The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Anesthesia Technique
4.2.1. Stage 1
4.2.2. Stage 2
4.2.3. Stage 3—Intraoperative
4.2.4. Stage 4—Emergence from GA
4.2.5. Stage 5—Postoperative
4.3. Statistical Analysis
Sample Size Calculation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sallam, A.A.B.; Donachie, P.H.J.; Williamson, T.H.; Sparrow, J.M.; Johnston, R.L. The Royal College of Ophthalmologists’ National Ophthalmology Database Study of Vitreoretinal Surgery: Report 5, Anaesthetic Techniques. Br. J. Ophthalmol. 2016, 100, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Licina, A.; Sidhu, S.; Xie, J.; Wan, C. Local versus General Anaesthesia for Adults Undergoing Pars Plana Vitrectomy Surgery. Cochrane Database Syst. Rev. 2016, 9, CD009936. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.F.; He, X.; Nirwan, R.S.; Sridhar, J.; Kuriyan, A.E. Perioperative Management of Anticoagulants in Ocular Surgeries. Int. Ophthalmol. Clin. 2020, 60, 3–15. [Google Scholar] [CrossRef]
- Andonegui, J.; Capdevila, F.; Zubicoa, A.; Ibáñez, B. Randomised Controlled Trial on Vitreoretinal Surgery with and without Oral Anticoagulants: Surgical Complications, Visual Results and Perioperative Thromboembolic Events. Trials 2019, 20, 677. [Google Scholar] [CrossRef] [PubMed]
- Bayerl, K.; Boost, K.A.; Wolf, A.; Kampik, A.; Schaumberger, M.; Haritoglou, C. A 23-gauge pars plana vitrectomy after induction of general anesthesia: Effect of additional retrobulbar anesthesia on postoperative pain. Ophthalmologe 2014, 111, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Lambat, S.P.; Somani, S.S.; Nangia, P.V.; Nangia, V.B. Surgical Exposure for Vitrectomy in Retinopathy of Prematurity. Indian J. Ophthalmol. 2023, 71, 3569–3570. [Google Scholar] [CrossRef]
- Schönfeld, C.-L.; Hierneis, S.; Kampik, A. Preemptive Analgesia with Ropivacaine for Pars Plana Vitrectomy: Randomized Controlled Trial on Efficacy and Required Dose. Retina 2012, 32, 912–917. [Google Scholar] [CrossRef]
- Ohashi, N.; Kohno, T. Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front. Pharmacol. 2020, 11, 580289. [Google Scholar] [CrossRef]
- Freo, U. Paracetamol for Multimodal Analgesia. Pain Manag. 2022, 12, 737–750. [Google Scholar] [CrossRef]
- Topuz, R.D.; Gündüz, Ö.; Karadağ, Ç.H.; Ulugöl, A. Non-Opioid Analgesics and the Endocannabinoid System. Balk. Med. J. 2020, 37, 309–315. [Google Scholar] [CrossRef]
- Silva, F.; Costa, G.; Veiga, F.; Cardoso, C.; Paiva-Santos, A.C. Parenteral Ready-to-Use Fixed-Dose Combinations Including NSAIDs with Paracetamol or Metamizole for Multimodal Analgesia—Approved Products and Challenges. Pharmaceuticals 2023, 16, 1084. [Google Scholar] [CrossRef] [PubMed]
- Collares, E.F.; Troncon, L.E.A. Effects of Dipyrone on the Digestive Tract. Braz. J. Med. Biol. Res. 2019, 52, e8103. [Google Scholar] [CrossRef]
- Doleman, B.; Read, D.; Lund, J.N.; Williams, J.P. Preventive Acetaminophen Reduces Postoperative Opioid Consumption, Vomiting, and Pain Scores After Surgery: Systematic Review and Meta-Analysis. Reg. Anesth. Pain Med. 2015, 40, 706–712. [Google Scholar] [CrossRef] [PubMed]
- Apfel, C.C.; Turan, A.; Souza, K.; Pergolizzi, J.; Hornuss, C. Intravenous Acetaminophen Reduces Postoperative Nausea and Vomiting: A Systematic Review and Meta-Analysis. Pain 2013, 154, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Stangler, M.I.S.; Lubianca, J.P.N.; Lubianca, J.N.; Lubianca Neto, J.F. Dipyrone as Pre-Emptive Measure in Postoperative Analgesia after Tonsillectomy in Children: A Systematic Review. Braz. J. Otorhinolaryngol. 2021, 87, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, E.; Dinçer, E.; Turan, G.; Özgültekin, A. Postoperative Analgesic Efficacy of Preemptive and Postoperative Lornoxicam or Tramadol in Lumbar Disc Surgery. Turk. J. Anaesthesiol. Reanim. 2019, 47, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Sierżantowicz, R.; Lewko, J.; Bitiucka, D.; Lewko, K.; Misiak, B.; Ładny, J.R. Evaluation of Pain Management after Surgery: An Observational Study. Medicina 2020, 56, 65. [Google Scholar] [CrossRef]
