Sign in to use this feature.

Years

Between: -

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,128)

Search Parameters:
Journal = Molecules
Section = General

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
803 KB  
Review
Advances in Pseudostellaria heterophylla Research: Current Status and Future Directions
by He Li, Shiying Wang, Zisong Yang and Pengda Ma
Molecules 2025, 30(17), 3656; https://doi.org/10.3390/molecules30173656 (registering DOI) - 8 Sep 2025
Abstract
Pseudostellaria heterophylla, a dual-purpose medicinal and edible herb, has shown significant pharmacological potential, particularly through its immunomodulatory and antitumor activities. This review provides insights into the phytohormone regulatory mechanisms and active-component biosynthesis, highlighting key metabolic pathways and yield-optimization strategies. The interactions between [...] Read more.
Pseudostellaria heterophylla, a dual-purpose medicinal and edible herb, has shown significant pharmacological potential, particularly through its immunomodulatory and antitumor activities. This review provides insights into the phytohormone regulatory mechanisms and active-component biosynthesis, highlighting key metabolic pathways and yield-optimization strategies. The interactions between hormones and genes in root morphology and metabolite accumulation are discussed, offering new perspectives for molecular breeding. Additionally, a multidisciplinary framework is proposed to address cultivation challenges and quality enhancement, laying the groundwork for sustainable utilization of this valuable medicinal plant. Full article
1535 KB  
Review
The Use of Crude Glycerol as a Co-Substrate for Anaerobic Digestion
by Wirginia Tomczak, Sławomir Żak, Anna Kujawska and Maciej Szwast
Molecules 2025, 30(17), 3655; https://doi.org/10.3390/molecules30173655 (registering DOI) - 8 Sep 2025
Abstract
One of the most interesting applications of crude glycerol (CG) is its use for biogas production via the anaerobic co-digestion (AcoD) process. The main aim of the current study was to provide a comprehensive review on the performance of the AcoD of CG [...] Read more.
One of the most interesting applications of crude glycerol (CG) is its use for biogas production via the anaerobic co-digestion (AcoD) process. The main aim of the current study was to provide a comprehensive review on the performance of the AcoD of CG mixed with various substrates. For this purpose, analyses were performed for studies available in the literature wherein one-stage experiments were conducted. To the best of the authors’ knowledge, the present study is the first one which demonstrates an analysis of the main parameters of CG and substrates (e.g., animal manure, sewage sludge, cattle manure and food waste) used for AcoD. Moreover, a detailed analysis of the impact of selected parameters on AcoD performance was carried out. It is demonstrated that the values of key parameters characterizing the CG used for AcoD were within wide ranges. This can be explained by the fact that the composition of CG depends on many factors; for instance, these include the source of oil used for biodiesel production, processing technology, the ratio of reactants, the type of catalyst and the procedure applied. Moreover, performing a literature review allowed us to demonstrate that adding CG to feedstock caused the enhancement of process performance compared to results obtained for mono-digestion. Additionally, it was shown that, in general, increasing the concentration of CG in feedstock led to improvement of the biogas yield; however, a potential inhibitory effect should be considered. Analysis of data available in the literature allowed us to indicate that for most of the experiments performed, a methane (CH4) content in biogas higher than 60% was obtained for CG content in feedstock up to 8% v/v. In addition, it is demonstrated that in order to evaluate the performance of AcoD performed under thermophilic conditions, more studies are required. Finally, it should be pointed out that the present study provides considerable insight into the management of CG. Full article
Show Figures

