1212. [Google Scholar] [CrossRef]
- Patel, D.P.; Yan, T.; Kim, D.; Dias, H.B.; Krausz, K.W.; Kimura, S.; Gonzalez, F.J. Withaferin A Improves Nonalcoholic Steatohepatitis in Mice. J. Pharmacol. Exp. Ther. 2019, 371, 360–374. [Google Scholar] [CrossRef]
- Thaiparambil, J.T.; Bender, L.; Ganesh, T.; Kline, E.; Patel, P.; Liu, Y.; Tighiouart, M.; Vertino, P.M.; Harvey, R.D.; Garcia, A.; et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer 2011, 129, 2744–2755. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Jiang, W.; Guo, Z.; Wang, Z.; Huang, M.; Zhong, G.; Liang, C.; Pei, X.; Dai, R. Studies on oral bioavailability and first-pass metabolism of withaferin A in rats using LC-MS/MS and Q-TRAP. Biomed. Chromatogr. 2019, 33, e4573. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, J.; Bai, J.; Gao, K.; Cui, D.; Chen, Y.; Song, Y.; Jia, Y.; Wen, A. Liquid chromatography-tandem mass spectrometry to assess the pharmacokinetics and tissue distribution of withaferin A in rats. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1122–1123, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Samanta, S.K.; Sehrawat, A.; Kim, S.H.; Hahm, E.R.; Shuai, Y.; Roy, R.; Pore, S.K.; Singh, K.B.; Christner, S.M.; Beumer, J.H.; et al. Disease Subtype-Independent Biomarkers of Breast Cancer Chemoprevention by the Ayurvedic Medicine Phytochemical Withaferin A. J. Natl. Cancer Inst. 2017, 109, djw293. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Valicherla, G.R.; Joshi, P.; Shahi, S.; Syed, A.A.; Gupta, A.P.; Hossain, Z.; Italiya, K.; Makadia, V.; Wahajuddin, M.; et al. Determination of permeability, plasma protein binding, blood partitioning, pharmacokinetics and tissue distribution of Withanolide A in rats: A neuroprotective steroidal lactone. Drug Dev. Res. 2018, 79, 339–351. [Google Scholar] [CrossRef]
- Khedgikar, V.; Kushwaha, P.; Gautam, J.; Verma, A.; Changkija, B.; Kumar, A.; Sharma, S.; Nagar, G.K.; Singh, D.; Trivedi, P.K.; et al. Withaferin A: A proteasomal inhibitor promotes healing after injury and exerts anabolic effect on osteoporotic bone. Cell Death Dis. 2013, 4, e778. [Google Scholar] [CrossRef]
- Modi, S.J.; Tiwari, A.; Ghule, C.; Pawar, S.; Saste, G.; Jagtap, S.; Singh, R.; Deshmukh, A.; Girme, A.; Hingorani, L. Pharmacokinetic Study of Withanosides and Withanolides from Withania somnifera Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS). Molecules 2022, 27, 1476. [Google Scholar] [CrossRef]
- Dadge, S.D.; Tiwari, N.; Husain, A.; Verma, S.; Agarwal, A.; Garg, R.; Rath, S.K.; Shanker, K.; Gayen, J.R. Simultaneous estimation of five biomarkers of neuroprotective herb Ashwagandha NMITLI-118R AF1 in rat plasma and brain using LC-ESI-MS/MS: Application to its pharmacokinetic and stability studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1228, 123834. [Google Scholar] [CrossRef]
- Muhasaparur Ganesan, R.; Settu, D.K.; Murkunde, Y.; Duraipandian, C. Pharmacological and pharmacokinetic effect of a polyherbal combination with Withania somnifera (L.) Dunal for the management of anxiety. J. Ethnopharmacol. 2021, 265, 113337. [Google Scholar] [CrossRef]
- Srivastava, P.; Maurya, U.S.; Pal, A.; Bawankule, D.U.; Shanker, K. Enrichment of aglycone fractions with immunomodulatory potential: Stability and pharmacokinetic of Withania bioactives. Food Res. Int. 2013, 54, 867–872. [Google Scholar] [CrossRef]
