The Relationship between Sources of COVID-19 Vaccine Information and Willingness to Be Vaccinated: An Internet-Based Cross-Sectional Study in Japan
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 30 December 2020).
- Soleimanpour, S.; Yaghoubi, A. COVID-19 vaccine: Where are we now and where should we go? Expert Rev. Vaccines 2021, 20, 23–44. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Eguchi, A.; Yoneoka, D.; Kawashima, T.; Tanoue, Y.; Murakami, M.; Sakamoto, H.; Maruyama-Sakurai, K.; Gilmour, S.; Shi, S.; et al. Reasons for being unsure or unwilling regarding intention to take COVID-19 vaccine among Japanese people: A large cross-sectional national survey. Lancet Reg. Health West. Pac. 2021, 14, 100223. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T.; Katsuyama, H. Willingness to Receive COVID-19 Vaccination in Japan. Vaccines 2021, 9, 48. [Google Scholar] [CrossRef]
- COVID-19 Vaccines from Prime Minister of Japan and His Cabinet. Available online: https://japan.kantei.go.jp/ongoingtopics/vaccine.html (accessed on 31 May 2022).
- MacDonald, N.E.; Eskola, J.; Liang, X.; Chaudhuri, M.; Dube, E.; Gellin, B.; Goldstein, S.; Larson, H.; Manzo, M.L.; Reingold, A.; et al. Vaccine Hesitancy: Definition, Scope and Determinants. Vaccine 2015, 33, 4161–4164. [Google Scholar] [CrossRef]
- Lazarus, J.V.; Ratzan, S.C.; Palayew, A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Kimball, S.; El-Mohandes, A. A global survey of potential acceptance of a COVID-19 vaccine. Nat. Med. 2021, 27, 225–228. [Google Scholar] [CrossRef]
- Thunström, L.; Ashworth, M.; Finnoff, D.; Newbold, S.C. Hesitancy Toward a COVID-19 Vaccine. EcoHealth 2021, 18, 44–60. [Google Scholar] [CrossRef]
- Deb, B.; Shah, H.; Goel, S. Current global vaccine and drug efforts against COVID-19: Pros and cons of bypassing animal trials. J. Biosci. 2020, 45, 82. [Google Scholar] [CrossRef] [PubMed]
- Wibawa, T. COVID-19 vaccine research and development: Ethical issues. Trop. Med. Int. Health 2021, 26, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Ball, P. The lightning-fast quest for COVID vaccines—And what it means for other diseases. Nature 2020, 589, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.G.; Hagen, L.; Walker, K.; O’Leary, H.; Lengacher, C. The COVID-19 vaccine social media infodemic: Healthcare providers’ missed dose in addressing misinformation and vaccine hesitancy. Hum. Vaccines Immunother. 2021, 17, 2962–2964. [Google Scholar] [CrossRef] [PubMed]
- Rovetta, A.; Bhagavathula, A.S. COVID-19-Related Web Search Behaviors and Infodemic Attitudes in Italy: Infodemiological Study. JMIR Public Health Surveill. 2020, 6, e19374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Pian, W.; Ma, F.; Ni, Z.; Liu, Y. Characterizing the COVID-19 Infodemic on Chinese Social Media: Exploratory Study. JMIR Public Health Surveill. 2021, 7, e26090. [Google Scholar] [CrossRef]
- Karabela, N.; Coşkun, F.; Hoşgör, H. Investigation of the relationships between perceived causes of COVID-19, attitudes towards vaccine and level of trust in information sources from the perspective of Infodemic: The case of Turkey. BMC Public Health 2021, 21, 1195. [Google Scholar] [CrossRef]
