Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = α-santalol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4599 KiB  
Article
Enhancing Antimicrobial Efficacy of Sandalwood Essential Oil Against Salmonella enterica for Food Preservation
by Andrea Verešová, Margarita Terentjeva, Zhaojun Ban, Li Li, Milena Vukic, Nenad Vukovic, Maciej Ireneusz Kluz, Rania Ben Sad, Anis Ben Hsouna, Alessandro Bianchi, Ján Kollár, Joel Horacio Elizondo-Luévano, Natália Čmiková, Stefania Garzoli and Miroslava Kačániová
Foods 2024, 13(23), 3919; https://doi.org/10.3390/foods13233919 - 4 Dec 2024
Viewed by 1470
Abstract
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of [...] Read more.
The growing emphasis on food safety and healthier lifestyles, driven by industrial expansion and scientific priorities, has highlighted the necessity of managing harmful microorganisms to guarantee food quality. A significant challenge in this domain is the control of pathogens that are capable of forming biofilms, entering a sessile state that enhances their resistance to broad-spectrum antibiotics. Essential oils, renowned for their antibacterial properties, present a promising natural alternative for food preservation. In this study, we analyzed the chemical composition of Santalum album essential oil (SAEO) using GC-MS, identifying (Z)-α-santalol (57.1%) as the primary constituent. Antimicrobial activity was confirmed through disc diffusion and minimum inhibitory concentration (MIC) assays against Gram-positive and Gram-negative bacteria and yeast from the genus Candida. Additionally, in situ experiments demonstrated that vapor-phase SAEO effectively inhibited Serratia marcescens on the food model, supporting its potential as a natural preservative. MBIC assays, crystal violet staining, and MALDI-TOF MS analysis on S. enterica biofilms were used to further evaluate the antibiofilm effects of SAEO. The crystal violet assay revealed a strong antibiofilm effect, while the MALDI-TOF MS analysis showed changes in the bacterial protein profiles on both glass and plastic surfaces. SAEO also showed significant anti-Salmonella activity on vacuum-packed carrot slices. SAEO outperformed the control samples. The insecticidal activity against Megabruchidius dorsalis was also studied in this work, and the best insecticidal activity was found at the highest concentrations. These findings indicate that SAEO could serve as a valuable component in food preservation, with notable antibacterial and antibiofilm benefits. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

13 pages, 9236 KiB  
Article
Molecular Cloning and Functional Characterization of a Cytochrome P450 Enzyme (SaCYP736A167) Promoter from Santalum album
by Haifeng Yan, Yueya Zhang, Rongchang Wei, Lihang Qiu, Huiwen Zhou, Faqian Xiong and Guohua Ma
Forests 2024, 15(10), 1705; https://doi.org/10.3390/f15101705 - 26 Sep 2024
Cited by 1 | Viewed by 818
Abstract
The primary constituents of the essential oil derived from Santalum album L. are (Z)-α-santalol, (Z)-β-santalol, (Z)-α-exo-bergamotol, and (Z)-epi-β- santalol. SaCYP736A167 plays a pivotal [...] Read more.
The primary constituents of the essential oil derived from Santalum album L. are (Z)-α-santalol, (Z)-β-santalol, (Z)-α-exo-bergamotol, and (Z)-epi-β- santalol. SaCYP736A167 plays a pivotal role in the biosynthesis of these sesquiterpene alcohols within S. album, but the mechanisms governing the expression of the SaCYP736A167 gene is far from being deciphered. In this research, a promoter sequence of the SaCYP736A167 gene, spanning 2808 base pairs, was isolated from S. album. A bioinformatics analysis of the 2384-bp SaCYP736A167 promoter (PSaCYP736A167) showed that abundant stress-inducible cis-acting elements were distributed in different regions of PSaCYP736A167. The histochemical β-glucuronidase (GUS) staining of T1 transgenic Nicotiana tabacum plants harboring PSaCYP736A167 demonstrated that the predominant GUS activity was exhibited in the parenchyma cells of the stem cortex and phloem, suggesting that PSaCYP736A167 is a tissue-specific expression promoter. GUS fluorometric assays of transiently transgenic N. benthamiana leaves revealed that seven distinct segments of PSaCYP736A167 exhibited notably varied levels of GUS activity. A 936-base pair sequence upstream of the transcription initiation codon ATG constitutes the core promoter section of PSaCYP736A167. Our findings shed light on the regulatory mechanisms controlling the transcription of the SaCYP736A167 gene, potentially serving as a novel tissue-specific promoter for applications in transgenic plant biotechnology. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

17 pages, 1501 KiB  
Review
Biological Properties of Sandalwood Oil and Microbial Synthesis of Its Major Sesquiterpenoids
by Xiaoguang Yan, Sichone Daniel David, Guangzhao Du, Weiguo Li, Dongmei Liang, Shengxin Nie, Mingyue Ge, Chen Wang, Jianjun Qiao, Yanni Li and Qinggele Caiyin
Biomolecules 2024, 14(8), 971; https://doi.org/10.3390/biom14080971 - 8 Aug 2024
Cited by 2 | Viewed by 2317
Abstract
Sandalwood essential oil is extracted from the heartwood part of mature sandalwood and is known for its pleasant fragrance and exceptional medicinal activities, including antimicrobial, antitumor, and anti-inflammatory properties. The (Z)-α-santalol and (Z)-β-santalol are the most vital ingredients contributing to sandalwood oil’s bioactivities [...] Read more.
Sandalwood essential oil is extracted from the heartwood part of mature sandalwood and is known for its pleasant fragrance and exceptional medicinal activities, including antimicrobial, antitumor, and anti-inflammatory properties. The (Z)-α-santalol and (Z)-β-santalol are the most vital ingredients contributing to sandalwood oil’s bioactivities and unique woody odor characteristics. Metabolic engineering strategies have shown promise in transforming microorganisms such as yeast and bacteria into effective cell factories for enhancing the production of vital sesquiterpenes (santalene and santalol) found in sandalwood oil. This review aims to summarize sources of sandalwood oil, its components/ingredients, and its applications. It also highlights the biosynthesis of santalene and santalol and the various metabolic engineering strategies employed to reconstruct and enhance santalene and santalol biosynthesis pathways in heterologous hosts. Full article
Show Figures

