Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (403)

Search Parameters:
Journal = Bioengineering
Section = Biomechanics and Sports Medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1427 KB  
Article
Performance Insights in Speed Climbing: Quantitative and Qualitative Analysis of Key Movement Metrics
by Dominik Pandurević, Paweł Draga, Alexander Sutor and Klaus Hochradel
Bioengineering 2025, 12(9), 957; https://doi.org/10.3390/bioengineering12090957 (registering DOI) - 6 Sep 2025
Abstract
This study presents a comprehensive analysis of Speed Climbing athletes by examining motion parameters critical to elite performance. As such, several key values are extracted from about 900 competition recordings in order to generate a dataset for the identification of patterns in athletes’ [...] Read more.
This study presents a comprehensive analysis of Speed Climbing athletes by examining motion parameters critical to elite performance. As such, several key values are extracted from about 900 competition recordings in order to generate a dataset for the identification of patterns in athletes’ technique and efficiency. A CNN-based framework is used to automate the detection of human keypoints and features, enabling a large-scale evaluation of climbing dynamics. The results revealed significant variations in performance for single sections of the wall, particularly in relation to start reaction times (with differences of up to 0.27 s) and increased split times the closer the athletes are to the end of the Speed Climbing wall (from 0.39 s to 0.45 s). In addition, a more detailed examination of the movement sequences was carried out by analyzing the velocity trajectories of hands and feet. The results showed that coordinated and harmonic movements, especially of the lower limbs, correlate strongly with the performance outcome. To ensure an individualized view of the data points, a comparison was made between multiple athletes, revealing insights into the influence of individual biomechanics on the efficiency of movements. The findings provide both trainers and athletes with interesting insights in relation to tailoring training methods by including split time benchmarks and limb coordination. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

14 pages, 794 KB  
Article
Comparative Biomechanical Strategies of Running Gait Among Healthy and Recently Injured Pediatric and Adult Runners
by Cole Verble, Ryan M. Nixon, Lydia Pezzullo, Matthew Martenson, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(9), 937; https://doi.org/10.3390/bioengineering12090937 - 30 Aug 2025
Viewed by 319
Abstract
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running [...] Read more.
Biomechanical strategies of running gait were compared among healthy and recently injured pediatric and adult runners (N = 207). Spatiotemporal, kinematic, and kinetic parameters (ground reaction force [GRF], vertical average loading rate [VALR]) and leg stiffness (Kvert) were obtained during running on an instrumented treadmill with simultaneous 3D-motion capture. Significant age X injury interactions existed for cadence, peak GRF, and peak joint angles in stance. Cadence was fastest in healthy adults and 2–3% lower in other groups (p = 0.049). Injured adults exhibited higher variance in stance and swing time, whereas injured pediatric runners had lower variance in these measures (p < 0.05). Peak GRF was highest in non-injured adults (2.6–2.7 BW) and lowest in injured adults (2.4 BW; p < 0.05). VALRs (BW/s) were higher among pediatric groups, irrespective of injury (p < 0.05). The interaction for ankle dorsiflexion/plantarflexion moment was significant (p = 0.05). Healthy pediatric runners produced more plantarflexion than all other groups (p = 0.026). Pelvis rotation was highest in healthy pediatric runners and lowest in healthy adults (17.3° versus 12.0°; p = 0.036). Pediatric runners did not leverage force-dampening strategies, but reduced gait cycle time variance and controlled pelvic rotation. Injured adults had lower GRF and longer stance time, indicating a shift toward force mitigation during stance. Age-specific rehabilitation and gait retraining approaches may be warranted. Full article
(This article belongs to the Special Issue Biomechanics of Physical Exercise)
Show Figures