Figure 1

1 pages, 138 KB  
Correction
Correction: Şeker et al. Comparative Analysis of Phenolic, Carotenoid, and Elemental Profiles in Three Crataegus Species from Şebinkarahisar, Türkiye: Implications for Nutritional Value and Safety. Molecules 2025, 30, 2934
by Mehmet Emin Şeker, Ayşegül Erdoğan and Emriye Ay
Molecules 2025, 30(17), 3647; https://doi.org/10.3390/molecules30173647 - 8 Sep 2025
Abstract
In the original publication [...] Full article
29 pages, 8735 KB  
Article
Fluorescence of 4-Cyanophenylhydrazones: From Molecular Design to Electrospun Polymer Fibers
by Paulina Sobczak-Tyluś, Tomasz Sierański, Marcin Świątkowski, Agata Trzęsowska-Kruszyńska and Oskar Bogucki
Molecules 2025, 30(17), 3638; https://doi.org/10.3390/molecules30173638 - 6 Sep 2025
Viewed by 166
Abstract
The rational design of advanced functional materials with tailored fluorescence hinges on a profound understanding of the complex interplay between a molecule’s intrinsic structure and its local solid-state environment. This work systematically investigates these factors by employing a dual approach that combines targeted [...] Read more.
The rational design of advanced functional materials with tailored fluorescence hinges on a profound understanding of the complex interplay between a molecule’s intrinsic structure and its local solid-state environment. This work systematically investigates these factors by employing a dual approach that combines targeted molecular synthesis with the subsequent modulation of the fluorophore’s properties within polymer matrices. First, a series of phenylhydrazone derivatives was synthesized, providing compounds with intense, solid-state fluorescence in the blue spectrum (421–494 nm). It was demonstrated that their photophysical properties were intricately linked to the substituent’s nature, which simultaneously modulated their intramolecular electron density and conformational rigidity while also governing their specific intermolecular packing in the solid state. Subsequently, we investigated the role of the supramolecular environment by embedding two fluorophores with distinct electronic profiles into electrospun poly (N-vinylpyrrolidone) (PVP) and polystyrene (PS) matrices. Our results reveal that the polymer matrix is not a passive host but an active component; it governs dye aggregation, induces significant blue shifts, and most critically, can impart exceptional thermal stability. Specifically, the PVP matrix shielded the embedded dyes from thermal quenching, maintaining robust fluorescence up to 100 °C. By combining molecular-level synthesis with matrix-level engineering, this work demonstrates a powerful strategy for the rational design of emissive materials, where properties like color and operational stability can be deliberately tuned for demanding applications in optoelectronics and sensing. Full article
Show Figures

Graphical abstract

24 pages, 620 KB  
Review
Comparative Analysis of Biochemical and Cellular Assay Conditions and the Need for a Buffer That Mimics Cytoplasmic Environments
by George Kontopidis and Iason-Spyridon Patergiannakis
Molecules 2025, 30(17), 3630; https://doi.org/10.3390/molecules30173630 - 5 Sep 2025
Viewed by 187
Abstract
The assessment of a ligand’s activity is typically established by measuring its binding affinity in a biochemical assay, often expressed as Ka or Kd values. Further validation of its biological activity is achieved through cellular assays. There is frequently an inconsistency [...] Read more.
The assessment of a ligand’s activity is typically established by measuring its binding affinity in a biochemical assay, often expressed as Ka or Kd values. Further validation of its biological activity is achieved through cellular assays. There is frequently an inconsistency between the activity values obtained from those assays, which could delay research progress as well as drug development. Factors such as the permeability, solubility, specificity, and stability of active compounds are usually held responsible for this discrepancy. Even when these values are known, inconsistencies in activity measurements remain challenging to explain. This is not surprising since intracellular physicochemical conditions are undoubtedly different from the simplified conditions used in most in vitro biochemical assays. It is therefore reasonable to assume that these differences would be minimized if biochemical measurements were performed under conditions that more accurately mimic the intracellular environment. These physicochemical conditions can alter the Kd values. While the cellular environment has been extensively studied for decades, more recent efforts have focused on obtaining equilibrium and kinetic data directly from in-cell environments. Clarifying molecular crowding, salt composition, and lipophilic parameters inside the cell and thus their effect on molecular equilibrium is a crucial step toward replicating the intracellular environment. Full article
Show Figures