- Alshehri, A.A. Comparative Evaluation of Postoperative Pain Scores and Opioid Consumption in Septorhinoplasty After Administration of Single-Dose Preemptive Paracetamol and Ibuprofen: A Randomized Controlled Trial. Int. Arch. Otorhinolaryngol. 2023, 27, e471–e477. [Google Scholar] [CrossRef]
- Freo, U.; Ruocco, C.; Valerio, A.; Scagnol, I.; Nisoli, E. Paracetamol: A Review of Guideline Recommendations. J. Clin. Med. 2021, 10, 3420. [Google Scholar] [CrossRef]
- Tan, E.; Braithwaite, I.; McKinlay, C.J.D.; Dalziel, S.R. Comparison of Acetaminophen (Paracetamol) with Ibuprofen for Treatment of Fever or Pain in Children Younger Than 2 Years. JAMA Netw. Open 2020, 3, e2022398. [Google Scholar] [CrossRef]
- Wertli, M.M.; Flury, J.S.; Streit, S.; Limacher, A.; Schuler, V.; Ferrante, A.-N.; Rimensberger, C.; Haschke, M. Efficacy of Metamizole versus Ibuprofen and a Short Educational Intervention versus Standard Care in Acute and Subacute Low Back Pain: A Study Protocol of a Randomised, Multicentre, Factorial Trial (EMISI Trial). BMJ Open 2021, 11, e048531. [Google Scholar] [CrossRef] [PubMed]
- Konijnenbelt-Peters, J.; van der Heijden, C.; Ekhart, C.; Bos, J.; Bruhn, J.; Kramers, C. Metamizole (Dipyrone) as an Alternative Agent in Postoperative Analgesia in Patients with Contraindications for Nonsteroidal Anti-Inflammatory Drugs. Pain Pract. 2017, 17, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Pogatzki-Zahn, E.; Chandrasena, C.; Schug, S.A. Nonopioid Analgesics for Postoperative Pain Management. Curr. Opin. Anaesthesiol. 2014, 27, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Misiołek, H.; Cettler, M.; Woroń, J.; Wordliczek, J.; Dobrogowski, J.; Mayzner-Zawadzka, E. The 2014 Guidelines for Post-Operative Pain Management. Anaesthesiol. Intensive Ther. 2014, 46, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.R.; Yoon, S.-H.; Lee, H.-J. Practical Strategies for the Prevention and Management of Chronic Postsurgical Pain. Korean J. Pain 2023, 36, 149–162. [Google Scholar] [CrossRef]
- Bharti, N.; Chari, P.; Kumar, P. Effect of Sevoflurane versus Propofol-Based Anesthesia on the Hemodynamic Response and Recovery Characteristics in Patients Undergoing Microlaryngeal Surgery. Saudi J. Anaesth. 2012, 6, 380–384. [Google Scholar] [CrossRef]
- Gruenewald, M.; Ilies, C. Monitoring the Nociception-Anti-Nociception Balance. Best Pract. Res. Clin. Anaesthesiol. 2013, 27, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Won, Y.J.; Lim, B.G.; Kim, Y.S.; Lee, M.; Kim, H. Usefulness of Surgical Pleth Index-Guided Analgesia during General Anesthesia: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Int. Med. Res. 2018, 46, 4386–4398. [Google Scholar] [CrossRef]
- Choi, B.-M.; Shin, H.; Lee, J.-H.; Bang, J.-Y.; Lee, E.-K.; Noh, G.-J. Performance of the Surgical Pleth Index and Analgesia Nociception Index in Healthy Volunteers and Parturients. Front. Physiol. 2021, 12, 554026. [Google Scholar] [CrossRef]
- De jonckheere, J.; Bonhomme, V.; Jeanne, M.; Boselli, E.; Gruenewald, M.; Logier, R.; Richebé, P. Physiological Signal Processing for Individualized Anti-Nociception Management During General Anesthesia: A Review. Yearb. Med. Inform. 2015, 10, 95–101. [Google Scholar] [CrossRef]
- Ledowski, T. Objective Monitoring of Nociception: A Review of Current Commercial Solutions. Br. J. Anaesth. 2019, 123, e312–e321. [Google Scholar] [CrossRef]