Figure 1

20 pages, 678 KB  
Article
Feasibility and Preliminary Efficacy of Wearable Focal Vibration Therapy on Gait and Mobility in People with Multiple Sclerosis: A Pilot Study
by Hongwu Wang, Yun Chan Shin, Nicole J. Tester and Torge Rempe
Bioengineering 2025, 12(9), 932; https://doi.org/10.3390/bioengineering12090932 - 29 Aug 2025
Viewed by 372
Abstract
Multiple sclerosis (MS) is a chronic disease of the central nervous system that significantly impairs gait and mobility, contributing to a high risk of falls, reduced participation in daily activities, and diminished quality of life. Despite existing interventions such as exercise programs and [...] Read more.
Multiple sclerosis (MS) is a chronic disease of the central nervous system that significantly impairs gait and mobility, contributing to a high risk of falls, reduced participation in daily activities, and diminished quality of life. Despite existing interventions such as exercise programs and pharmacological treatments, challenges such as fatigue, pain, and limited accessibility underscore the need for alternative therapies. Focal vibration therapy (FVT) has shown promise in improving gait, reducing spasticity, and enhancing mobility in people with MS (PwMS). However, further research is required to evaluate its long-term feasibility and optimize its parameters. This study examined the feasibility and preliminary efficacy of a home-based four-week wearable FVT device on gait and explored how FVT parameters impact gait and mobility outcomes. In this pilot double-blind randomized controlled trial, 22 PwMS were randomized into control and vibration groups (four FVT groups with varying vibration intensities/durations). Participants wore Myovolt® vibrators on distal quadricep muscles near the rectus femoris insertion (approximately 2 cm from the medial edge of the patella), gastrocnemius/soleus, and tibialis anterior muscles (10 min/muscle, 3 days/week, 4 weeks). Feasibility was evaluated via adherence and satisfaction (QUEST 2.0, interviews). Gait (3D motion analysis) and mobility (T25FW) were assessed at baseline and post-intervention. Data were analyzed using descriptive/inferential statistics and thematic analysis. Of 22 participants, 17 completed post-intervention (16 intervention, 1 control). Wearable FVT showed promising feasibility, with high satisfaction despite minor adjustability issues. Intervention groups improved gait speed (p = 0.014), stride length (p = 0.004), and ankle angle (p = 0.043), but T25FW was unchanged (p > 0.05). High-intensity FVT enhanced knee/hip moments. This study’s results support the feasibility of wearable FVT for home-based management of mobility symptoms in MS with high participant satisfaction and acceptance. Notable gains in gait parameters suggest FVT’s potential to enhance neuromuscular control and proprioception but may be insufficient to lead to mobility improvements. Subgroup analyses highlighted the impact of vibration intensity and duration on knee joint mechanics, emphasizing the need for personalized dosing strategies. Challenges included participant retention in the control group and burdensome biomechanical assessments, which will be addressed in future studies through improved sham devices and a larger sample size. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Graphical abstract

15 pages, 2461 KB  
Article
A Novel Protocol for Integrated Assessment of Upper Limbs Using the Optoelectronic Motion Analysis System: Validation and Usability in Healthy People
by Luca Emanuele Molteni, Luigi Piccinini, Daniele Panzeri, Ettore Micheletti and Giuseppe Andreoni
Bioengineering 2025, 12(9), 905; https://doi.org/10.3390/bioengineering12090905 - 23 Aug 2025
Viewed by 361
Abstract
(1) Background: Upper limb (UL) function plays a central role in daily life, enabling essential tasks such as reaching, grasping, and eating. While numerous tools exist to evaluate UL kinematics, their application in pediatric populations is often limited by a lack of age-specific [...] Read more.
(1) Background: Upper limb (UL) function plays a central role in daily life, enabling essential tasks such as reaching, grasping, and eating. While numerous tools exist to evaluate UL kinematics, their application in pediatric populations is often limited by a lack of age-specific validation. This study presents a novel motion analysis protocol featuring a customized marker set, aimed at assessing UL movements in the three anatomical planes across different age groups, with a focus on pediatric applicability. (2) Materials and Methods: A SmartDX motion capture system was used, with 30 markers positioned on the upper body, referencing the trunk as the root of the kinematic chain. Ten healthy participants (mean age: 18.69 ± 12.45 years; range: 8.0–41.4) without UL impairments were recruited. The broad age range was intentionally selected to assess the protocol’s transversal applicability. (3) Results: Results showed excellent intra-operator reliability for shoulder and wrist kinematics (ICC > 0.906) and good reliability for elbow movements (ICC > 0.755). Inter-operator reliability was good to excellent (shoulder ICC > 0.958; elbow ICC > 0.762; wrist ICC > 0.826) Usability, measured via the System Usability Scale, was rated as good (83.25). (4) Conclusions: The proposed protocol demonstrated strong reliability and practical usability, supporting its adoption in clinical and research settings. Its design allows for adaptability across motion capture platforms, promoting wider implementation in pediatric UL functional assessment. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Graphical abstract