- Patil, D.; Gautam, M.; Mishra, S.; Karupothula, S.; Gairola, S.; Jadhav, S.; Pawar, S.; Patwardhan, B. Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. J. Pharm. Biomed. Anal. 2013, 80, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Meng, X.; Kuang, H. Comparisons of the pharmacokinetic and tissue distribution profiles of withanolide B after intragastric administration of the effective part of Datura metel L. in normal and psoriasis guinea pigs. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1083, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Kumar, G.; Patnaik, R. Withanolide a penetrates brain via intra-nasal administration and exerts neuroprotection in cerebral ischemia reperfusion injury in mice. Xenobiotica 2020, 50, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Pires, N.; Gota, V.; Gulia, A.; Hingorani, L.; Agarwal, M.; Puri, A. Safety and Pharmacokinetics of Withaferin-A in advanced stage high grade Osteosarcoma: A phase I trial. J. Ayurveda Integr. Med. 2020, 11, 68–72. [Google Scholar] [CrossRef]
- Alluri, V.K.R.; Thanawala, S.; Upadhyay, V. A comparative pharmacokinetics study of Ashwagandha (Withania somnifera) Root Extract sustained-release capsules: An open-label, randomized, two treatment, two-sequence, two period, single-dose crossover clinical study. Int. J. Basic Clin. Pharmacol. 2021, 11, 26–34. [Google Scholar] [CrossRef]
- Kim, S.K.; Venkatesan, J.; Rathi, P.; Antony, B. Pharmacokinetics and bioequivalence of Withania somnifera (Ashwagandha) extracts—A double blind, crossover study in healthy adults. Heliyon 2023, 9, e22843. [Google Scholar] [CrossRef]
- Vaidya, V.G.; Naik, N.N.; Ganu, G.; Parmar, V.; Jagtap, S.; Saste, G.; Bhatt, A.; Mulay, V.; Girme, A.; Modi, S.J.; et al. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: A non-randomized, single dose study utilizing UHPLC-MS/MS analysis. J. Ethnopharmacol. 2023, 322, 117603. [Google Scholar] [CrossRef]
- Smith, T.; Lang, C.; Craft, E. US Sales of Herbal Supplements Increase 4.4% in 2023. HerbalGram 2024, 141, 54–68. [Google Scholar]
- Wright, K.M.; Bollen, M.; David, J.; Speers, A.B.; Brandes, M.S.; Gray, N.E.; Alcázar Magaña, A.; McClure, C.; Stevens, J.F.; Maier, C.S.; et al. Pharmacokinetics and Pharmacodynamics of Key Components of a Standardized Centella asiatica Product in Cognitively Impaired Older Adults: A Phase 1, Double-Blind, Randomized Clinical Trial. Antioxidants 2022, 11, 215. [Google Scholar] [CrossRef]
- Wright, K.M.; Bollen, M.; David, J.; Mepham, B.; Alcázar Magaña, A.; McClure, C.; Maier, C.S.; Quinn, J.F.; Soumyanath, A. Bioanalytical method validation and application to a phase 1, double-blind, randomized pharmacokinetic trial of a standardized Centella asiatica (L.) Urban water extract product in healthy older adults. Front. Pharmacol. 2023, 14, 1228030. [Google Scholar] [CrossRef]
- Cohen, A.F.; Kroon, R.; Schoemaker, H.C.; Breimer, D.D.; Van Vliet-Verbeek, A.; Brandenburg, H.C. The bioavailability of digoxin from three oral formulations measured by a specific h.p.l.c. assay. Br. J. Clin. Pharmacol. 1993, 35, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Couëdelo, L.; Joseph, C.; Abrous, H.; Chamekh-Coelho, I.; Vaysse, C.; Baury, A.; Guillemet, D. Effect of Gum Acacia on the Intestinal Bioavailability of n-3 Polyunsaturated Fatty Acids in Rats. Biomolecules 2022, 12, 975. [Google Scholar] [CrossRef] [PubMed]
- Shohat, B.; Gitter, S.; Lavie, D. Effect of withaferin A on Ehrlich ascites tumor cells–cytological observations. Int. J. Cancer 1970, 5, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. In silico evaluation of pharmacokinetics and acute toxicity of withanolides in Ashawagandha. Phytochem. Lett. 2022, 47, 130–135. [Google Scholar] [CrossRef]
- Siddiqui, S.; Ahmed, N.; Goswami, M.; Chakrabarty, A.; Chowdhury, G. DNA damage by Withanone as a potential cause of liver toxicity observed for herbal products of Withania somnifera (Ashwagandha). Curr. Res. Toxicol. 2021, 2, 72–81. [Google Scholar] [CrossRef]