- Ryu, K.; Song, K.; Kim, J.; Kim, E.; Kim, S.-H. Comparison of the Analgesic Properties of Sevoflurane and Desflurane Using Surgical Pleth Index at Equi-Minimum Alveolar Concentration. Int. J. Med. Sci. 2017, 14, 994–1001. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, I.; Göhner, A.; Crozier, T.A.; Hesjedal, B.; Wiese, C.H.; Popov, A.F.; Bauer, M.; Hinz, J.M. Surgical Pleth Index-Guided Remifentanil Administration Reduces Remifentanil and Propofol Consumption and Shortens Recovery Times in Outpatient Anaesthesia. Br. J. Anaesth. 2013, 110, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Upton, H.D.; Ludbrook, G.L.; Wing, A.; Sleigh, J.W. Intraoperative “Analgesia Nociception Index”-Guided Fentanyl Administration During Sevoflurane Anesthesia in Lumbar Discectomy and Laminectomy: A Randomized Clinical Trial. Anesth. Analg. 2017, 125, 81–90. [Google Scholar] [CrossRef]
- Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Niewiadomska, E.; Krawczyk, L.; Dobrowolski, D.; Grabarek, B.O.; Kawka, M.; Rejdak, R.; Szumera, I.; et al. Adequacy of Anaesthesia for Nociception Detection during Vitreoretinal Surgery. Life 2023, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Sener, M.; Kocum, A.; Caliskan, E.; Yilmaz, I.; Caylakli, F.; Aribogan, A. Administration of Paracetamol versus Dipyrone by Intravenous Patient-Controlled Analgesia for Postoperative Pain Relief in Children after Tonsillectomy. Braz. J. Anesthesiol. 2015, 65, 476–482. [Google Scholar] [CrossRef]
- Hearn, L.; Derry, S.; Moore, R.A. Single Dose Dipyrone (Metamizole) for Acute Postoperative Pain in Adults. Cochrane Database Syst. Rev. 2016, 4, CD011421. [Google Scholar] [CrossRef]
- McNicol, E.D.; Tzortzopoulou, A.; Cepeda, M.S.; Francia, M.B.D.; Farhat, T.; Schumann, R. Single-Dose Intravenous Paracetamol or Propacetamol for Prevention or Treatment of Postoperative Pain: A Systematic Review and Meta-Analysis. Br. J. Anaesth. 2011, 106, 764–775. [Google Scholar] [CrossRef]
- Korkmaz Dilmen, O.; Tunali, Y.; Cakmakkaya, O.S.; Yentur, E.; Tutuncu, A.C.; Tureci, E.; Bahar, M. Efficacy of Intravenous Paracetamol, Metamizol and Lornoxicam on Postoperative Pain and Morphine Consumption after Lumbar Disc Surgery. Eur. J. Anaesthesiol. 2010, 27, 428–432. [Google Scholar] [CrossRef]
- Yin, F.; Wang, X.-H.; Liu, F. Effect of Intravenous Paracetamol on Opioid Consumption in Multimodal Analgesia After Lumbar Disc Surgery: A Meta-Analysis of Randomized Controlled Trials. Front. Pharmacol. 2022, 13, 860106. [Google Scholar] [CrossRef]
- Ohnesorge, H.; Günther, V.; Grünewald, M.; Maass, N.; Alkatout, İ. Postoperative Pain Management in Obstetrics and Gynecology. J. Turk. Ger. Gynecol. Assoc. 2020, 21, 287–297. [Google Scholar] [CrossRef]
- Khalili, G.; Janghorbani, M.; Saryazdi, H.; Emaminejad, A. Effect of Preemptive and Preventive Acetaminophen on Postoperative Pain Score: A Randomized, Double-Blind Trial of Patients Undergoing Lower Extremity Surgery. J. Clin. Anesth. 2013, 25, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Celep, B.; Çiçek, R.; Kalender, H.Ü.; Yılmaz, H. Comparing the Efficacy of Preemptive Intravenous Paracetamol on the Reducing Effect of Opioid Usage in Cholecystectomy. J. Res. Med. Sci. 2013, 18, 172–177. [Google Scholar] [PubMed]
- Stessel, B.; Boon, M.; Joosten, E.A.; Ory, J.-P.; Evers, S.; van Kuijk, S.M.J.; Dubois, J.; Hoofwijk, D.; Jamaer, L.; Buhre, W.F.F.A. Metamizole versus Ibuprofen at Home after Day Surgery: Study Protocol for a Randomised Controlled Trial. Trials 2016, 17, 471. [Google Scholar] [CrossRef]
- Kötter, T.; da Costa, B.R.; Fässler, M.; Blozik, E.; Linde, K.; Jüni, P.; Reichenbach, S.; Scherer, M. Metamizole-Associated Adverse Events: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0122918. [Google Scholar] [CrossRef]
- Marano, M.; Roversi, M.; Severini, F.; Memoli, C.; Musolino, A.; Pisani, M.; Cecchetti, C.; Villani, A. Adverse Drugs Reactions to Paracetamol and Ibuprofen in Children: A 5-Year Report from a Pediatric Poison Control Center in Italy. Ital. J. Pediatr. 2023, 49, 20. [Google Scholar] [CrossRef] [PubMed]
- Stammschulte, T.; Ludwig, W.-D.; Mühlbauer, B.; Bronder, E.; Gundert-Remy, U. Metamizole (Dipyrone)-Associated Agranulocytosis. An Analysis of German Spontaneous Reports 1990–2012. Eur. J. Clin. Pharmacol. 2015, 71, 1129–1138. [Google Scholar] [CrossRef]