Graphical abstract

25 pages, 22084 KB  
Article
Experimental Study on Rapeseed Drying Characteristics with Magnesium Sulfate as Solid Desiccant
by Elena V. Fomenko, Natalia N. Anshits, Galina V. Akimochkina, Timur Yu. Ivanenko, Evgeny V. Morozov, Vladimir V. Yumashev, Leonid A. Solovyov, Nikolay P. Shestakov and Vasily F. Shabanov
Molecules 2025, 30(17), 3604; https://doi.org/10.3390/molecules30173604 - 3 Sep 2025
Viewed by 384
Abstract
Rapeseed is a valuable oilseed crop, and efficient drying plays a crucial role in preserving its quality. Because of the high moisture content in rapeseed, drying using the conventional methods may cause it to overheat. The benefit of energy-efficient sorption drying is that [...] Read more.
Rapeseed is a valuable oilseed crop, and efficient drying plays a crucial role in preserving its quality. Because of the high moisture content in rapeseed, drying using the conventional methods may cause it to overheat. The benefit of energy-efficient sorption drying is that it allows one to carefully remove moisture from seeds without using heat, thus ensuring better quality. This study focuses on the characteristics of rapeseed drying using fine crystalline magnesium sulfate MgSO4·nH2O as a desiccant. The properties of the desiccant were analyzed using the SEM–EDS, XRD, ATR–MIR, and DSC-TG techniques before and after contacting rapeseed. The findings demonstrate that the desired moisture content of 7–8% can be achieved within 60–240 min, depending on the initial moisture content of rapeseed (ranging from 12% to 16%) and the desiccant-to-rapeseed ratio (1:2, 1:4, or 1:6). An analysis of crystalline hydrates after sorption drying indicates that the desiccant can be reused without intermediate regeneration during multi-stage drying of two to three rapeseed batches. The germination capacity of the seeds after sorption drying was as high as 90%, meeting the standards for elite rapeseed categories. This research demonstrates that sorption drying using magnesium sulfate is an efficient method for reducing moisture content in oilseeds, while maintaining their quality. Full article
Show Figures

Figure 1

14 pages, 2515 KB  
Article
Dihexyl (2-(Hydroxyamino)-2-Oxoethyl) Phosphonate as a Novel Collector for Flotation Separation of Scheelite and Quartz
by Jingjing Xiao, Pan Xiao, Yongjun Miao, Sisi Liu, Jia Tu, Qing Tang, Changzhu Li, Zhihong Xiao and Rukuan Liu
Molecules 2025, 30(17), 3607; https://doi.org/10.3390/molecules30173607 - 3 Sep 2025
Viewed by 352
Abstract
In this paper, a novel collector dihexyl (2-(hydroxyamino)-2-oxoethyl) phosphonate (DHHAOEP) was synthesized and used as a flotation collector to separate scheelite from quartz. Micro-flotation experiments demonstrated that DHHAOEP can effectively separate scheelite from quartz within a pH range of 6–9. Artificial mixed ores [...] Read more.
In this paper, a novel collector dihexyl (2-(hydroxyamino)-2-oxoethyl) phosphonate (DHHAOEP) was synthesized and used as a flotation collector to separate scheelite from quartz. Micro-flotation experiments demonstrated that DHHAOEP can effectively separate scheelite from quartz within a pH range of 6–9. Artificial mixed ores flotation experiments revealed that at a pH of approximately 8 and a DHHAOEP concentration of 8 × 10−5 mol/L, the flotation recovery of scheelite reached 73% with a grade of 54%. The contact angle and Zeta potential measurements showed that the addition of DHHAOEP caused a positive shift in the zeta potential and enhanced the surface hydrophobicity of scheelite. The FTIR, XPS, and DFT analyses further elucidated that DHHAOEP anchored on the scheelite surface through the bonding reaction between its -C(=O)-NHOH moiety and WO42− or Ca active sites on the scheelite surface, forming a five-membered ring. Meanwhile, the existence of the P=O group makes the distance between oxygen atoms in -C(=O)-NHOH very close to that in WO42+, which is beneficial to the reaction. The present work aims to develop a novel flotation collector with multi-functional groups to enhance scheelite recovery efficiency and selectivity. Full article
Show Figures