15 pages, 5996 KB  
Article
A High-Fidelity mmWave Radar Dataset for Privacy-Sensitive Human Pose Estimation
by Yuanzhi Su, Huiying (Cynthia) Hou, Haifeng Lan and Christina Zong-Hao Ma
Bioengineering 2025, 12(8), 891; https://doi.org/10.3390/bioengineering12080891 - 21 Aug 2025
Viewed by 534
Abstract
Human pose estimation (HPE) in privacy-sensitive environments such as healthcare facilities and smart homes demands non-visual sensing solutions. Millimeter-wave (mmWave) radar emerges as a promising alternative, yet its development is hindered by the scarcity of high-fidelity datasets with accurate annotations. This paper introduces [...] Read more.
Human pose estimation (HPE) in privacy-sensitive environments such as healthcare facilities and smart homes demands non-visual sensing solutions. Millimeter-wave (mmWave) radar emerges as a promising alternative, yet its development is hindered by the scarcity of high-fidelity datasets with accurate annotations. This paper introduces mmFree-Pose, the first dedicated mmWave radar dataset specifically designed for privacy-preserving HPE. Collected through a novel visual-free framework that synchronizes mmWave radar with VDSuit-Full motion-capture sensors, our dataset covers 10+ actions, from basic gestures to complex falls. Each sample provides (i) raw 3D point clouds with Doppler velocity and intensity, (ii) precise 23-joint skeletal annotations, and (iii) full-body motion sequences in privacy-critical scenarios. Crucially, all data is captured without the use of visual sensors, ensuring fundamental privacy protection by design. Unlike conventional approaches that rely on RGB or depth cameras, our framework eliminates the risk of visual data leakage while maintaining high annotation fidelity. The dataset also incorporates scenarios involving occlusions, different viewing angles, and multiple subject variations to enhance generalization in real-world applications. By providing a high-quality and privacy-compliant dataset, mmFree-Pose bridges the gap between RF sensing and home monitoring applications, where safeguarding personal identity and behavior remains a critical concern. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