- Marney, L.C.; Choi, J.; Alcazar Magana, A.; Yang, L.; Techen, N.; Alam, M.N.; Brandes, M.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Liquid chromatography-mass spectrometry quantification of phytochemicals in Withania somnifera using data-dependent acquisition, multiple-reaction-monitoring, and parallel-reaction-monitoring with an inclusion list. Front. Chem. 2024, 12, 1373535. [Google Scholar] [CrossRef]
- Bashir, A.; Nabi, M.; Tabassum, N.; Afzal, S.; Ayoub, M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front. Pharmacol. 2023, 14, 1049334. [Google Scholar] [CrossRef]
- Singh, B.; Saxena, A.K.; Chandan, B.K.; Gupta, D.K.; Bhutani, K.K.; Anand, K.K. Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dun. Phytother. Res. 2001, 15, 311–318. [Google Scholar] [CrossRef]
- Holvoet, H.; Long, D.M.; Law, A.; McClure, C.; Choi, J.; Yang, L.; Marney, L.; Poeck, B.; Strauss, R.; Stevens, J.F.; et al. Withania somnifera Extracts Promote Resilience against Age-Related and Stress-Induced Behavioral Phenotypes in Drosophila melanogaster; a Possible Role of Other Compounds besides Withanolides. Nutrients 2022, 14, 3923. [Google Scholar] [CrossRef]
- Kaushik, M.K.; Kaul, S.C.; Wadhwa, R.; Yanagisawa, M.; Urade, Y. Triethylene glycol, an active component of Ashwagandha (Withania somnifera) leaves, is responsible for sleep induction. PLoS ONE 2017, 12, e0172508. [Google Scholar] [CrossRef]
- Maccioni, R.; Serra, M.; Marongiu, J.; Cottiglia, F.; Maccioni, E.; Bassareo, V.; Morelli, M.; Kasture, S.B.; Acquas, E. Effects of docosanyl ferulate, a constituent of Withania somnifera, on ethanol- and morphine-elicited conditioned place preference and ERK phosphorylation in the accumbens shell of CD1 mice. Psychopharmacology 2022, 239, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Dey, A.; Chatterjee, S.S.; Kumar, V. Triethylene glycol-like effects of Ashwagandha (Withania somnifera (L.) Dunal) root extract devoid of withanolides in stressed mice. Ayu 2018, 39, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Dar, N.J.; Ahmad, M. Neurodegenerative diseases and Withania somnifera (L.): An update. J. Ethnopharmacol. 2020, 256, 112769. [Google Scholar] [CrossRef] [PubMed]
- Gladen-Kolarsky, N.; Monestime, O.; Bollen, M.; Choi, J.; Yang, L.; Magaña, A.A.; Maier, C.S.; Soumyanath, A.; Gray, N.E. Withania somnifera (Ashwagandha) Improves Spatial Memory, Anxiety and Depressive-like Behavior in the 5xFAD Mouse Model of Alzheimer’s Disease. Antioxidants 2024, 13, 1164. [Google Scholar] [CrossRef]
- Leonard, M.; Dickerson, B.; Estes, L.; Gonzalez, D.E.; Jenkins, V.; Johnson, S.; Xing, D.; Yoo, C.; Ko, J.; Purpura, M.; et al. Acute and Repeated Ashwagandha Supplementation Improves Markers of Cognitive Function and Mood. Nutrients 2024, 16, 1813. [Google Scholar] [CrossRef]
- Xing, D.; Yoo, C.; Gonzalez, D.; Jenkins, V.; Nottingham, K.; Dickerson, B.; Leonard, M.; Ko, J.; Faries, M.; Kephart, W.; et al. Effects of Acute Ashwagandha Ingestion on Cognitive Function. Int. J. Environ. Res. Public Health 2022, 19, 11852. [Google Scholar] [CrossRef]
Animal Model | Test Product(s) | Dosage, Route | Withanolide(s) Measured | Analysis Method | Plasma Pharmacokinetic Outcomes | Ref. | ||
---|---|---|---|---|---|---|---|---|
Male Swiss mice, haplotype H-2KdDb, six-to-eight-week-old | Withaferin A | 50 mg/kg, IP | Withaferin A | HPLC ✚ | Withaferin A | [40] | ||
Withaferin A was present in plasma at all measured time points (5 min, 15 min, 30 min, 1 h, 2 h, 4 h), reaching 10 µg/mL at 4 h); PK parameters NR. | ||||||||