- Andrade, S.; Bartels, D.B.; Lange, R.; Sandford, L.; Gurwitz, J. Safety of Metamizole: A Systematic Review of the Literature. J. Clin. Pharm. Ther. 2016, 41, 459–477. [Google Scholar] [CrossRef]
- Souki, M.A. Metamizole for Postoperative Pain Therapy. Eur. J. Anaesthesiol. 2016, 33, 785–786. [Google Scholar] [CrossRef]
- Blanca-López, N.; Pérez-Sánchez, N.; Agúndez, J.A.; García-Martin, E.; Torres, M.J.; Cornejo-García, J.A.; Perkins, J.R.; Miranda, M.A.; Andreu, I.; Mayorga, C.; et al. Allergic Reactions to Metamizole: Immediate and Delayed Responses. Int. Arch. Allergy Immunol. 2016, 169, 223–230. [Google Scholar] [CrossRef]
- Juste, J.F.M.; Garces, T.R.; Enguita, R.G.; Blasco, P.C.; Trallero, J.A. Cardiac Complications in a Metamizole-Induced Type I Kounis Syndrome. Braz. J. Anesthesiol. 2016, 66, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Delgado Nunes, V.; Buckner, S.; Latchem, S.; Constanti, M.; Miller, P.; Doherty, M.; Zhang, W.; Birrell, F.; Porcheret, M.; et al. Paracetamol: Not as Safe as We Thought? A Systematic Literature Review of Observational Studies. Ann. Rheum. Dis. 2016, 75, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Kimiaei Asadi, H.; Nikooseresht, M.; Noori, L.; Behnoud, F. The Effect of Administration of Ketamine and Paracetamol Versus Paracetamol Singly on Postoperative Pain, Nausea and Vomiting After Pediatric Adenotonsillectomy. Anesth. Pain Med. 2016, 6, e31210. [Google Scholar] [CrossRef] [PubMed]
- Fallico, M.; Alosi, P.; Reibaldi, M.; Longo, A.; Bonfiglio, V.; Avitabile, T.; Russo, A. Scleral Buckling: A Review of Clinical Aspects and Current Concepts. J. Clin. Med. 2022, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, R.B.; Zacharias, L.C.; de Azevedo, B.M.; Giusti, B.S.; Pretti, R.C.; Takahashi, W.Y.; Monteiro, M.L.R. Metamizole versus Placebo for Panretinal Photocoagulation Pain Control: A Prospective Double-Masked Randomized Controlled Study. Int. J. Retin. Vitr. 2015, 1, 21. [Google Scholar] [CrossRef] [PubMed]
- Landwehr, S.; Kiencke, P.; Giesecke, T.; Eggert, D.; Thumann, G.; Kampe, S. A Comparison between IV Paracetamol and IV Metamizol for Postoperative Analgesia after Retinal Surgery. Curr. Med. Res. Opin. 2005, 21, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.C.; Matos, D.M.; Viana, M.R.; Alvim, M.C.O.; Bonfante, H.L.; Pinto, A.F.; Nascimento, J.W.L. Evaluation of Hematological Alterations after Therapeutic Use of Dipyrone in Healthy Adults: A Prospective Study. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 385–390. [Google Scholar] [CrossRef]
- García Ramiro, M.; Alonso Guardo, L.; Matilla Álvarez, A.; Bartol Sevillano, R.; Vaquero Roncero, L.M.; Muriel Villoria, C. Eficacia de La Asociación Paracetamol-Metamizol vs. Paracetamol-Dexketoprofeno En Manejo de Dolor Agudo Postoperatorio. Rev. Soc. Española Dolor 2013, 20, 279–284. [Google Scholar] [CrossRef]
- Stasiowski, M.J.; Pluta, A.; Lyssek-Boroń, A.; Kawka, M.; Krawczyk, L.; Niewiadomska, E.; Dobrowolski, D.; Rejdak, R.; Król, S.; Żak, J.; et al. Preventive Analgesia, Hemodynamic Stability, and Pain in Vitreoretinal Surgery. Medicina 2021, 57, 262. [Google Scholar] [CrossRef]
- Pluta, A.; Stasiowski, M.J.; Lyssek-Boroń, A.; Król, S.; Krawczyk, L.; Niewiadomska, E.; Żak, J.; Kawka, M.; Dobrowolski, D.; Grabarek, B.O.; et al. Adverse Events during Vitrectomy under Adequacy of Anesthesia-An Additional Report. J. Clin. Med. 2021, 10, 4172. [Google Scholar] [CrossRef]
- Sadrolsadat, S.H.; Yousefshahi, F.; Ostadalipour, A.; Mohammadi, F.Z.; Makarem, J. Effect of Intravenous Acetaminophen on Postoperative Pain in Vitrectomy: A Randomized, Double-Blind, Clinical Trial. Anesth. Pain Med. 2017, 7, e13639. [Google Scholar] [CrossRef] [PubMed]