- Yoda, T.; Katsuyama, H. Parents’ hesitation about getting their children vaccinated against COVID-19 in Japan. Hum. Vaccines Immunother. 2021, 17, 4993–4998. [Google Scholar] [CrossRef]
- Yoda, T.; Suksatit, B.; Tokuda, M.; Katsuyama, H. Analysis of People’s Attitude Toward COVID-19 Vaccine and Its Information Sources in Thailand. Cureus 2022, 14, e22215. [Google Scholar] [CrossRef]
- Machida, M.; Nakamura, I.; Kojima, T.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; et al. Acceptance of a COVID-19 Vaccine in Japan during the COVID-19 Pandemic. Vaccines 2021, 9, 210. [Google Scholar] [CrossRef]
- Machida, M.; Nakamura, I.; Kojima, T.; Saito, R.; Nakaya, T.; Hanibuchi, T.; Takamiya, T.; Odagiri, Y.; Fukushima, N.; Kikuchi, H.; et al. Trends in COVID-19 vaccination intent from pre- to post-COVID-19 vaccine distribution and their associations with the 5C psychological antecedents of vaccination by sex and age in Japan. Hum. Vaccines Immunother. 2021, 17, 3954–3962. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.R.; Watanapongvanich, S.; Kadoya, Y. COVID-19 Vaccine Hesitancy among the Younger Generation in Japan. Int. J. Environ. Res. Public Health 2021, 18, 11702. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.P.; Alias, H.; Danaee, M.; Ahmed, J.; Lachyan, A.; Cai, C.Z.; Lin, Y.; Hu, Z.; Tan, S.Y.; Lu, Y.; et al. COVID-19 vaccination intention and vaccine characteristics influencing vaccination acceptance: A global survey of 17 countries. Infect. Dis. Poverty 2021, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Yagi, A.; Ueda, Y.; Kakuda, M.; Nakagawa, S.; Hiramatsu, K.; Miyoshi, A.; Kobayashi, E.; Kimura, T.; Kurosawa, M.; Yamaguchi, M.; et al. Cervical Cancer Protection in Japan: Where Are We? Vaccines 2021, 9, 1263. [Google Scholar] [CrossRef]
- Suzuki, Y.; Sukegawa, A.; Ueda, Y.; Sekine, M.; Enomoto, T.; Melamed, A.; Wright, J.D.; Miyagi, E. The Effect of a Web-Based Cervical Cancer Survivor’s Story on Parents’ Behavior and Willingness to Consider Human Papillomavirus Vaccination for Daughters: Randomized Controlled Trial. JMIR Public Health Surveill. 2022, 8, e34715. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, S.; Sakamoto, H.; Abe, S.K.; Shinohara, R.; Kushima, M.; Otawa, S.; Yui, H.; Akiyama, Y.; Ooka, T.; Kojima, R.; et al. Factors of parental COVID-19 vaccine hesitancy: A cross sectional study in Japan. PLoS ONE 2021, 16, e0261121. [Google Scholar] [CrossRef]
- Schwarzinger, M.; Watson, V.; Arwidson, P.; Alla, F.; Luchini, S. COVID-19 vaccine hesitancy in a representative working-age population in France: A survey experiment based on vaccine characteristics. Lancet Public Health 2021, 6, e210–e221. [Google Scholar] [CrossRef]
- Murphy, J.; Vallières, F.; Bentall, R.P.; Shevlin, M.; McBride, O.; Hartman, T.K.; McKay, R.; Bennett, K.; Mason, L.; Gibson-Miller, J.; et al. Psychological characteristics associated with COVID-19 vaccine hesitancy and resistance in Ireland and the United Kingdom. Nat. Commun. 2021, 12, 29. [Google Scholar] [CrossRef]