Female BALB/c mice, eight-to-ten-week-old | Withaferin A | 70 mg/kg, PO 10 mg/kg, IV | Withaferin A | LC-MS/MS | Withaferin A | [41] | ||
PO | Cmax: 141.7 ± 16.8 ng/mL AUC0-∞: 436.1 ± 60.9 ng/mL·h Tmax: 0.5 (0.25–1.0) h T1/2: 2.7 ± 0.4 h Cmax: 3996.9 ± 557.6 ng/mL AUC0-∞: 3509.8 ± 302.4 ng/mL·h Tmax: NA T1/2: 0.6 ± 0.4 h | |||||||
IV | ||||||||
Male C57BL/6N mice, eight-week-old | Withaferin A | 5 mg/kg, IP | Withaferin A | LC/MS | Withaferin A | [42] | ||
Cmax: 6.7 ± 0.9 ng/mL AUC0-∞: 86.6 ± 5.6 ng/mL·h Tmax: 20 min T1/2: 2.0 ± 0.6 h | ||||||||
Female BALB/c mice, seven-to-eight-week-old | Withaferin A | 4 mg/kg, IP | Withaferin A | LC-MS/MS | Withaferin A | [43] | ||
Cmax: 847.1 ng/mL AUC0-∞: NR Tmax: 0.083 h T1/2: 1.36 h | ||||||||
Male Sprague Dawley rats | Withaferin A | 10 mg/kg, PO 5 mg/kg, IV | Withaferin A | LC-MS/MS | Withaferin A | [44] | ||
PO | Cmax: 619 ± 125 ng/mL AUC0-∞: 2789 ± 683 ng/mL·h Tmax: 0.11 ± 0.07 h T1/2: 7.6 ± 3.3 h | |||||||
IV | Cmax: 3048 ± 509 ng/mL AUC0-∞: 3685 ± 685 ng/mL·h Tmax: NA T1/2: 4.5 ± 1.1 h | |||||||
Sprague Dawley rats | Withaferin A | 0.5, 1.5, 4.5 mg/kg, PO 4.5 mg/kg, IV | Withaferin A | LC-MS/MS | Withaferin A | [45] | ||
PO | 0.5 mg/kg | Cmax: 6.05 ng/mL AUC0-∞: NR Tmax: 0.97 h T1/2: 1.00 h | ||||||
1.5 mg/kg | Cmax: 14.60 ng/mL AUC0-∞: NR Tmax: 1.03 h T1/2: 0.78 h | |||||||
4.5 mg/kg | Cmax: 21.80 ng/mL AUC0-∞: NR Tmax: 0.86 h T1/2: 1.15 h | |||||||
IV | 4.5 mg/kg | Cmax: 29.10 ng/mL AUC0-∞: NR Tmax: 0.33 h T1/2: 0.93 h | ||||||
Female Sprague Dawley rats | Withaferin A | 4 mg/kg, IP 8 mg/kg, IP | Withaferin A | LC-MS/MS | Rats were treated with withaferin A five times per week for ten weeks. Blood was collected one hour after the last administration of withaferin A. Plasma levels of withaferin A at this timepoint were 65.93 ng/mL (4 mg/kg) and 138.1 ng/mL (8 mg/kg) per Dr. Singh’s lab (email communication, 2024). | [46] | ||
Female BALB/c mice, estrogen-deficient bone loss model | Withaferin A | 10 mg/kg, PO | Withaferin A | LC-UV | Withaferin A | [48] | ||
Cmax: 8410 ± 1400 ng/mL AUC0-∞: NR Tmax: Between 3 and 4 h T1/2: 7.1 ± 1.2 h | ||||||||
Male Sprague Dawley rats | Withanolide A | 25 mg/kg, PO 2 mg/kg, IV | Withanolide A | LC-MS/MS | Withanolide A | [47] | ||
PO | Cmax: 48.04 ± 5.78 ng/mL AUC0-∞: 76.41 ± 6.39 ng/mL·h Tmax: 0.33 ± 0.00 h T1/2: 2.23 ± 0.14 h | |||||||
IV | Cmax: 85.53 ± 6.54 ng/mL AUC0-∞: 115.60 ± 17.54 ng/mL·h Tmax: 0.08 ± 0.00 h T1/2: 2.21 ± 0.21 h | |||||||
Male ddY mice, seven-week-old | Withanoside IV, isolated from a methanolic WS root extract | 1000 µmol/kg (782.9 mg/kg), PO | Withanoside IV Sominone | HPLC-UV, LC/MS | Withanoside IV | [37] | ||
Not detected. | ||||||||
Sominone | ||||||||
Detected in the plasma beginning at 3 h, reaching maximal concentration at 7 h. Plasma concentrations NR. |
Animal Model | Test Product(s) | Dosage | Withanolide(s) Measured | Administered Dose of Withanolides $ | Analysis Method | Plasma Pharmacokinetic Outcomes | Ref. | |
---|---|---|---|---|---|---|---|---|
Male Sprague Dawley rats | Alcoholic WS root extract | 500 mg/kg, PO | Withaferin A Withanolide A Withanoside IV 12-DWS Withanoside V Withanolide B Withanone | Withaferin A: 4.84 mg/kg Withanolide A: 2.55 mg/kg Withanoside IV: 3.87 mg/kg 12-DWS: 1.51 mg/kg Withanoside V: 4.57 mg/kg Withanolide B: 0.793 mg/kg Withanone: 0.021 mg/kg | LC-MS/MS | Withaferin A | [49] | |
Cmax: 124.42 ± 64.93 ng/mL AUC0-∞: 187.65 ± 20.49 ng/mL·h Tmax: 0.25 ± 0.00 h T1/2: 3.15 ± 0.61 h | ||||||||
Withanolide A | ||||||||
Cmax: 7.28 ± 3.34 ng/mL AUC0-∞: 7.53 ± 1.83 ng/mL·h Tmax: 0.33 ± 0.13 h T1/2: 0.73 ± 0.42 h | ||||||||
Withanoside IV | ||||||||
Cmax: 13.83 ± 3.73 ng/mL AUC0-∞: 22.94 ± 5.73 ng/mL·h Tmax: 0.75 ± 0.00 h T1/2: 1.10 ± 0.27 h | ||||||||