42 pages, 2529 KB  
Review
Artificial Intelligence in Sports Biomechanics: A Scoping Review on Wearable Technology, Motion Analysis, and Injury Prevention
by Marouen Souaifi, Wissem Dhahbi, Nidhal Jebabli, Halil İbrahim Ceylan, Manar Boujabli, Raul Ioan Muntean and Ismail Dergaa
Bioengineering 2025, 12(8), 887; https://doi.org/10.3390/bioengineering12080887 - 20 Aug 2025
Viewed by 1910
Abstract
Aim: This scoping review examines the application of artificial intelligence (AI) in sports biomechanics, with a focus on enhancing performance and preventing injuries. The review addresses key research questions, including primary AI methods, their effectiveness in improving athletic performance, their potential for injury [...] Read more.
Aim: This scoping review examines the application of artificial intelligence (AI) in sports biomechanics, with a focus on enhancing performance and preventing injuries. The review addresses key research questions, including primary AI methods, their effectiveness in improving athletic performance, their potential for injury prediction, sport-specific applications, strategies for translating knowledge, ethical considerations, and remaining research gaps. Following the PRISMA-ScR guidelines, a comprehensive literature search was conducted across five databases (PubMed/MEDLINE, Web of Science, IEEE Xplore, Scopus, and SPORTDiscus), encompassing studies published between January 2015 and December 2024. After screening 3248 articles, 73 studies met the inclusion criteria (Cohen’s kappa = 0.84). Data were collected on AI techniques, biomechanical parameters, performance metrics, and implementation details. Results revealed a shift from traditional statistical models to advanced machine learning methods. Based on moderate-quality evidence from 12 studies, convolutional neural networks reached 94% agreement with international experts in technique assessment. Computer vision demonstrated accuracy within 15 mm compared to marker-based systems (6 studies, moderate quality). AI-driven training plans showed 25% accuracy improvements (4 studies, limited evidence). Random forest models predicted hamstring injuries with 85% accuracy (3 studies, moderate quality). Learning management systems enhanced knowledge transfer, raising coaches’ understanding by 45% and athlete adherence by 3.4 times. Implementing integrated AI systems resulted in a 23% reduction in reinjury rates. However, significant challenges remain, including standardizing data, improving model interpretability, validating models in real-world settings, and integrating them into coaching routines. In summary, incorporating AI into sports biomechanics marks a groundbreaking advancement, providing analytical capabilities that surpass traditional techniques. Future research should focus on creating explainable AI, applying rigorous validation methods, handling data ethically, and ensuring equitable access to promote the widespread and responsible use of AI across all levels of competitive sports. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

33 pages, 7581 KB  
Article
Effect of Bone Quality, Implant Length, and Loading Timing on Stress Transmission in the Posterior Mandible: A Finite Element Analysis
by Ladise Ceylin Has and Recep Orbak
Bioengineering 2025, 12(8), 888; https://doi.org/10.3390/bioengineering12080888 - 20 Aug 2025
Viewed by 455
Abstract
This study aimed to evaluate the biomechanical effects of implant length, mandibular morphology, graft application, loading timing, and force direction on peri-implant stress distribution using finite element analysis (FEA). Five mandibular models representing normal, atrophic, and graft-augmented conditions were constructed. Each model was [...] Read more.
This study aimed to evaluate the biomechanical effects of implant length, mandibular morphology, graft application, loading timing, and force direction on peri-implant stress distribution using finite element analysis (FEA). Five mandibular models representing normal, atrophic, and graft-augmented conditions were constructed. Each model was analyzed with 6 mm and 12 mm Straumann Standard implants under two loading types, vertical (200 N) and oblique (100 N at 30°), across three loading protocols (immediate, early, and delayed). Stress analysis was conducted using von Mises and principal stress criteria, focusing on cortical and trabecular bone, the implant–abutment complex, and the mandibular canal. Under vertical loading, increasing the implant length from 6 mm to 12 mm reduced the maximum tensile stresses in trabecular bone from 0.930 MPa to 0.475 MPa (an approximate 49% decrease). However, oblique loading caused a substantial increase in stresses in all regions, with trabecular compressive stress reaching up to −19.102 MPa and cortical tensile stress up to 179.798 MPa in the atrophic mandible. Graft application significantly reduced peri-implant stresses; for example, maximum compressive stress in the cortical bone decreased from −227.051 MPa in the atrophic model to −13.395 MPa in the grafted model under similar loading conditions. Although the graft donor site was not explicitly modeled, the graft material (Bio-Oss) was anatomically positioned in the posterior mandible to simulate buccolingual augmentation and its biomechanical effects. Stress concentrations around the mandibular canal remained below the 6 MPa threshold for neurovascular injury in all scenarios, indicating a biomechanically safe outcome. These findings indicate that oblique loading and reduced bone volume may compromise implant survival, whereas graft application plays a critical role in mitigating stress levels and enhancing biomechanical stability. The study also emphasizes the importance of considering force direction and bone quality in clinical planning, and highlights the novelty of combining graft simulation with FEA to assess its protective role beyond implant length alone. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