- Badell-Grau, R.A.; Cuff, J.P.; Kelly, B.P.; Waller-Evans, H.; Lloyd-Evans, E. Investigating the Prevalence of Reactive Online Searching in the COVID-19 Pandemic: Infoveillance Study. J. Med. Internet Res. 2020, 22, e19791. [Google Scholar] [CrossRef]
- Sajjadi, N.B.; Nowlin, W.; Nowlin, R.; Wenger, D.; Beal, J.M.; Vassar, M.; Hartwell, M. United States internet searches for “infertility” following COVID-19 vaccine misinformation. J. Osteopat. Med. 2021, 121, 583–587. [Google Scholar] [CrossRef]
- Gonzalez-Padilla, D.A.; Tortolero-Blanco, L. Social media influence in the COVID-19 Pandemic. Int. Braz. J. Urol. 2020, 46, 120–124. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1677-55382020000700120&lng=en&nrm=iso (accessed on 10 February 2021). [CrossRef] [PubMed]
- Betsch, C.; Renkewitz, F.; Betsch, T.; Ulshöfer, C. The Influence of Vaccine-critical Websites on Perceiving Vaccination Risks. J. Health Psychol. 2010, 15, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Madden, K. HPV Vaccine Information in the Blogosphere: How Positive and Negative Blogs Influence Vaccine-Related Risk Perceptions, Attitudes, and Behavioral Intentions. Health Commun. 2012, 27, 829–836. [Google Scholar] [CrossRef]
- Jolley, D.; Paterson, J.L. Pylons ablaze: Examining the role of 5G COVID-19 conspiracy beliefs and support for violence. Br. J. Soc. Psychol. 2020, 59, 628–640. [Google Scholar] [CrossRef]
- Basch, C.H.; Meleo-Erwin, Z.; Fera, J.; Jaime, C.; Basch, C.E. A global pandemic in the time of viral memes: COVID-19 vaccine misinformation and disinformation on TikTok. Hum. Vaccines Immunother. 2021, 17, 2373–2377. [Google Scholar] [CrossRef] [PubMed]
- Hanley, S.J.B.; Yoshioka, E.; Ito, Y.; Kishi, R. HPV vaccination crisis in Japan. Lancet 2015, 385, 2571. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, K.; Yamamoto, K.; Leppold, C.; Tanimoto, T.; Kusumi, E.; Komatsu, T.; Kami, M. Trends of Media Coverage on Human Papillomavirus Vaccination in Japanese Newspapers. Clin. Infect. Dis. 2016, 63, 1634–1638. [Google Scholar] [CrossRef] [Green Version]
- Simms, K.T.; Hanley, S.J.B.; Smith, M.A.; Keane, A.; Canfell, K. Impact of HPV vaccine hesitancy on cervical cancer in Japan: A modelling study. Lancet Public Health 2020, 5, e223–e234. [Google Scholar] [CrossRef]
- Eibensteiner, F.; Ritschl, V.; Nawaz, F.A.; Fazel, S.S.; Tsagkaris, C.; Kulnik, S.T.; Crutzen, R.; Klager, E.; Völkl-Kernstock, S.; Schaden, E.; et al. People’s Willingness to Vaccinate Against COVID-19 Despite Their Safety Concerns: Twitter Poll Analysis. J. Med. Internet Res. 2021, 23, e28973. [Google Scholar] [CrossRef]
N | % | ||
---|---|---|---|
Sex | Males | 418 | 52.2 |
Females | 382 | 47.8 | |
Age group | Under 19 years | 97 | 12.1 |
20–29 years | 156 | 19.5 | |
30–39 years | 112 | 14.0 | |
40–49 years | 119 | 14.9 | |
50–59 years | 99 | 12.4 | |
60–69 years | 99 | 12.4 | |
Over 70 years | 118 | 14.7 | |
Chronic diseases | None | 598 | 74.8 |
One or more | 202 | 25.2 | |
Education | Junior high school | 48 | 6.0 |
Senior high school | 259 | 32.4 | |
Vocational school/college | 108 | 13.5 | |