12-DWS | ||||||||
Cmax: 57.54 ± 7.52 ng/mL AUC0-∞: 92.25 ± 13.49 ng/mL·h Tmax: 0.29 ± 0.10 h T1/2: 1.73 ± 0.51 h | ||||||||
Withanoside V | ||||||||
Detected, but <LLOQ (3 ng/mL). | ||||||||
Withanolide B | ||||||||
Detected, but <LLOQ (3 ng/mL). | ||||||||
Withanone | ||||||||
Detected, but <LLOQ (3 ng/mL). | ||||||||
Male Sprague Dawley rats | Withanolide-rich fraction (NMITLI-118R AF1) from a hydroethanolic (75:25) WS root extract | 50 mg/kg, PO | Withaferin A Withanolide A 12-DWS Withanolide B Withanone | Withaferin A: 0.0015 mg/kg ◆ Withanolide A: 0.0895 mg/kg ◆ 12-DWS: 0.0010 mg/kg ◆ Withanolide B: 0.0315 mg/kg ◆ Withanone: 0.0165 mg/kg ◆ | LC-MS/MS | Withaferin A | [50] | |
Cmax: 6.50 ± 0.27 ng/mL AUC0-∞: 31.37 ± 2.23 ng/mL·h Tmax: 1.00 ± 0.00 h T1/2: 2.66 ± 0.24 h | ||||||||
Withanolide A | ||||||||
Cmax: 5.59 ± 0.34 ng/mL AUC0-∞: 18.71 ± 1.60 ng/mL·h Tmax: 1.00 ± 0.00 h T1/2: 1.89 ± 0.58 h | ||||||||
12-DWS | ||||||||
Cmax: 5.68 ± 0.39 ng/mL AUC0-∞: 15.14 ± 3.59 ng/mL·h Tmax: 1.00 ± 0.00 h T1/2: 2.08 ± 0.54 h | ||||||||
Withanolide B | ||||||||
Cmax: 6.45 ± 2.87 ng/mL AUC0-∞: 19.14 ± 5.41 ng/mL·h Tmax: 0.95 ± 0.11 h T1/2: 2.64 ± 1.18 h | ||||||||
Withanone | ||||||||
Cmax: 6.28 ± 0.41 ng/mL AUC0-∞: 16.88 ± 3.28 ng/mL·h Tmax: 0.95 ± 0.11 h T1/2: 2.04 ± 0.59 h | ||||||||
Male Wistar rats | Polyherbal hydroalcoholic (40:60) extract (PHC3), containing (per 100 g): 15.4 g Withania somnifera 7.7 g Hemidesmus indicus 30.8 g Emblica officinalis 27 g Aegle marmelos 27 g Ocimum sanctum | 200 mg/kg PHC3 extract, PO | Withaferin A | NR | LC-MS/MS | Withaferin A Cmax: 16.78 ± 5.32 ng/mL AUC0-∞: 1705 ± 28.87 ng/mL·h Tmax: 18 ± 0.12 min T1/2: 61.20 ± 9.87 min | [51] | |
Male Swiss albino adult mice | Hydroalcoholic (80:20) WS root extract (WSC) Withanolide aglycones- enriched fraction from WSC (WSAg) | 200 mg/kg, PO | Withaferin A 12-DWS | WSC Withaferin A: 2.26 mg/kg 12-DWS: 5.36 mg/kg WSAg Withaferin A: 2.3 mg/kg 12-DWS: 141.12 mg/kg | LC-PDA | Withaferin A | [52] | |
WSC | Cmax: 30 ng/mL AUC0-∞: 11.50 ng/mL·h Tmax: 1.32 h T1/2: 2.10 h | |||||||
WSAg | Cmax: 60 ng/mL AUC0-∞: 11.73 ng/mL·h Tmax: 1.24 h T1/2: 2.97 h | |||||||
12-DWS | ||||||||
WSC | Cmax: 120 ng/mL AUC0-∞: 2.55 ng/mL·h Tmax: 4.58 h T1/2: 6.61 h | |||||||
WSAg | Cmax: 50 ng/mL AUC0-∞: 11.68 ng/mL·h Tmax: 1.73 h T1/2: 3.54 h | |||||||
Female Swiss albino mice | Aqueous WS root extract | 1 g/kg, PO | Withaferin A Withanolide A | Withaferin A: 0.46 mg/kg Withanolide A: 0.48 mg/kg | LC-MS/MS | Withaferin A | [53] | |
Cmax: 16.69 ± 4.02 ng/mL AUC0-∞: 1673.10 ± 54.53 ng/mL·h Tmax: 20 (20–30) min T1/2: 59.92 ± 15.90 min | ||||||||
Withanolide A | ||||||||
Cmax: 26.59 ± 4.47 ng/mL AUC0-∞: 2516.41 ± 212.10 ng/mL·h Tmax: 10 (10–30) min T1/2: 45.22 ± 9.95 min | ||||||||
Male guinea pigs, normal group and psoriasis model | 70% EtOH extract of dried flowers from Datura metel L. | 5 g/kg Datura metel extract, PO | Withanolide B | Withanolide B: 19.83 mg/kg | LC-MS/MS | Withanolide B | [54] | |
Normal | Cmax: 324.98 ± 43.39 ng/mL AUC0-∞: NR Tmax: 0.22 ± 0.043 h T1/2: 6.88 ± 1.95 h | |||||||
Psoriasis | Cmax: 463.65 ± 41.46 ng/mL AUC0-∞: NR Tmax: 0.24 ± 0.034 h T1/2: 9.55 ± 4.00 h |
Population | Test Product(s) | Dosage | Withanolide(s) Measured | Administered Dose of Withanolides | Analysis Method | Plasma Pharmacokinetic Outcomes | Ref. | |
---|---|---|---|---|---|---|---|---|
Patients with advanced stage high-grade osteosarcoma (n = 13, age range: 13–43) | AshwaMAX 400: WS root extract, standardized to 4.5% withaferin A w/w; Pharmanza Herbal Pvt Ltd., Gujarat, India | Cohort 1: 1.6 g, PO Cohort 2: 2.4 g, PO Cohort 3: 3.2 g, PO Cohort 4: 4.8 g, PO | Withaferin A | Withaferin A: Cohort 1: 72 mg Cohort 2: 108 mg Cohort 3: 144 mg Cohort 4: 216 mg | LC-UV | Withaferin A Not detected in any sample. LLOQ = 50 ng/mL | [56] | |