Figure 1

10 pages, 1057 KB  
Article
A Molecular Modeling Case Study on the Thermodynamic Partition of DIPNs Derived from Naphthalene and C3-Sources Using Non-Shape-Selective Acid Catalysts
by Wim Buijs
Molecules 2025, 30(17), 3606; https://doi.org/10.3390/molecules30173606 - 3 Sep 2025
Viewed by 395
Abstract
Recently, an article was published in which a more accurate pre-screening method compared to MMFF for conformer distributions in flexible organic molecules was presented. However, experimental data on conformer distributions are almost completely lacking. Therefore, old experimental and computational work on the thermodynamic [...] Read more.
Recently, an article was published in which a more accurate pre-screening method compared to MMFF for conformer distributions in flexible organic molecules was presented. However, experimental data on conformer distributions are almost completely lacking. Therefore, old experimental and computational work on the thermodynamic partition of DIPN isomers was revisited to compare the new method, corrected MMFF (cMMFF), with MMFF as a pre-screening tool. Next, the preliminary conformer distributions were used as input for higher-level QM calculations to yield more reliable conformer distributions. Generally, it was found that cMMFF yields smaller energy differences between DIPN isomers and conformers of a DIPN isomer than MMFF, in line with the results of DFT methods B3LYP and B3PW91, used in higher-level calculations. MP2 turned out to be a remarkable outlier, yielding even smaller energy differences both between DIPN isomers and conformers of a DIPN isomer. Preliminary conformer distributions of DIPN isomers obtained with MMFF and optimized with B3LYP and B3PW91 yielded excellent thermodynamic equilibrium partitions of DIPN isomers compared to the available experimental data. Preliminary conformer distributions of DIPN isomers obtained with cMMFF and optimized with B3LYP and B3PW91 performed less well. However, this seems due to a small effect on the energy (~4 kJ/mol) of the local geometry of the β-isopropyl group on naphthalene, which still strongly affects the thermodynamic equilibrium partitions. To obtain a more balanced judgement on the newly proposed method and the existing ones, more comparisons between experimental and computational data on small molecules with a higher degree of flexibility are needed. Full article
Show Figures

Figure 1

18 pages, 1485 KB  
Article
Impact of Electron Beam Treatment and Storage Duration on Microbial Stability and Phytochemical Integrity in Hemp Flowers
by Fernando D. Goffman, Dániel Á. Carrera, Diogo A. R. S. Latino, Christelle Cronje and Leron Katsir
Molecules 2025, 30(17), 3601; https://doi.org/10.3390/molecules30173601 - 3 Sep 2025
Viewed by 375
Abstract
This study compared the effects of storage time and electron beam (EB) irradiation on microbial counts and chemical stability of dried flowers from two hemp cultivars over 12 weeks. Cannabinoid and terpene content, as well as microbial load, were evaluated at 0, 4, [...] Read more.
This study compared the effects of storage time and electron beam (EB) irradiation on microbial counts and chemical stability of dried flowers from two hemp cultivars over 12 weeks. Cannabinoid and terpene content, as well as microbial load, were evaluated at 0, 4, 8, and 12 weeks in EB-irradiated and non-irradiated samples. Microbial count in non-irradiated flowers reached up to 4.1 × 106 colony-forming units (CFU)/g; EB irradiation reduced these levels to <102 CFU/g. Cannabinoid contents were unaffected by EB irradiation and remained stable throughout storage. Terpene content decreased by 8.4% immediately after irradiation, followed by further declines during storage, reaching 22.3% and 24.0% average losses in non-irradiated and EB-irradiated samples after 12 weeks, respectively. EB irradiation caused a higher decrease in monoterpenes (10.8%) than in sesquiterpenes (2.5%). These findings confirm that EB irradiation is an effective sterilization method for hemp flowers that preserves chemical integrity. Storage time also significantly reduced microbial loads in non-irradiated samples; TAMC in cultivar B declined from 20,728 CFU/g to <LOQ (100 CFU/g), and TYMC decreased 16-fold. Cultivar A exhibited a sharp initial TAMC reduction followed by fluctuations and TYMC levels that were 7-fold lower by Week 12, reflecting natural microbial decay during hemp flower storage. Full article
Show Figures

Figure 1

20 pages, 1149 KB  
Review
Occurrence, Properties, Applications and Analytics of Cytosine and Its Derivatives
by Mariusz Kluska, Joanna Jabłońska, Dorota Prukała and Wiesław Prukała
Molecules 2025, 30(17), 3598; https://doi.org/10.3390/molecules30173598 - 3 Sep 2025
Viewed by 517
Abstract
Cytosine and its derivatives are an important research topic in the fields of bioorganic chemistry, molecular biology and medicine due to their key role in the structure and function of nucleic acids. The article provides a detailed overview of the natural occurrence of [...] Read more.
Cytosine and its derivatives are an important research topic in the fields of bioorganic chemistry, molecular biology and medicine due to their key role in the structure and function of nucleic acids. The article provides a detailed overview of the natural occurrence of cytosine, its biosynthetic and degradation pathways in living organisms, as well as its physicochemical and chemical properties. Particular attention was paid to the biological activity and therapeutic applications of cytosine derivatives, including their use in cancer, antiviral and epigenetic therapy. The analytical section describes high-performance liquid chromatography techniques as a major tool for identifying and determining cytosine and its derivatives in biological samples. Examples of separation conditions, column selection, mobile phases and detection parameters for these compounds are presented. The article also provides chemical structures, graphs, comparative tables and an up-to-date review of the scientific literature, presenting a comprehensive overview of the topic, including biological, chemical and analytical aspects. Full article
Show Figures