University | 352 | 44.0 | |
Graduate school | 33 | 4.1 | |
Occupation | Self-employed | 40 | 5.0 |
Company employee | 270 | 33.7 | |
Civil servant | 26 | 3.2 | |
Medical expert | 16 | 2.0 | |
Part-time worker | 106 | 13.2 | |
Housekeeper | 76 | 9.5 | |
Student | 110 | 13.8 | |
Unemployed | 142 | 17.8 | |
Others | 14 | 1.8 | |
Annual income | Under JPY 3,000,000 | 450 | 56.3 |
JPY 3,000,000–6,000,000 | 216 | 27.0 | |
JPY 6,000,000–9,000,000 | 71 | 8.9 | |
JPY 9,000,000–12,000,000 | 33 | 4.1 | |
JPY 12,000,000–15,000,000 | 11 | 1.4 | |
Over JPY 15,000,000 | 19 | 2.3 |
Yes (%) | Unsure (%) | No (%) | p * | ||
---|---|---|---|---|---|
Sex | Males | 349 (83.5) | 35 (8.4) | 34 (8.1) | 0.033 |
Females | 291 (76.2) | 49 (12.8) | 42 (11.0) | ||
Age group | Under 19 years | 68 (70.1) | 18 (18.6) | 11 (11.3) | <0.001 |
20–29 years | 101 (64.7) | 37 (23.8) | 18 (11.5) | ||
30–39 years | 84 (75.0) | 8 (7.1) | 80 (17.9) | ||
40–49 years | 104 (87.4) | 8 (6.7) | 7 (5.9) | ||
50–59 years | 86 (86.9) | 5 (5.0) | 8 (8.1) | ||
60–69 years | 87 (87.9) | 4 (4.0) | 8 (8.1) | ||
Over 70 years | 110 (93.2) | 4 (3.4) | 4 (3.4) | ||
Chronic diseases | None | 461 (77.1) | 72 (12.0) | 65 (10.9) | 0.002 |
One or more | 179 (88.6) | 12 (5.9) | 11 (5.5) | ||
Education | Junior high school | 29 (60.4) | 12 (25.0) | 7 (14.6) | <0.001 |
Senior high school | 215 (83.0) | 23 (8.9) | 21 (8.1) | ||
Vocational school/college | 90 (83.3) | 4 (3.7) | 14 (13.0) | ||
University | 280 (79.5) | 38 (10.8) | 34 (9.7) | ||
Graduate school | 26 (78.8) | 7 (21.2) | 0 (0.0) | ||
Occupation | Self-employed | 32 (80.0) | 6 (15.0) | 2 (5.0) | 0.017 ** |
Company employee | 204 (75.6) | 40 (14.8) | 26 (9.6) | ||
Civil servant | 26 (100.0) | 0 (0.0) | 0 (0.0) | ||
Medical expert | 15 (93.8) | 1 (6.2) | 0 (0.0) | ||
Part-time worker | 86 (81.1) | 3 (2.8) | 17 (16.1) | ||
Housekeeper | 65 (85.5) | 4 (5.3) | 7 (9.2) | ||
Student | 85 (77.3) | 13 (11.8) | 12 (10.9) | ||
Unemployed | 115 (81.0) | 16 (11.3) | 11 (7.7) | ||
Others | 12 (85.8) | 1 (7.1) | 1 (7.1) | ||
Annual income | Under JPY 3,000,000 | 365 (81.1) | 34 (7.6) | 51 (11.3) | 0.067 ** |
JPY 3,000,000–6,000,000 | 168 (77.8) | 31 (14.3) | 17 (7.9) | ||
JPY 6,000,000–9,000,000 | 59 (83.1) | 8 (11.3) | 4 (5.6) | ||
JPY 9,000,000–12,000,000 | 27 (81.8) | 4 (12.1) | 2 (6.1) | ||
JPY 12,000,000–15,000,000 | 8 (72.7) | 3 (27.3) | 0 (0.0) | ||
Over JPY 15,000,000 | 13 (68.4) | 4 (21.1) | 2 (10.5) |
Variables | Model 1 | Model 2 † | Model 3 ‡ | ||||
---|---|---|---|---|---|---|---|
AOR | 95%CI | AOR | 95%CI | AOR | 95%CI | ||
Information sources | TV news | 2.56 * | 1.68–3.89 | 2.31 * | 1.48–3.63 | 2.44 * | 1.54–3.85 |
Newspapers | 1.86 * | 1.10–3.13 | 1.29 | 0.74–2.25 | 1.23 | 0.69–2.19 | |
Weekly magazines | 0.77 | 0.27–2.18 | 0.82 | 0.28–2.41 | 0.85 | 0.28–2.54 | |
Websites of MHLW/NIID | 1.55 | 0.87–2.77 | 1.57 | 0.86–2.84 | 1.63 | 0.87–3.03 | |
Covi-Navi website | 0.39 | 0.05–2.82 | 0.51 | 0.07–3.77 | 0.35 | 0.04–2.72 | |
Medical associations’/public health centers’ websites | 1.92 | 0.58–6.27 | 2.04 | 0.59–6.99 | 2.51 | 0.70–8.94 | |