Healthy adult males (n = 14, age range: 23–42 years) | Prolanza™: WS root extract (type of extraction NR), sustained release 300 mg capsules, standardized to 15 mg withanolides; Inventia healthcare Ltd. and Laila nutraceuticals, India KSM-66®: Aqueous WS root extract, capsules standardized to 15 mg withanolides; Shri Kartikeya Pharma, India; | Prolanza: 2 caps, PO KSM-66: 2 caps, PO | Withanolide A 12-DWS | Prolanza: 30 mg withanolides KSM-66: 30 mg withanolides | LC-MS/MS | Withanolide A | [57] | |
Prolanza | Cmax: 0.49 ± 0.34 ng/mL AUC0-∞: NR Tmax: 1 h T1/2: 7.46 ± 5.92 h | |||||||
KSM-66 | Cmax: 0.09 ± 0.10 ng/mL AUC0-∞: NR Tmax: 1 h T1/2: 0.74 ± NE h | |||||||
12-DWS | ||||||||
Prolanza | Cmax: 2.67 ± 1.04 ng/mL AUC0-∞: NR Tmax: 2 h T1/2: 7.53 ± 2.67 h | |||||||
KSM-66 | Cmax: 0.61 ± 0.31 ng/mL AUC0-∞: NR Tmax: 2 h T1/2: 2.29 ± 0.43 h | |||||||
Healthy adult males (n = 16, mean age: 33.8 years) | WS-35: Hydroalcoholic WS root and leaf extract, standardized to 40% total withanolides comprising 35% withanolide glycosides; Arjuna Natural Pvt Ltd., India WS-2.5: Type of extract NR, standardized to 2.5% withanolides; Natura Biotechnol, India | WS-35: 480 mg, PO Single dose WS-2.5: 7400 mg, PO Single dose | Withaferin A Withanolide A Withanoside IV | WS-35: 185 mg withanolides WS-2.5: 185 mg withanolides | LC-MRM/MS | Withaferin A | [58] | |
WS-35 | Cmax: 49.50 ± 1.24 ng/mL AUC0-∞: 748.95 ± 23.90 ng/mL·h Tmax: 2.28 ± 0.09 h T1/2: 10.35 ± 0.47 h | |||||||
WS-2.5 | Cmax: 10.79 ± 0.13 ng/mL AUC0-∞: 44.76 ± 0.57 ng/mL·h Tmax: 1.5 ± 0 h T1/2: 1.88 ± 0.03 h | |||||||
Withanolide A | ||||||||
WS-35 | Cmax: 4.74 ± 0.22 ng/mL AUC0-∞: 69.23 ± 15.42 ng/mL·h Tmax: 1.83 ± 0.06 h T1/2: 10.95 ± 2.20 h | |||||||
WS-2.5 | Cmax: 2.93 ± 0.06 ng/mL AUC0-∞: 17.11 ± 0.57 ng/mL·h Tmax: 2.20 ± 0.08 h T1/2: 4.03 ± 0.27 h | |||||||
Withanoside IV | ||||||||
WS-35 | Cmax: 7.23 ± 0.42 ng/mL AUC0-∞: 92.52 ± 14.34 ng/mL·h Tmax: 1.76 ± 0.07 h T1/2: 8.86 ± 1.15 h | |||||||
WS-2.5 | Cmax: 2.67 ± 0.04 ng/mL AUC0-∞: 11.35 ± 0.35 ng/mL·h Tmax: 1.57 ± 0.07 h T1/2: 2.43 ± 0.18 h | |||||||
Healthy adult males (n = 18, mean age: 29.4 years) | Witholytin®: WS root extract, standardized to ≥1.5% w/w of total withanolides; Verdure Science, Noblesville, IN, USA | 1 cap, PO Single dose | Withaferin A Withanolide A 12-DWS Withanoside IV Withanoside V Sominone | Per capsule: 7.97 mg total withanolides 2.42 mg withanoside IV 1.89 mg withanoside V Concentrations of other withanolides NR | LC-MS/MS | Withaferin A | [59] | |
Cmax: 2.88 ± 0.98 ng/mL AUC0-∞: 7.81 ± 2.59 ng/mL·h Tmax: 0.90 ± 0.27 h T1/2: 4.00 ± 1.80 h | ||||||||
Withanolide A | ||||||||
Cmax: 2.93 ± 1.32 ng/mL AUC0-∞: 15.93 ± 7.48 ng/mL·h Tmax: 1.36 ± 0.85 h T1/2: 4.19 ± 1.09 h | ||||||||
12-DWS | ||||||||
Cmax: 5.50 ± 2.00 ng/mL AUC0-∞: 24.26 ± 12.02 ng/mL·h Tmax: 1.38 ± 0.52 h T1/2: 2.73 ± 0.54 h | ||||||||
Withanoside IV | ||||||||
Cmax: 0.64 ± 0.21 ng/mL AUC0-∞: 4.86 ± 1.88 ng/mL·h Tmax: 1.64 ± 0.99 h T1/2: 4.41 ± 1.54 h Withanoside V Detected, but <LLOQ (0.25 ng/mL). Sominone Detected, but <LLOQ (0.25 ng/mL). |
Method | Validation | Species | Plasma Preparation Volume Used; Method | LC-MS Method (and UV Wavelength if Applicable) | Compounds and MRM Transition Used | Ref. | |
---|---|---|---|---|---|---|---|
Withanolides | Internal Standard | ||||||