- Ledowski, T.; Pascoe, E.; Ang, B.; Schmarbeck, T.; Clarke, M.W.; Fuller, C.; Kapoor, V. Monitoring of Intra-Operative Nociception: Skin Conductance and Surgical Stress Index versus Stress Hormone Plasma Levels. Anaesthesia 2010, 65, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Südfeld, S.; Brechnitz, S.; Wagner, J.Y.; Reese, P.C.; Pinnschmidt, H.O.; Reuter, D.A.; Saugel, B. Post-Induction Hypotension and Early Intraoperative Hypotension Associated with General Anaesthesia. Br. J. Anaesth. 2017, 119, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Czajka, S.; Putowski, Z.; Krzych, Ł.J. Intraoperative Hypotension and Its Organ-Related Consequences in Hypertensive Subjects Undergoing Abdominal Surgery: A Cohort Study. Blood Press. 2021, 30, 348–358. [Google Scholar] [CrossRef]
- Gu, W.-J.; Hou, B.-L.; Kwong, J.S.W.; Tian, X.; Qian, Y.; Cui, Y.; Hao, J.; Li, J.-C.; Ma, Z.-L.; Gu, X.-P. Association between Intraoperative Hypotension and 30-Day Mortality, Major Adverse Cardiac Events, and Acute Kidney Injury after Non-Cardiac Surgery: A Meta-Analysis of Cohort Studies. Int. J. Cardiol. 2018, 258, 68–73. [Google Scholar] [CrossRef]
- Liu, R.; Gutiérrez, R.; Mather, R.V.; Stone, T.A.D.; Santa Cruz Mercado, L.A.; Bharadwaj, K.; Johnson, J.; Das, P.; Balanza, G.; Uwanaka, E.; et al. Development and Prospective Validation of Postoperative Pain Prediction from Preoperative EHR Data Using Attention-Based Set Embeddings. NPJ Digit. Med. 2023, 6, 209. [Google Scholar] [CrossRef]
- Ledowski, T.; Burke, J.; Hruby, J. Surgical Pleth Index: Prediction of Postoperative Pain and Influence of Arousal. Br. J. Anaesth. 2016, 117, 371–374. [Google Scholar] [CrossRef]
- Oh, S.K.; Won, Y.J.; Lim, B.G. Surgical Pleth Index Monitoring in Perioperative Pain Management: Usefulness and Limitations. Korean J. Anesthesiol. 2023. [Google Scholar] [CrossRef]
- Misiołek, H.; Zajączkowska, R.; Daszkiewicz, A.; Woroń, J.; Dobrogowski, J.; Wordliczek, J.; Owczuk, R. Postoperative Pain Management—2018 Consensus Statement of the Section of Regional Anaesthesia and Pain Therapy of the Polish Society of Anaesthesiology and Intensive Therapy, the Polish Society of Regional Anaesthesia and Pain Therapy, the Polish Association for the Study of Pain and the National Consultant in Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive Ther. 2018, 50, 173–199. [Google Scholar] [CrossRef]
- Owczuk, R. Guidelines for General Anaesthesia in the Elderly of the Committee on Quality and Safety in Anaesthesia, Polish Society of Anaesthesiology and Intensive Therapy. Anaesthesiol. Intensive Ther. 2013, 45, 57–61. [Google Scholar] [CrossRef]
- Ilies, C.; Ludwigs, J.; Gruenewald, M.; Thee, C.; Hanf, J.; Hanss, R.; Steinfath, M.; Bein, B. The Effect of Posture and Anaesthetic Technique on the Surgical Pleth Index. Anaesthesia 2012, 67, 508–513. [Google Scholar] [CrossRef] [PubMed]
Metrics | Total | PM Group | M Group | P Group | p-Value | |
---|---|---|---|---|---|---|
N = 153 (100%) | N = 52 (34%) | N = 50 (32.7%) | N = 51 (33.3%) | |||
Age X ± Sd Me (IQR) | years | 63.8 ± 11.7 | 64.4 ± 11 | 62.6 ± 12.3 | 64.6 ± 11.6 | 0.7 |
65 (12) | 67 (11.5) | 64 (14) | 66 (9) | NS | ||
Gender, N (%) | female | 82 (53.6) | 23 (44.2) | 24 (48) | 35 (68.6) | 0.05 |
male | 71 (46.4) | 29 (55.8) | 26 (52) | 16 (31.4) | NS | |
Anthropometric data | Total | PM Group | M Group | P Group | p-Value | |
Height X ± Sd Me (IQR) | cm | 167.1 ± 9.8 | 169.5 ± 9 | 168.3 ± 9.4 | 164 ± 8.3 | PM vs. P, p = 0.015 |
165 (15) | 167 (12) | 170 (15) | 164 (11) | M vs. P, p = 0.047 | ||
Weight X ± Sd Me (IQR) | kg | 77.2 ± 15.4 | 85 ± 15.6 | 74.6 ± 13.9 | 74 ± 14.8 | PM vs. M, p = 0.009 |
77 (21) | 82 (27) | 74.5 (19) | 72.5 (21.5) | PM vs. P, p = 0.004 | ||
BMI X ± Sd Me (IQR) | kg/m2 | 27.5 ± 5.5 | 29.6 ± 5 | 26.3 ± 4.2 | 27.1 ± 6.7 | PM vs. M, p = 0.008 |
26.6 (6.7) | 27.8 (5.9) | 25.6 (4) | 27.6 (7.4) | |||
BMI N (%) | underweight | 3 (2) | 0 (0) | 1 (2) | 2 (4) | 0.21 |
norm | 45 (29.4) | 8 (15.4) | 20 (40) | 17 (33.3) | ||
overweight | 49 (32) | 14 (26.9) | 20 (40) | 15 (29.4) | NS | |
obesity | 39 (25.5) | 15 (28.8) | 9 (18) | 15 (29.4) |
Type of VRS | Total N = 153 (100%) | PM Group N = 52 (34%) | M Group N = 50 (32.7%) | P Group N = 51 (33.3%) | p-Value |