Pharmaceutical companies’ websites | 3.01 | 0.48–18.56 | 3.83 | 0.56–26.0 | 5.21 | 0.68–39.60 | |
Summary websites of COVID-19 by non-experts | 0.29 | 0.08–1.00 | 0.27 * | 0.07–0.97 | 0.21 * | 0.06–0.77 | |
SNS (Facebook, Twitter) | 0.93 | 0.54–1.59 | 1.35 | 0.76–2.40 | 1.43 | 0.79–2.59 | |
Internet vide sites (YouTube, TikTok) | 0.45 * | 0.22–0.92 | 0.37 * | 0.17–0.79 | 0.33 * | 0.15–0.73 | |
Doctors’ personal websites | 0.19 * | 0.06–0.64 | 0.17 * | 0.04–0.60 | 0.16 * | 0.04–0.59 | |
Non-doctors’ personal websites | 0.97 | 0.09–9.79 | 0.99 | 0.09–10.36 | 0.78 | 0.07–8.53 | |
Family doctor | 1.44 | 0.70–2.95 | 1.22 | 0.56–2.64 | 1.18 | 0.54–2.59 | |
Neighborhoods/friends/families | 1.02 | 0.62–1.70 | 1.16 | 0.69–1.97 | 1.09 | 0.63–1.86 | |
Publicity/direct visits from local government office/health center | 1.69 | 0.97–2.88 | 1.32 | 0.74–2.36 | 1.47 | 0.80–2.69 | |
Sex | Males | 1 | - | 1 | - | ||
Females | 0.82 | 0.54–1.23 | 0.70 | 0.45–1.09 | |||
Age group | Under 19 years | 1 | - | 1 | - | ||
20–29 years | 0.80 | 0.45–1.44 | 0.74 | 0.38–1.47 | |||
30–39 years | 1.23 | 0.64–2.35 | 1.03 | 0.49–2.16 | |||
40–49 years | 2.81 * | 1.34–5.89 | 2.51 * | 1.10–5.73 | |||
50–59 years | 2.46 * | 1.12–5.42 | 1.98 | 0.82–4.77 | |||
60–69 years | 2.58 * | 1.11–5.97 | 1.97 | 0.78–4.97 | |||
Over 70 years | 4.57 * | 1.82–11.49 | 3.24 * | 1.17–8.96 | |||
Presence of chronic diseases | None | 1 | - | ||||
One or more | 1.55 | 0.84–2.85 | |||||
Education | Junior high school | 1 | - | ||||
Senior high school | 3.32 * | 1.54–7.14 | |||||
Vocational school/College | 3.14 * | 1.23–8.00 | |||||
University | 2.51 * | 1.13–5.55 | |||||
Graduate school | 1.69 | 0.50–5.68 | |||||
Annual income | Under JPY 3,000,000 | 1 | - | ||||
JPY 3,000,000–6,000,000 | 0.62 * | 0.38–0.99 | |||||
JPY 6,000,000–9,000,000 | 0.70 | 0.32–1.50 | |||||
JPY 9,000,000–12,000,000 | 0.76 | 0.26–2.21 | |||||
JPY 12,000,000–15,000,000 | 0.41 | 0.08–2.16 | |||||
Over JPY 15,000,000 | 0.42 | 0.13–1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoda, T.; Suksatit, B.; Tokuda, M.; Katsuyama, H. The Relationship between Sources of COVID-19 Vaccine Information and Willingness to Be Vaccinated: An Internet-Based Cross-Sectional Study in Japan. Vaccines 2022, 10, 1041. https://doi.org/10.3390/vaccines10071041
Yoda T, Suksatit B, Tokuda M, Katsuyama H. The Relationship between Sources of COVID-19 Vaccine Information and Willingness to Be Vaccinated: An Internet-Based Cross-Sectional Study in Japan. Vaccines. 2022; 10(7):1041. https://doi.org/10.3390/vaccines10071041
Chicago/Turabian StyleYoda, Takeshi, Benjamas Suksatit, Masaaki Tokuda, and Hironobu Katsuyama. 2022. "The Relationship between Sources of COVID-19 Vaccine Information and Willingness to Be Vaccinated: An Internet-Based Cross-Sectional Study in Japan" Vaccines 10, no. 7: 1041. https://doi.org/10.3390/vaccines10071041
APA StyleYoda, T., Suksatit, B., Tokuda, M., & Katsuyama, H. (2022). The Relationship between Sources of COVID-19 Vaccine Information and Willingness to Be Vaccinated: An Internet-Based Cross-Sectional Study in Japan. Vaccines, 10(7), 1041. https://doi.org/10.3390/vaccines10071041