LC-MS/MS | Yes | Rat | 85 µL; solid phase extraction using Bond Elute C18 cartridges | Column: ReproSil Gold 100C18-XBD, 50 × 4.6 mm; 1.8 µm Mobile Phase: Aqueous formic acid (0.1%) (A) and acetonitrile (B) MRM Mode: Positive ionization mode | Withanone (417.25/263.15) Withaferin A (471.25/67.05) Withanolide A (488.3/471.25) Withanolide B (472.30/109.15) 12-DWS (471.25/67.05) Withanoside V (784.45/443.3) Withanoside IV (800.45/459.3) | Fluoxymesterone (337.2/91.15) Difenoconazole (406.1/336.9) | [49] |
LC-MS/MS | Yes | Rat | 200 µL; protein precipitation with 4% sulfosalicylic acid followed by extraction into 100% ethyl acetate | Column: A Kinetex® 1.7 µm C18 100 Å (100 × 3 mm, S/No. H20–111310, Batch No. XD-4475-YO) Mobile Phase: Acetonitrile (A) and 10 mM ammonium acetate (B) in milli-Q water (60:40 v/v). MRM Mode: Positive ionization mode | Withaferin A (471.4/281.2) | Fluoxymesterone (337.2/91.1) | [41] |
LC-MS | No | Rat | 100 µL; protein precipitation with acetonitrile | Column: C18—250 mm × 4.6 mm and 5 µm Mobile Phase: Water and acetonitrile (60:40 v/v) MRM Mode: Positive and negative ionization modes in a single run | Withanolide A (NR) | NR | [51] |
LC-MS | No | Mouse | Volume NR; protein precipitation with acetonitrile | NR | Withaferin A (NR) | NR | [42] |
LC-MS/MS | No | Mouse | Volume NR; protein precipitation followed by solvent evaporation | Column: NR Mobile Phase: NR MRM Mode: Positive ionization mode | Withaferin A (NR) | NR | [43] |
LC-MS/MS | Yes | Rat | 50 µL; protein precipitation with acetonitrile followed by extraction into TBME | Column: Phenomenex Luna (5 µm, C18, 150 × 4.60 mm) Mobile Phase: Acetonitrile and 0.1% formic acid in water (95:05 v/v) MRM Mode: Positive ionization mode | Withanone (488.300/263.200) Withaferin A (471.211/299.210) Withanolide A (471.246/263.190) Withanolide B (455.305/109.15) 12-DWS (471.254/263.172) | Phenacetin (180.200/110.200) | [50] |
LC-MS/MS | Yes | Rat | 100 µL; protein precipitation with methanol and internal standard solution followed by extraction into ethyl acetate | Column: Venusil MP C18 column (50 × 2.1 mm, 5 μm) Mobile Phase: Acetonitrile and water at ratio of 5/95 v/v (A), and acetonitrile and water, 95/5 v/v (B). Both phases contained 10 mM ammonium acetate MRM Mode: Positive ionization mode | Withaferin A (471.4/281.2) | Alisol C 23-acetate (529.6/451.5) | [44] |
LC-MS/MS | Yes | Guinea pig | 100 µL; protein precipitation with 90% methanol and IS solution | Column: Acquity UPLC BEH C18 column (2.1 × 100 mm2, 1.7 μm) Mobile Phase: Aqueous 0.1% formic acid (A) and acetonitrile with 0.1% formic acid (B) MRM Mode: Positive ionization mode | Withanolide B (455.1/109.4) | Obakunone (455.1/161.1) | [54] |
LC-MS/MS | Yes | Mouse | 100 µL; plasma mixed with IS solution (IS prepared with diH2O) and then extracted with TBME | Column: Reversed-phase Hypurity C18 column (50 mm × 4.6 mm, 5 μm; Thermo scientific, Mumbai, India) Mobile Phase: Methanol and 2 mM ammonium acetate (95:5, v/v) MRM Mode: Positive ionization mode | Withaferin A (471.3/281.2) Withanolide A (488.3/263.1) | Tianeptine (437.2/292.2) Clonazepam (315.9/270) | [53] |
LC-MS/MS | No | Rat | 100 µL; protein precipitation with acetonitrile, 10 mM ammonium formate buffer (0.1% formic acid), and 5 mM NaHCO3 solution followed by extraction into TBME | Column: Phenomenex Luna C18 column (4.6 × 250 mm, 5.0 μm) Mobile Phase: Acetonitrile and methanol and 10 mM ammonium formate buffer with 0.1% formic acid (50:20:30, %v/v/v) MRM Mode: Positive ionization mode | Withanolide A (471.22/ 263.2) | Carbamazepine (237.08/194.1) | [47] |
LC-UV | No | Mouse | NR | Column: Stainless steel C18 column, 5 μm ODS2, 4.5 × 250 Mobile Phase: Acetonitrile and 0.2% orthophosphoric acid (75:25, v/v) MS Mode: NR UV wavelength: 290 nm | Withaferin A (NR) | NR | [40] |