Figure 1

26 pages, 41897 KB  
Article
Chemical Characterization, Sensory Evaluation, and Biological Activity in Neuronal Cells of Essential Oils (Rose, Eucalyptus, Lemon, and Clove) Used for Olfactory Training
by Antonella Rosa, Franca Piras, Alessandra Piras, Silva Porcedda, Valeria Sogos and Carla Masala
Molecules 2025, 30(17), 3591; https://doi.org/10.3390/molecules30173591 - 2 Sep 2025
Viewed by 447
Abstract
Essential oils (EOs) are natural mixtures of volatile compounds characterized by beneficial pharmacological effects. The repeated inhalation of EOs in olfactory training (OT) has been demonstrated to improve the sense of smell in patients with olfactory deficits. We conducted a conjunct evaluation of [...] Read more.
Essential oils (EOs) are natural mixtures of volatile compounds characterized by beneficial pharmacological effects. The repeated inhalation of EOs in olfactory training (OT) has been demonstrated to improve the sense of smell in patients with olfactory deficits. We conducted a conjunct evaluation of the chemical composition, sensory profile, and bioactivity in cell models of commercial EOs of rose (EO1), eucalyptus (EO2), lemon (EO3), and clove (EO4) used for OT (StimuScent®, Dos Medical, Sense Trading BV, Groningen, The Netherlands). Citronellol, 1,8-cineole, limonene, and eugenol emerged as the most abundant volatile compounds in EO1, EO2, EO3, and EO4, respectively, by GC-MS analysis. Some differences emerged (using a Likert-type scale) in the perception of EO’s odor dimensions (pleasantness, intensity, and familiarity in subjects with hyposmia (n = 8) compared to controls (n = 22). Cytotoxicity assays (24 h of incubation) demonstrated the anticancer effects of EOs (5–100 μg/mL) on SH-SY5Y neuroblastoma cells (the order of potency was EO3 > EO4 > EO2 > EO1), while all EOs showed lower effects on the viability/morphology of human skin HaCaT keratinocytes. SH-SY5Y cancer cells grown for six days with different EOs (at 50 μg/mL) showed evident signs of toxicity and apoptosis. Marked changes in cell morphology (structure/number of processes) were evidenced in clove EO-treated cells. EO’s sensory properties/bioactivity were also related to the in silico physicochemical/pharmacokinetic properties of the main EO components. Our results provide new insights into a more targeted EO application for OT. Full article
Show Figures