17 pages, 7610 KB  
Article
Comprehensive Analysis of Chronic Low Back Pain: Morphological and Functional Impairments, Physical Activity Patterns, and Epidemiology in a German Population-Based Cross-Sectional Study
by Bernhard Ulrich Hoehl, Nima Taheri, Lukas Schönnagel, Luis Alexander Becker, Lukas Mödl, Sandra Reitmaier, Matthias Pumberger and Hendrik Schmidt
Bioengineering 2025, 12(8), 878; https://doi.org/10.3390/bioengineering12080878 - 14 Aug 2025
Viewed by 502
Abstract
Low back pain (LBP) is the leading cause of disability worldwide. While studies often focus on the relationship between magnetic resonance imaging (MRI) findings and symptoms or the link between pain and disability, comprehensive assessments that incorporate both structural and functional impairments are [...] Read more.
Low back pain (LBP) is the leading cause of disability worldwide. While studies often focus on the relationship between magnetic resonance imaging (MRI) findings and symptoms or the link between pain and disability, comprehensive assessments that incorporate both structural and functional impairments are lacking. This study prospectively includes standardized questionnaires, medical histories, clinical exams, and lumbar–pelvic MRI. Participants were grouped by pain status, physical activity, structural impairments (e.g., Pfirrmann, Krämer, Fujiwara, Meyerding), and posture/mobility deviations. Data were analyzed using the Kruskal–Wallis test. Of the 1262 participants, 392 (31%) reported chronic low back pain (cLBP), 226 (18%) had intermittent low back pain (iLBP), and 335 (27%) were pain-free. Significant differences were observed in high physical activity levels based on WHO criteria (cLBP: 79%, iLBP: 78%, no-BP(2): 86%, p = 0.020, η2 = 0.008). Morphological impairments were more prevalent in cLBP (75%) and iLBP (76%) compared to no-BP(2) (55%) (p = 0.000, η2 = 0.043). Functional impairments showed similar patterns (cLBP: 42%, iLBP: 51%, no-BP(2): 38%, p = 0.014, η2 = 0.010). Participants with functional impairments tended to be younger. Consequently, the current classification system for diagnostics needs to incorporate alternative categories to more accurately differentiate types of back pain, which could enhance therapeutic outcomes. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

16 pages, 5536 KB  
Article
Correlation Analysis of Suture Anchor Pull-Out Strength with Cortical Bone Thickness and Cancellous Bone Density on a Finite Element Model
by Jung Ho Kim, Jeon Jong Hyeok, Jae Hyun Woo and Sung Min Kim
Bioengineering 2025, 12(8), 863; https://doi.org/10.3390/bioengineering12080863 - 11 Aug 2025
Viewed by 433
Abstract
This study aimed to assess, using finite element analysis (FEA), the mechanical effects of cortical bone thickness and cancellous bone density on the pull-out strength of suture anchors. A PEEK anchor was modeled and embedded in synthetic bone blocks with cortical thicknesses ranging [...] Read more.
This study aimed to assess, using finite element analysis (FEA), the mechanical effects of cortical bone thickness and cancellous bone density on the pull-out strength of suture anchors. A PEEK anchor was modeled and embedded in synthetic bone blocks with cortical thicknesses ranging from 1 to 5 mm and cancellous densities of 10 PCF, 20 PCF, and 30 PCF. Axial tensile loading simulations were conducted for all combinations, and selected cases were validated through experimental pull-out tests using commercial synthetic bone, demonstrating agreement within ±6%. Both cortical thickness and cancellous density were found to enhance pull-out resistance, though the magnitude and pattern varied with density. At 10 PCF, pull-out strength increased linearly with cortical thickness. At 20 PCF, substantial gains were observed between 2 and 4 mm, followed by a plateau. At 30 PCF, most of the increase was confined between 2 and 3 mm, with minimal improvement thereafter. These findings suggest that fixation strategies should be adapted on the basis of bone quality and provide biomechanical insights to inform patient-specific implant design and surgical planning. Full article
(This article belongs to the Section Biomechanics and Sports Medicine)
Show Figures