LC-UV, LC-MS | No | Mouse | 300 µL; solid phase extraction using Oasis HLB 1 cc Extraction Cartridges | Column: LV-UV Symmetry Shield RP18 column (5 μm, 4.6 × 250 mm) LC/MS–Imtakt Cadenza CD-C18 column (3 μm, 2.0 × 150 mm) Mobile Phase: Water (A) and acetonitrile (B) differing gradients used for LC-UV and LC-MS MS Mode: Positive ionization mode UV wavelength: 220 nm | Withanoside IV (NR) Sominone (m/z 459) | NR | [37] |
LC-MS/MS | Yes | Rat | 100 µL; saline solution (10% ascorbic acid) added to samples followed by IS and extraction into ethylacetate | Column: Hypurity C18 (50 × 4.6 mm, 5 μm; Thermo scientific) Mobile Phase: Acetonitrile and water (35:65, v/v) MRM Mode: Positive ionization mode | Withaferin A (471.1/281) | Withanolide A (488.1/263) | [45] |
LC-UV | No | Mouse | Volume NR; method NR | Column: LiChrospher® LiChroCART® C18 column (250 mm, 4 mm, 5 mm) Mobile Phase: Potassium dihyrdogren phosphate buffer (0.05M) and triethyl amine (0.1%) pH- 2.5 and acetonitrile (65:35) MRM Mode: NA UV wavelength: 370 nm | Withaferin A (NR) | NR | [48] |
Method | Validation | Species | Plasma Preparation Volume Used; Method | LC-MS Method (and UV Wavelength if Applicable) | Compounds and MRM Transition Used | Ref. | |
---|---|---|---|---|---|---|---|
Withanolides | Internal Standard | ||||||
LC-MS/MS | No | Human | 85 µL; solid phase extraction using Agilent, Bond Elute PLEXA Cartridges | Column: Exsil Mono 100 C18, 3 µm, (100 × 4.6) mm Mobile Phase: Acetonitrile and 10 mM ammonium formate in water (70:30) with 0.1% glacial acetic acid MRM mode: Positive ionization mode | Withanolide A (488.5/263.2) 12-DWS (471.4/263.2) | Atorvastatin D5 (564.4/445.4) | [57] |
LC-MS/MS | Yes | Human | 380 µL; solid phase extraction using Bond Elute C18 SPE cartridges | Column: Agilent ZORBAX Eclipse Plus (4.6 × 100 mm, 3.5 µm) C18 column Mobile Phase: 1 mm ammonium formate in water (A) and acetonitrile (B) MRM mode: Positive ionization mode | Withaferin A (471.3/281.1) Withanolide A (488.3/471.2) Withanoside V (784.45/443.3) Withanoside IV (800.45/459.3) 12-DWS (488.3/471.2) | Fluoxymesterone (337.2/91) | [59] |
LC-MS/MS | Yes | Human | Volume NR; solid phase extraction using OasisR HLB Cartridges | Column: Acquity UPLC BEH phenyl C18 column 100 × 2.1 mm L.D., 1.7 μm Mobile Phase: Formic acid 0.1% in water (A) and in acetonitrile (B) MRM Mode: Positive and negative ESI (negative ion mode for withanoside IV and positive ion mode for withaferin A, withanolide A, and internal standard) | Withaferin A (471.1711/94.95) Withanolide A (471.185/263.1045) Withanoside IV (827.4404/763.3592) | Taineptine (437.0904/292.0991) | [58] |
LC-UV | No | Human | Volume NR; simple Protein Precipitation (details NR) | Column: Reversed-phase C18 column Mobile Phase: Water (A) and acetonitrile (B). UV wavelength: 225 nm. | Withaferin A (NR) | NR | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speers, A.B.; Lozano-Ortiz, A.; Soumyanath, A. Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods. Nutrients 2024, 16, 3836. https://doi.org/10.3390/nu16223836
Speers AB, Lozano-Ortiz A, Soumyanath A. Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods. Nutrients. 2024; 16(22):3836. https://doi.org/10.3390/nu16223836
Chicago/Turabian StyleSpeers, Alex B, Axel Lozano-Ortiz, and Amala Soumyanath. 2024. "Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods" Nutrients 16, no. 22: 3836. https://doi.org/10.3390/nu16223836
APA StyleSpeers, A. B., Lozano-Ortiz, A., & Soumyanath, A. (2024). Quantifying Withanolides in Plasma: Pharmacokinetic Studies and Analytical Methods. Nutrients, 16(22), 3836. https://doi.org/10.3390/nu16223836