---|---|---|---|---|---|
Pars Plana Vitrectomy | 62 (40.5) | 23 (44.2) | 17 (34) | 22 (43.1) | p = 0.52 NS |
Yes (%) | |||||
Phacovitrectomy | 91 (59.5) | 29 (55.8) | 33 (66) | 29 (56.9) | p = 0.52 NS |
Yes (%) | |||||
The frequency of surgical maneuvers during VRS | |||||
Speculum Adjustment | 153 (100) | 52 (100) | 50 (100) | 51 (100) | - |
Yes (%) | |||||
Trocars’ Insertion | 153 (100) | 52 (100) | 50 (100) | 51 (100) | - |
Yes (%) | |||||
Vitrectom Insertion | 153 (100) | 52 (100) | 50 (100) | 51 (100) | - |
Yes (%) | |||||
Staining Agent Injection | 128 (83.7) | 46 (88.5) | 41 (82) | 41 (80.4) | p = 0.5 NS |
Yes (%) | |||||
Peeling | 135 (88.2) | 46 (88.5) | 45 (90) | 44 (86.3) | p = 0.8 NS |
Yes (%) | |||||
Gas–Liquid Exchange | 51 (33.3) | 10 (19.2) | 23 (46) | 18 (35.3) | PM vs. M, p = 0.007 |
Yes (%) | |||||
Endolaser Treatment | 120 (78.4) | 39 (75) | 43 (86) | 38 (74.5) | p = 0.3 NS |
Yes (%) | |||||
Silicon Oil Injection | 52 (34) | 24 (46.2) | 17 (34) | 11 (21.6) | PM vs. P, p = 0.02 |
Yes (%) | |||||
Indentation | 58 (37.9) | 14 (26.9) | 18 (36) | 26 (51) | p = 0.05 NS |
Yes (%) | |||||
Subconjunctival Injection | 151 (98.7) | 50 (96.2) | 50 (100) | 51 (100) | - |
Yes (%) | |||||
Trocars’ Removal | 153 (100) | 52 (100) | 50 (100) | 51 (100) | - |
Yes (%) | |||||
Speculum Removal | 153 (100) | 52 (100) | 50 (100) | 51 (100) | - |
Yes (%) |
Surgery | Total | PM Group | M Group | P Group | p-Value | |
---|---|---|---|---|---|---|
N = 153 (100%) | N = 52 (34%) | N = 50 (32.7%) | N = 51 (33.3%) | |||
Time of VRS X ± Sd Me (IQR) | min | 47.2 ± 18.9 | 44.4 ± 19 | 50 ± 19.4 | 47.2 ± 18.3 | p = 0.3 NS |
44 (28) | 39 (24) | 51 (31) | 44 (29) | |||
FNT X ± Sd Me (IQR) | mcg | 126.3 ± 99.7 | 122.6 ± 93.6 | 159 ± 114.1 | 98 ± 81.2 | M vs. P, p = 0.01 |
100 (150) | 100 (125) | 150 (200) | 100 (50) | |||
Intraoperative fluid therapy X ± Sd Me (IQR) | mL | 1042.2 ± 342.6 | 1090.4 ± 389.4 | 1069 ± 351.1 | 958.7 ± 258.5 | p = 0.5 NS |
1000 (450) | 1100 (450) | 1000 (450) | 1000 (250) |
Postoperative Pain | Total | PM Group | M Group | P Group | p-Value | |
---|---|---|---|---|---|---|
N = 153 (100%) | N = 52 (34%) | N = 50 (32.7%) | N = 51 (33.3%) | |||
NRS max X ± Sd Me (IQR) | [1 ÷ 10] | 1 ± 1.8 | 0.5 ± 1.4 | 1.3 ± 2.1 | 1.1 ± 1.9 | 0.1 NS |
0 (2) | 0 (0) | 0 (3) | 0 (2) | |||
Type of first postoperative pain perception N (%) | Mild | 137 (90) | 51 (98) | 41 (82) | 45 (88.2) | PM vs. M, p = 0.02 |
Moderate | 14 (9) | 0 (0) | 9 (18) | 5 (9.8) | PM vs. M, p = 0.004 | |
Acute | 2 (1) | 1 (2) | 0 (0) | 1 (2) | 0.6 NS | |
IPPP | 16 (10) | 1 (2) | 9 (18) | 6 (11.8) | PM vs. M, p = 0.02 |
Parameter X ± Sd Me (IQR) | PM Group | M Group | P Group | p-Value |
---|---|---|---|---|
N = 52 (34%) | N = 50 (32.7%) | N = 51 (33.3%) | ||
Stage 1—onset | ||||
SAP (mmHg) | 155.6 ± 22.5 | 152 ± 18.5 | 151.4 ± 19.1 | p = 0.6 |
158 (29) | 150.5 (29) | 154 (28) | NS | |
MAP (mmHg) | 111.6 ± 13.5 | 110 ± 11.5 | 110 ± 11.7 | p = 0.7 |
111 (18.5) | 108 (19) | 110 (15) | NS | |
DAP (mmHg) | 78.8 ± 11.1 | 80.4 ± 9.4 | 78.4 ± 10.3 | p = 0.6 |
78 (17.5) | 79.5 (10) | 76 (15) | NS | |
HR (beats/min) | 73.5 ± 13 | 72.1 ± 12.6 | 73.6 ± 11.2 | p = 0.8 |
72 (19.5) | 72.5 (19) | 74 (16) | NS | |
SPI | 58.2 ± 16.2 | 57.4 ± 17.5 | 57.1 ± 16.8 | p = 0.8 |
58 (23) | 59 (21) | 54 (27) | NS | |
Stage 2—between induction and start of VRS | ||||
mean SAP (mmHg) | 124.9 ± 30.1 | 125.2 ± 28.1 | 131.7 ± 27.1 | p = 0.2 |
117 (39.5) | 126.7 (34.5) | 131 (43.5) | NS | |
mean MAP (mmHg) | 91.6 ± 19 | 95 ± 16.1 | 96.4 ± 17.8 | p = 0.2 |
91.5 (23.8) | 96.8 (22.5) | 97 (27) | NS | |
mean DAP (mmHg) | 68 ± 13.2 | 72.7 ± 12.7 | 71.7 ± 12.7 | p = 0.1 |
68.8 (16) | 71.8 (23) | 72 (19.5) | NS | |
mean HR (beats/min) | 67.2 ± 10.8 | 68.1 ± 13.4 | 68.6 ± 9.9 | p = 0.5 |
64.6 (15.2) | 71 (17.7) | 67.3 (13.3) | NS | |
mean SPI | 33.3 ± 15.8 | 34 ± 12.3 | 40.2 ± 35.2 | p = 0.2 |
29.3 (20.3) | 31.7 (12.6) | 33 (17.9) | NS | |
mean SE | 41.5 ± 9.3 | 41.4 ± 10.6 | 40.4 ± 10.4 | p = 0.8 |