Figure 1

25 pages, 3340 KB  
Article
Approach to Standardized Material Characterization of the Human Lumbopelvic System: Testing and Evaluation
by Marc Gebhardt, Sascha Kurz, Fanny Grundmann, Thomas Klink, Volker Slowik, Christoph-Eckhard Heyde and Hanno Steinke
Bioengineering 2025, 12(8), 862; https://doi.org/10.3390/bioengineering12080862 - 11 Aug 2025
Viewed by 470
Abstract
The osseo-ligamentous lumbopelvic complex is essential for musculoskeletal load transfer, yet location-specific material data and standardized test protocols remain scarce, which is a hindrance for comparability. Based on 91 specimen locations per cadaver (five cadavers, average age: 77.3 years), we developed detailed methods [...] Read more.
The osseo-ligamentous lumbopelvic complex is essential for musculoskeletal load transfer, yet location-specific material data and standardized test protocols remain scarce, which is a hindrance for comparability. Based on 91 specimen locations per cadaver (five cadavers, average age: 77.3 years), we developed detailed methods for specimen preparation and mechanical testing (bending, tensile, and compression) with defined boundary conditions. Multiple measurements were taken to assess repeatability. The proposed methods allow us to identify location-specific properties of the lumbopelvic system for the first time. Cortical bone exhibited an elastic modulus of 1750 MPa and an ultimate strength of 28.2 MPa, while those of trabecular bone were 32.7 MPa and 1.26 MPa, and soft tissues revealed values of 148 MPa and 14.3 MPa for fascial tissue and 103 MPa with 10.7 MPa for ligamentous tissue, respectively. The quantified properties for cortical and trabecular bone and soft tissues not only enhance the comparability of material properties but also support more accurate numerical simulations and implant design. Furthermore, the ease of implementation and standardization of these methods enable their widespread application, as well as the accumulation of a broad database and the setting of benchmarks for future investigations. Full article
(This article belongs to the Special Issue Biomechanics of Orthopaedic Rehabilitation)
Show Figures

Graphical abstract

16 pages, 1173 KB  
Review
Pregnancy-Related Spinal Biomechanics: A Review of Low Back Pain and Degenerative Spine Disease
by Ezra T. Yoseph, Rukayat Taiwo, Ali Kiapour, Gavin Touponse, Elie Massaad, Marinos Theologitis, Janet Y. Wu, Theresa Williamson and Corinna C. Zygourakis
Bioengineering 2025, 12(8), 858; https://doi.org/10.3390/bioengineering12080858 - 10 Aug 2025
Viewed by 1028
Abstract
Pregnancy induces substantial anatomical, hormonal, and biomechanical changes in the spine and pelvis to accommodate fetal growth and maintain postural adaptation. This narrative review synthesizes peer-reviewed evidence regarding pregnancy-related spinal biomechanics, with a particular focus on low back pain, spinopelvic alignment, sacroiliac joint [...] Read more.
Pregnancy induces substantial anatomical, hormonal, and biomechanical changes in the spine and pelvis to accommodate fetal growth and maintain postural adaptation. This narrative review synthesizes peer-reviewed evidence regarding pregnancy-related spinal biomechanics, with a particular focus on low back pain, spinopelvic alignment, sacroiliac joint dysfunction, and potential contributions to degenerative spinal conditions. A systematic search of PubMed, Embase, and Google Scholar was conducted using Boolean operators and relevant terms, yielding 1050 unique records, with 53 peer-reviewed articles ultimately cited. The review reveals that increased lumbar lordosis, ligamentous laxity, altered gait mechanics, and muscular deconditioning elevate mechanical load on the lumbar spine, predisposing up to 56% of pregnant individuals to low back pain. These changes are often associated with sacroiliac joint laxity, anterior pelvic tilt, and multiparity. Long-term risks may include degenerative disc disease and spondylolisthesis. Conservative interventions such as pelvic floor muscle training, prenatal exercise, and surface topography monitoring offer symptom relief and support early rehabilitation, although standardized protocols and longitudinal outcome data remain limited. Pregnancy-related spinal changes are multifactorial and clinically relevant; an interdisciplinary approach involving spinal biomechanics, physical therapy, and obstetric care is critical for optimizing maternal musculoskeletal health. Full article
(This article belongs to the Special Issue Spine Biomechanics)
Show Figures