Graphical abstract

21 pages, 1825 KB  
Article
Seasonal Variation in Essential Oil Composition and Bioactivity of Three Ocimum Species from Nepal
by Prem Narayan Paudel, Prabodh Satyal, William N. Setzer, Suresh Awale, Shiro Watanabe, Juthamart Maneenet, Rakesh Satyal, Ajaya Acharya, Anjila Shrestha and Rajendra Gyawali
Molecules 2025, 30(17), 3581; https://doi.org/10.3390/molecules30173581 - 1 Sep 2025
Viewed by 532
Abstract
The plants from the Ocimum genus, belonging to the Labiatae family, serve as important bioresources of essential oils (EOs) rich in biologically active secondary metabolites, widely used in medicine, food, and cosmetics. This study explored the volatile composition, enantiomeric distribution, and in vitro [...] Read more.
The plants from the Ocimum genus, belonging to the Labiatae family, serve as important bioresources of essential oils (EOs) rich in biologically active secondary metabolites, widely used in medicine, food, and cosmetics. This study explored the volatile composition, enantiomeric distribution, and in vitro biological activities of EOs from three Ocimum species native to Nepal: O. tenuiflorum L., O. basilicum L., and O. americanum L. EOs were extracted via hydro-distillation and analyzed using gas chromatography–mass spectrometry (GC-MS) for chemical profiling and chiral GC-MS for enantiomeric composition. Hierarchical cluster analysis was performed for major chemotypes. Antioxidant activity was assessed using DPPH and ABTS assays. Antimicrobial efficacy was evaluated using the microbroth dilution method, and cytotoxicity was tested on NIH-3T3 (normal) and MCF-7 (breast cancer) cell lines via the Cell Counting Kit-8 assay. EO yield was highest in O. tenuiflorum (1.67 ± 0.13%) during autumn and lowest in O. americanum (0.35 ± 0.02%) during winter among all Ocimum spp. The major compounds identified in O. tenuiflorum were eugenol (32.15–34.95%), trans-β-elemene (29.08–32.85%), and β–caryophyllene (19.85–21.64%). In O. americanum, the major constituents included camphor (51.33–65.88%), linalool (9.72–9.91%), germacrene D (7.75–1.83%), and β–caryophyllene (6.35–3.97%). For O. basicilum, EO was mainly composed of methyl chavicol (62.16–64.42%) and linalool (26.92–27.05%). The oxygenated monoterpenes were a dominant class of terpenes in the EOs except for O. tenuiflorum (sesquiterpene hydrocarbon). A hierarchical cluster analysis based on the compositions of EOs revealed at least three different chemotypes in Ocimum species. Chiral GC-MS analysis revealed β-caryophyllene and germacrene D as enantiomerically pure, with linalool consistently dominant in its levorotatory form. O. tenuiflorum exhibited the strongest antimicrobial activity, particularly against Candida albicans, and showed notable anticancer activity against MCF-7 cells (IC50 = 23.43 µg/mL), with lower toxicity to normal cells. It also demonstrated the highest antioxidant activity (DPPH IC50 = 69.23 ± 0.10 µg/mL; ABTS IC50 = 9.05 ± 0.24 µg/mL). The EOs from Ocimum species possess significant antioxidant, antimicrobial, and cytotoxic properties, especially O. tenuiflorum. These findings support their potential application as natural agents in medicine, food, and cosmetics, warranting further validation. Full article
Show Figures

Figure 1

21 pages, 3124 KB  
Article
Optimization of Ultrasound-Assisted Extraction Process for Silkworm (Antheraea pernyi) Pupae Protein and Its Impact on Functional and Structural Characteristics of Protein
by Yuanyuan Zeng, Hanyu Guo, Yingying Li, Yinghao Xu, Mengli Zhang, Cancan Luo, Yanan Zang and Ji Luo
Molecules 2025, 30(17), 3580; https://doi.org/10.3390/molecules30173580 - 1 Sep 2025
Viewed by 389
Abstract
In this study, the ultrasonic-assisted extraction of silkworm pupae protein (SPP) was optimized using response surface methodology. Subsequently, the effects of ultrasonic treatment on the structural and functional characteristics of SPP were systematically analyzed and verified through Pearson correlation analysis. The results showed [...] Read more.
In this study, the ultrasonic-assisted extraction of silkworm pupae protein (SPP) was optimized using response surface methodology. Subsequently, the effects of ultrasonic treatment on the structural and functional characteristics of SPP were systematically analyzed and verified through Pearson correlation analysis. The results showed that the optimal extraction parameters were an ultrasonic treatment time of 120 min, a power of 115 W, a temperature of 54 °C, pH of 10.5, and the average extraction yield was 68.087%. Compared to the control, ultrasonic treatment significantly improved the functional properties of SPP, including solubility (13.13 g/L), water holding capacity (0.18%), oil holding capacity (0.28%), foaming capacity (55.35%), foam stability (12.71%), emulsification activity (2.15 m2/g), emulsification stability (21.95%), gel water holding capacity (11.5%), gel hardness (1.02 N), and gel elasticity (0.49 mm). In addition, the adsorption ability of SPP for 2-octanone and aldehyde was enhanced after ultrasonic treatment. Furthermore, the absorption intensity and maximum wavelength of the SPP fluorescence spectrum extracted via ultrasonic treatment were enhanced, along with the increased surface hydrophobicity and more stable secondary structure which contributed to promoting the functional properties of SPP, proven by Pearson correlation analysis. This study provides a theoretical basis for the further utilization of SPP in the food industry. Full article
Show Figures