41.2 (12.9) | 42.7 (14) | 30.4 (17) | NS | |
Stage 3—VRS | ||||
mean SAP (mmHg) | 117.4 ± 23.4 | 107.7 ± 14.7 | 111.3 ± 25.3 | p = 0.2 |
112.8 (30.4) | 108.1 (23) | 105.5 (26.7) | NS | |
mean MAP (mmHg) | 87.6 ± 14.8 | 82.1 ± 10.6 | 84.2 ± 15.2 | p = 0.3 |
87.7 (20) | 82.8 (14.9) | 81.2 (14.8) | NS | |
mean DAP (mmHg) | 65.2 ± 10.7 | 63.2 ± 8.5 | 63.6 ± 10.9 | p = 0.7 |
63.4 (13.3) | 63.7 (9.7) | 63.7 (11) | NS | |
mean HR (beats/min) | 61.1 ± 9.1 | 61 ± 7.7 | 60.9 ± 8.7 | p = 1 |
61.5 (11.7) | 60.2 (11.2) | 60.3 (12.4) | NS | |
mean SPI | 36.6 ± 13.6 | 34 ± 10.5 | 35.2 ± 10.4 | p = 0.8 |
32.6 (17) | 32 (13.3) | 31.7 (13.7) | NS | |
mean SE | 43.2 ± 10.6 | 40.4 ± 6.9 | 41.5 ± 7.1 | p = 0.8 |
41.3 (8.8) | 41 (7.6) | 40.6 | NS | |
Stage 4—emergence from GA | ||||
mean SAP (mmHg) | 132.6 ± 26.5 | 124.4 ± 19.1 | 139 ± 27.3 | M vs. P, |
127.3 (42) | 124.3 (26) | 138 (44) | p = 0.03 | |
mean MAP (mmHg) | 98.5 ± 17.6 | 93.5 ± 13.7 | 102.6 ± 16.8 | M vs. P, |
97.8 (29.7) | 92.5 (15.7) | 102 (25.8) | p = 0.03 | |
mean DAP (mmHg) | 72.9 ± 12.3 | 70 ± 10.7 | 75.4 ± 11.4 | p = 0.5 |
72.8 (14.8) | 69.5 (11.5) | 74 (14) | NS | |
mean HR (beats/min) | 61.2 ± 10.2 | 57.9 ± 6.8 | 61.1 ± 10 | p = 0.2 |
59.2 (12.7) | 56.7 (11.5) | 59.5 (11.6) | NS | |
mean SPI | 49 ± 15 | 50.7 ± 14.1 | 53.7 ± 14.4 | p = 0.3 |
47.8 (22.6) | 50.7 (22.9) | 53.8 (22.6) | NS | |
Stage 5—PACU | ||||
mean SAP (mmHg) | 149.2 ± 18.6 | 147.6 ± 16.2 | 145.6 ± 18 | p = 0.6 |
150.3 (29.8) | 147.4 (19.5) | 142.3 (23.7) | NS | |
mean MAP (mmHg) | 107.1 ± 10.2 | 104.4 ± 13.3 | 102.4 ± 14.5 | p = 0.2 |
106.3 (14) | 104.8 (16.7) | 101.3 (15.1) | NS | |
mean DAP (mmHg) | 76.4 ± 10.1 | 77.7 ± 9.3 | 77.7 ± 10.7 | p = 0.8 |
76.8 (13.4) | 75.7 (10.6) | 78 (14) | NS | |
mean HR (beats/min) | 69.3 ± 11.1 | 71.3 ± 11.1 | 68.5 ± 9.8 | p = 0.6 |
69.2 (13.7) | 69.6 (10.6) | 67 (13.4) | NS | |
mean SPI | 55.9 ± 13.8 | 56.9 ± 16.3 | 51.4 ± 14.5 | p = 0.2 |
57.1 (23.1) | 57.8 (26.1) | 50.2 (23.5) | NS |
Parameter X ± Sd Me (IQR) | PM Group | M Group | P Group | p-Value |
---|---|---|---|---|
N = 52 (34%) | N = 50 (32.7%) | N = 51 (33.3%) | ||
Stage 2—between induction and start of VRS | ||||
max SAP (mmHg) | 132.9 ± 31.8 | 134.6 ± 29.3 | 139.6 ± 27.7 | p = 0.2 NS |
130 (39) | 140 (40) | 144 (44) | ||
max MAP (mmHg) | 96.9 ± 19.9 | 101.2 ± 17.1 | 101.7 ± 17.8 | p = 0.1 NS |
94.5 (23.5) | 104 (24) | 103 (25) | ||
max DAP (mmHg) | 72.2 ± 14 | 77.5 ± 13.5 | 75.3 ± 12.8 | p = 0.1 NS |
72.5 (17) | 78.5 (23) | 77 (19) | ||
max HR (beats/min) | 71.9 ± 12.1 | 74.6 ± 11.7 | 74.5 ± 11.3 | p = 0.3 NS |
70.5 (13.5) | 75.5 (19) | 74 (16) | ||
max SPI | 40.6 ± 18.1 | 43.7 ± 13.5 | 44.2 ± 15.2 | p = 0.2 NS |
39.5 (20) | 42.5 (19) | 43 (21) | ||
max SE | 48.1 ± 11.1 | 49.5 ± 11 | 47.3 ± 10.4 | p = 0.5 NS |
49 (13) | 49.5 (16) | 46 (17) | ||
min SAP (mmHg) | 117.6 ± 31.3 | 116.7 ± 27.6 | 123.7 ± 28.9 | p = 0.4 NS |
112 (43.5) | 116 (36) | 126 (47) | ||
min MAP (mmHg) | 86.6 ± 20.2 | 89.4 ± 16.7 | 91.3 ± 19.2 | p = 0.4 NS |
84.5 (27) | 89 (24) | 92 (29) | ||
min DAP (mmHg) | 64.3 ± 14.6 | 68.7 ± 13.2 | 68.3 ± 13.6 | p = 0.2 NS |
63.5 (18.5) | 67 (24) | 67 (22) | ||
min HR (beats/min) | 63.8 ± 10.1 | 65.9 ± 10.2 | 64.9 ± 9.6 | p = 0.5 NS |
61.5 (15) | 67 (17) | 64 (16) | ||
min SPI | 27.3 ± 14.2 | 28.1 ± 12.5 | 29.3 ± 12.6 | p = 0.4 NS |
23 (15) | 25.5 (16) | 25 (13) | ||
min SE | 33.9 ± 10.5 | 33.6 ± 10 | 33.1 ± 10.4 | p = 0.9 NS |
31 (17) | 34 (8.7) | 33 (13) | ||
Stage 3—VRS | ||||
max SAP (mmHg) | 138.2 ± 29.4 | 135.7 ± 30.1 | 137.8 ± 28.2 | p = 0.9 NS |
128.5 (48.5) | 132 (31) | 134 (38) | ||
max MAP (mmHg) | 101.7 ± 17.2 | 101.6 ± 19.3 | 103 ± 19 | p = 0.9 NS |
100 (31.5) | 98.5 (26) | 99 (32) | ||
max DAP (mmHg) | 76.6 ± 13 | 78.7 ± 14.9 | 76.6 ± 13 | p = 0.8 NS |
75.5 (19) | 78.5 (21) | 75 (23) | ||
max HR (beats/min) | 69.8 ± 11.6 | 71.7 ± 10.8 | 69.9 ± 10.8 | p = 0.6 NS |
67.5 (16.5) | 71.5 (17) | 68 (19) | ||
max SPI | 55.3 ± 15.4 | 56.2 ± 12.8 | 53.1 ± 11.7 | p = 0.4 NS |