Figure 1

13 pages, 1454 KB  
Article
Lower Limb Inter-Joint Coordination and End-Point Control During Gait in Adolescents with Early Treated Unilateral Developmental Dysplasia of the Hip
by Chu-Fen Chang, Tung-Wu Lu, Chia-Han Hu, Kuan-Wen Wu, Chien-Chung Kuo and Ting-Ming Wang
Bioengineering 2025, 12(8), 836; https://doi.org/10.3390/bioengineering12080836 - 31 Jul 2025
Viewed by 503
Abstract
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This [...] Read more.
Background: Residual deficits after early treatment of developmental dysplasia of the hip (DDH) using osteotomy often led to asymmetrical gait deviations with increased repetitive rates of ground reaction force (GRF) in both hips, resulting in a higher risk of early osteoarthritis. This study investigated lower limb inter-joint coordination and swing foot control during level walking in adolescents with early-treated unilateral DDH. Methods: Eleven female adolescents treated early for DDH using Pemberton osteotomy were compared with 11 age-matched healthy controls. The joint angles and angular velocities of the hip, knee, and ankle were measured, and the corresponding phase angles and continuous relative phase (CRP) for hip–knee and knee–ankle coordination were obtained. The variability of inter-joint coordination was quantified using the deviation phase values obtained as the time-averaged standard deviations of the CRP curves over multiple trials. Results: The DDH group exhibited a flexed posture with increased variability in knee–ankle coordination of the affected limb throughout the gait cycle compared to the control group. In contrast, the unaffected limb compensated for the kinematic alterations of the affected limb with reduced peak angular velocities but increased knee–ankle CRP over double-limb support and trajectory variability over the swing phase. Conclusions: The identified changes in inter-joint coordination in adolescents with early treated DDH provide a plausible explanation for the previously reported increased GRF loading rates in the unaffected limb, a risk factor of premature OA. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

15 pages, 1395 KB  
Article
Ground Reaction Forces and Impact Loading Among Runners with Different Acuity of Tibial Stress Injuries: Advanced Waveform Analysis for Running Mechanics
by Ryan M. Nixon, Sharareh Sharififar, Matthew Martenson, Lydia Pezzullo, Kevin R. Vincent and Heather K. Vincent
Bioengineering 2025, 12(8), 802; https://doi.org/10.3390/bioengineering12080802 - 26 Jul 2025
Viewed by 795
Abstract
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) [...] Read more.
Conventional ground reaction force (GRF) and load rate (LR) analyses may overlook temporal and waveform characteristics that reflect injury status and acuity. This study used an alternative GRF processing methodology to characterize GRF waveforms among runners with symptomatic medial tibial stress fractures (MTSS) and those recovering from tibial stress fractures (TSF; both unilateral [UL] and bilateral [BL]). This cross-sectional analysis of runners (n = 66) included four groups: symptomatic MTSS, recovering from UL or BL TSF, or uninjured case-matched controls. Participants ran at self-selected speed on an instrumented treadmill. Kinematics were collected with a 3D optical motion analysis system. Double-Gaussian models described the biphasic loading pattern of running gait (initial impact, active phases). Gaussian parameters described relative differences in the GRF waveform by injury condition. LR was calculated using the central difference numerical derivative of the raw normalized net force data. During the impact phase (0–20% of stance), controls and BL TSF produced higher GRF amplitudes than UL TSF and MTSS (p < 0.05). BL TSF and controls had greater maximal positive LR and minimum LR than UL TSF and MTSS. Peak medial GRF was 18–43% higher in the BL TSF group than in MTSS and UL TSF (p < 0.05). Correlations existed between tibial pain severity and early stance net GRF (r = 0.512; p = 0.016) and between pain severity and the duration since diagnosis for LR values during the impact phase (r values = 0.389–0.522; all p < 0.05). Collectively, these data suggest that this waveform modeling approach can differentiate injury status and pain acuity in runners. Early stance GRF and LR may offer novel insight into the management of running-related injuries. Full article
Show Figures