Figure 1

22 pages, 3804 KB  
Article
Low-Temperature Dyeing of Chemically Modified PET/Spandex Blends: A Sustainable Approach for Enhanced Dyeability and Color Fastness
by Md Morshedur Rahman, Nazrul Hsan, Ingi Hong, Shekh Md Mamun Kabir, Seunga Choi, Youngdae Kim, Soohyun Kim and Joonseok Koh
Molecules 2025, 30(17), 3578; https://doi.org/10.3390/molecules30173578 - 1 Sep 2025
Viewed by 454
Abstract
Blends of polyethylene terephthalate (PET) with spandex are widely used in sportswear and outdoor apparel. However, dyeing PET/spandex fabrics remains challenging due to the high energy required at elevated dyeing temperatures and persistent problems with poor color fastness caused by dye staining on [...] Read more.
Blends of polyethylene terephthalate (PET) with spandex are widely used in sportswear and outdoor apparel. However, dyeing PET/spandex fabrics remains challenging due to the high energy required at elevated dyeing temperatures and persistent problems with poor color fastness caused by dye staining on the spandex component. In this study, we investigated the dyeing behavior of a chemically modified poly(ethylene terephthalate-co-polyethylene glycol) (PCP) blended with spandex and compared it with conventional PET/spandex blends. The PCP/spandex fabrics exhibited significantly improved dyeability, showing higher dyebath exhaustion and greater color strength than PET/spandex blends, particularly at sub-conventional dyeing temperatures. The optimal dyeing condition for PCP/spandex blends was identified as 110 °C for 60 min, which provided a balance between enhanced dye uptake and minimized spandex staining. Moreover, PCP/spandex fabrics demonstrated improved color fastness at lower dyeing temperatures (110–120 °C), primarily due to the reduced staining tendency of the spandex component when blended with PCP fibers. This reduction in spandex staining minimized dye migration during washing. Overall, these findings suggest that PCP/spandex blends offer a promising, energy-efficient alternative to conventional PET/spandex fabrics. They enable effective dyeing at lower temperatures while achieving improved color fastness, thereby addressing key challenges in the dyeing of elastic fiber blends. Full article
Show Figures

Graphical abstract

12 pages, 2334 KB  
Article
Mass Spectrometric Analysis of Antigenic Determinant Glycans of Soybean Glycoprotein Gly m Bd 30K
by Lingmei Li, Sidi Luo, You Wu, Xuefei Feng, Yuxin Ding and Yajuan Zhou
Molecules 2025, 30(17), 3571; https://doi.org/10.3390/molecules30173571 - 31 Aug 2025
Viewed by 465
Abstract
Glycosylation of many proteins has been revealed to be closely related to food allergy, and screening and structural analysis of related glycoproteins are essential for studies in this important area. Gly m Bd 30K is one of the major allergens that exist in [...] Read more.
Glycosylation of many proteins has been revealed to be closely related to food allergy, and screening and structural analysis of related glycoproteins are essential for studies in this important area. Gly m Bd 30K is one of the major allergens that exist in soybeans. N-Glycans of the Gly m Bd 30K influenced the immunoreactivity and antigen-presenting efficiency. In this paper, soybean allergen glycoprotein Gly m Bd 30K was used as the research object. It was separated and purified by the combination of isoelectric point and Sepharose CL-6B gel. The glycoprotein was analyzed and identified by SDS-PAGE and MALDI-TOF MS. The N-glycans of Gly m Bd 30K glycoprotein were released and labeled by a newly developed one-pot method, and qualitatively and quantitatively analyzed by ESI-MSn and HILIC-UV-MS/MS. The results showed that the purity of Gly m Bd 30K glycoprotein was 95%, and the relative molecular mass was 33,923 Da. The Gly m Bd 30K glycoprotein contained a total of six kinds of glycans, including two types: oligo-mannose type (4.3%) and paucimannose type (95.7%). The paucimannose modified with core α-1,3-fucose and β-1,2-xylose accounted for 92.87%. This study provides quality-reliable materials for the follow-up study of glycan sensitization and also provides a theoretical basis for the in-depth study of the specificity and biological function of the antigenic determinant of Gly m Bd 30K glycoprotein. Full article
Show Figures

Graphical abstract

Back to TopTop