53.5 (25.5) | 56 (19) | 55 (16) | ||
max SE | 53.7 ± 13.9 | 51.5 ± 9.1 | 54.4 ± 7.5 | p = 0.1 NS |
50 (9) | 51 (12) | 56.5 (12) | ||
min SAP (mmHg) | 103.5 ± 24.1 | 88 ± 13.9 | 93.8 ± 22.6 | PM vs. M, p = 0.005 |
96.5 (38.5) | 87.5 (20) | 87 (28) | ||
min MAP (mmHg) | 77.2 ± 15.9 | 67.5 ± 10.7 | 70.7 ± 16 | PM vs. M, p = 0.01 |
73 (26.5) | 66 (14) | 66 (16) | ||
min DAP (mmHg) | 57.7 ± 11.8 | 51.7 ± 9.1 | 53.2 ± 10.7 | p = 0.05 |
57 (18.5) | 52 (13) | 49 (15) | ||
min HR (beats/min) | 56.3 ± 8.9 | 54.7 ± 7.9 | 55.3 ± 8.6 | p = 0.7 NS |
56 (12) | 53 (12) | 54 (11) | ||
min SPI | 24.4 ± 13.6 | 21 ± 7.8 | 23.5 ± 9.2 | p = 0.5 NS |
20 (15) | 21 (11) | 22 (11) | ||
min SE | 36.3 ± 12.3 | 32 ± 8.5 | 31.7 ± 6.9 | p = 0.07 NS |
35 (12.5) | 33 (10) | 32 (7) | ||
Stage 4—emergence from GA | ||||
max SAP (mmHg) | 144.3 ± 33.8 | 132.2 ± 22.5 | 144.9 ± 28.1 | p = 0.1 NS |
139.5 (52) | 131 (29) | 146 (51) | ||
max MAP (mmHg) | 104.3 ± 20 | 99.4 ± 16.2 | 106.7 ± 17.5 | p = 0.1 NS |
103.5 (36) | 99 (20) | 107 (28) | ||
max DAP (mmHg) | 76.3 ± 13.9 | 73.5 ± 12.1 | 78.2 ± 11.7 | p = 0.2 NS |
76 (16) | 73 (16) | 78 (12.5) | ||
max HR (beats/min) | 69.4 ± 12.7 | 63.2 ± 8.6 | 67.4 ± 12 | PM vs. M, p = 0.04 |
67 (18) | 61.5 (13) | 65 (19) | ||
max SPI | 63.5 ± 16.1 | 64.1 ± 12.7 | 64.1 ± 14.3 | p = 1 NS |
65 (23) | 64.5 (17) | 64 (20) | ||
min SAP (mmHg) | 122.8 ± 23.1 | 118.5 ± 19.6 | 133.3 ± 29 | M vs. P, p = 0.02 |
121 (37) | 120 (28) | 130 (40) | ||
min MAP (mmHg) | 91 ± 15.1 | 90.4 ± 14.5 | 98.3 ± 18 | p = 0.05 NS |
88.5 (23) | 90 (20) | 98 (28) | ||
min DAP (mmHg) | 66.6 ± 12.6 | 66.9 ± 11 | 72.5 ± 12.3 | PM vs. P, p = 0.04; M vs. P, p = 0.03 |
66 (15) | 66 (14) | 72 (16) | ||
min HR (beats/min) | 57.5 ± 9.3 | 55.6 ± 6.7 | 57.4 ± 10.1 | p = 0.8 NS |
55.5 (12.5) | 56 (10) | 56 (12) | ||
min SPI | 38.3 ± 16.5 | 38.7 ± 15.2 | 43.5 ± 17.1 | p = 0.2 NS |
36.5 (29) | 35.5 (25) | 42 (28) | ||
Stage 5—PACU | ||||
max SAP (mmHg) | 156.7 ± 20.8 | 155.2 ± 19.3 | 153.1 ± 19.1 | p = 0.8 NS |
154 (33) | 154 (18) | 153 (26) | ||
max MAP (mmHg) | 113.1 ± 10.9 | 111.2 ± 15.5 | 108.1 ± 14.5 | p = 0.2 NS |
112 (16) | 111.5 (19) | 107 (17) | ||
max DAP (mmHg) | 81.6 ± 10.5 | 100.3 ± 110.3 | 83.1 ± 12.1 | p = 0.8 NS |
81 (15) | 82 (14) | 82 (12) | ||
max HR (beats/min) | 75.3 ± 12.7 | 76.1 ± 12.1 | 73.3 ± 10.7 | p = 0.7 NS |
73 (17) | 74 (12) | 73.6 (17) | ||
max SPI | 69 ± 11.3 | 66.5 ± 16.5 | 60.4 ± 15.1 | PM vs. P, p = 0.03 |
71 (16) | 69 (27) | 58 (26) | ||
min SAP (mmHg) | 142.1 ± 18.3 | 139.4 ± 13.8 | 139.5 ± 18.1 | p = 0.6 NS |
139 (26) | 140 (23) | 135 (24) | ||
min MAP (mmHg) | 101.7 ± 10.5 | 100 ± 12.8 | 97.8 ± 15.7 | p = 0.5 NS |
102 (17) | 102.5 (17) | 98 (18) | ||
min DAP (mmHg) | 71.1 ± 10.6 | 72.7 ± 9.5 | 73.5 ± 11.1 | p = 0.6 NS |
73 (16) | 73 (15) | 73 (18) | ||
min HR (beats/min) | 63.6 ± 10.8 | 66 ± 11.1 | 64.6 ± 9 | p = 0.4 NS |
62 (10) | 65 (13) | 64 (13) | ||
min SPI | 44 ± 17.7 | 48.1 ± 16.2 | 43.5 ± 14.6 | p = 0.4 NS |
45 (30) | 49 (28) | 43 (23) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stasiowski, M.J.; Lyssek-Boroń, A.; Zmarzły, N.; Marczak, K.; Grabarek, B.O. The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole. Pharmaceuticals 2024, 17, 129. https://doi.org/10.3390/ph17010129
Stasiowski MJ, Lyssek-Boroń A, Zmarzły N, Marczak K, Grabarek BO. The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole. Pharmaceuticals. 2024; 17(1):129. https://doi.org/10.3390/ph17010129
Chicago/Turabian StyleStasiowski, Michał Jan, Anita Lyssek-Boroń, Nikola Zmarzły, Kaja Marczak, and Beniamin Oskar Grabarek. 2024. "The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole" Pharmaceuticals 17, no. 1: 129. https://doi.org/10.3390/ph17010129
APA StyleStasiowski, M. J., Lyssek-Boroń, A., Zmarzły, N., Marczak, K., & Grabarek, B. O. (2024). The Adequacy of Anesthesia Guidance for Vitreoretinal Surgeries with Preemptive Paracetamol/Metamizole. Pharmaceuticals, 17(1), 129. https://doi.org/10.3390/ph17010129