Graphical abstract

13 pages, 886 KB  
Article
The Associations Between the Swimming Speed, Anthropometrics, Kinematics, and Kinetics in the Butterfly Stroke
by Mafalda P. Pinto, Henrique P. Neiva, Tatiana Sampaio, João P. Oliveira, Daniel A. Marinho, Tiago M. Barbosa and Jorge E. Morais
Bioengineering 2025, 12(8), 797; https://doi.org/10.3390/bioengineering12080797 - 25 Jul 2025
Viewed by 628
Abstract
There is scarce information about what characterizes the swimming speed in the butterfly stroke and the role of thrust in its characterization and prediction. The aim of this study was to compare the fastest and poorest butterfly swimmers based on a set of [...] Read more.
There is scarce information about what characterizes the swimming speed in the butterfly stroke and the role of thrust in its characterization and prediction. The aim of this study was to compare the fastest and poorest butterfly swimmers based on a set of anthropometric, kinematic, and kinetic variables and to identify the swimming speed predictors. Eight young male swimmers were divided into two equal groups (each group comprising four swimmers). The swimming speed, as well as a set of anthropometric, kinematic, and kinetic variables, were measured. The swimming speed presented significant differences between the groups (p = 0.011, d = 2.18). The stroke frequency (kinematics, p = 0.027, d = 1.69) and thrust (kinetics, p = 0.034, d = 1.57) also presented significant differences between the groups. The swimming speed presented significant correlations with the stroke index (rs = 0.83, p = 0.011) and thrust (rs = 0.83, p = 0.011). The swimming speed was predicted by a combination of the stroke frequency and thrust (R2 = 0.84, p = 0.010). Coaches and athletes must be aware that combining fast stroke frequencies and the generation of greater thrust leads to the fastest swimming speeds. Full article
Show Figures

Figure 1

14 pages, 851 KB  
Article
Evaluating Accuracy of Smartphone Facial Scanning System with Cone-Beam Computed Tomography Images
by Konstantinos Megkousidis, Elie Amm and Melih Motro
Bioengineering 2025, 12(8), 792; https://doi.org/10.3390/bioengineering12080792 - 23 Jul 2025
Viewed by 586
Abstract
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study [...] Read more.
Objectives: Facial soft tissue imaging is crucial in orthodontic treatment planning, and the structured light scanning technology found in the latest iPhone models constitutes a promising method. Currently, studies which evaluate the accuracy of smartphone-based three-dimensional (3D) facial scanners are scarce. This study compares smartphone scans with cone-beam computed tomography (CBCT) images. Materials and Methods: Three-dimensional images of 23 screened patients were captured with the camera of an iPhone 13 Pro Max and processed with the Scandy Pro application; CBCT scans were also taken as a standard of care. After establishing unique image pairs of the same patient, linear and angular measurements were compared between the images to assess the scanner’s two-dimensional trueness. Following the co-registration of the virtual models, a heat map was generated, and root mean square (RMS) deviations were calculated for quantitative assessment of 3D trueness. Precision was determined by comparing consecutive 3D facial scans of five participants, while intraobserver reliability was assessed by repeating measurements on five subjects after a two-week interval. Results: This study found no significant difference in soft tissue measurements between smartphone and CBCT images (p > 0.05). The mean absolute difference was 1.43 mm for the linear and 3.16° for the angular measurements. The mean RMS value was 1.47 mm. Intraobserver reliability and scanner precision were assessed, and the Intraclass Correlation Coefficients were found to be excellent. Conclusions: Smartphone facial scanners offer an accurate and reliable alternative to stereophotogrammetry systems, though clinicians should exercise caution when examining the lateral sections of those images due to inherent inaccuracies. Full article
(This article belongs to the Special Issue Orthodontic Biomechanics)
Show Figures

Figure 1

Back to TopTop