Figure 1

13 pages, 2372 KiB  
Article
Identification of Transcription Factors of Santalene Synthase Gene Promoters and SaSSY Cis-Elements through Yeast One-Hybrid Screening in Santalum album L.
by Yunqing Zhou, Xiang Li, Dongli Wang, Zequn Yu, Yunshan Liu, Lipan Hu and Zhan Bian
Plants 2024, 13(13), 1882; https://doi.org/10.3390/plants13131882 - 8 Jul 2024
Viewed by 1340
Abstract
The main components of sandalwood heartwood essential oil are terpenoids, approximately 80% of which are α-santalol and β-santalol. In the synthesis of the main secondary metabolites of sandalwood heartwood, the key gene, santalene synthase (SaSSY), can produce α-santalene and β-santalene by [...] Read more.
The main components of sandalwood heartwood essential oil are terpenoids, approximately 80% of which are α-santalol and β-santalol. In the synthesis of the main secondary metabolites of sandalwood heartwood, the key gene, santalene synthase (SaSSY), can produce α-santalene and β-santalene by catalyzed (E, E)-FPP. Furthermore, santalene is catalyzed by the cytochrome monooxygenase SaCYP736A167 to form sandalwood essential oil, which then produces a fragrance. However, the upstream regulatory mechanism of the key gene santalene synthase remains unclear. In this study, SaSSY (Sal3G10690) promoter transcription factors and SaSSY cis-elements were screened. The results showed that the titer of the sandalwood cDNA library was 1.75 × 107 CFU/mL, 80% of the inserted fragments identified by PCR were over 750 bp in length, and the positivity rate of the library was greater than 90%. The promoter region of the SaSSY gene was shown to have the structural basis for potential regulatory factor binding. After sequencing and bioinformatics analysis, we successfully obtained 51 positive clones and identified four potential SaSSY transcriptional regulators. Sal6G03620 was annotated as the transcription factor MYB36-like, and Sal8G07920 was annotated as the small heat shock protein HSP20 in sandalwood. Sal1G00910 was annotated as a hypothetical protein of sandalwood. Sal4G10880 was annotated as a homeobox-leucine zipper protein (ATHB-15) in sandalwood. In this study, a cDNA library of sandalwood was successfully constructed using a yeast one-hybrid technique, and the transcription factors that might interact with SaSSY gene promoters were screened. This study provides a foundation for exploring the molecular regulatory mechanism involved in the formation of sandalwood heartwood. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Rare Tree Species Response to Abiotic Stress)
Show Figures

Figure 1

13 pages, 608 KiB  
Article
Sandalwood Oils of Different Origins Are Active In Vitro against Madurella mycetomatis, the Major Fungal Pathogen Responsible for Eumycetoma
by Shereen O. Abd Algaffar, Stephan Seegers, Prabodh Satyal, William N. Setzer, Thomas J. Schmidt and Sami A. Khalid
Molecules 2024, 29(8), 1846; https://doi.org/10.3390/molecules29081846 - 18 Apr 2024
Cited by 1 | Viewed by 1890
Abstract
In the search for new bioactive agents against the infectious pathogen responsible for the neglected tropical disease (NTD) mycetoma, we tested a collection of 27 essential oils (EOs) in vitro against Madurella mycetomatis, the primary pathogen responsible for the fungal form of [...] Read more.
In the search for new bioactive agents against the infectious pathogen responsible for the neglected tropical disease (NTD) mycetoma, we tested a collection of 27 essential oils (EOs) in vitro against Madurella mycetomatis, the primary pathogen responsible for the fungal form of mycetoma, termed eumycetoma. Among this series, the EO of Santalum album (Santalaceae), i.e., East Indian sandalwood oil, stood out prominently with the most potent inhibition in vitro. We, therefore, directed our research toward 15 EOs of Santalum species of different geographical origins, along with two samples of EOs from other plant species often commercialized as “sandalwood oils”. Most of these EOs displayed similar strong activity against M. mycetomatis in vitro. All tested oils were thoroughly analyzed by GC-QTOF MS and most of their constituents were identified. Separation of the sandalwood oil into the fractions of sesquiterpene hydrocarbons and alcohols showed that its activity is associated with the sesquiterpene alcohols. The major constituents, the sesquiterpene alcohols (Z)-α- and (Z)-β-santalol were isolated from the S. album oil by column chromatography on AgNO3-coated silica. They were tested as isolated compounds against the fungus, and (Z)-α-santalol was about two times more active than the β-isomer. Full article
(This article belongs to the Special Issue Essential Oils II)
Show Figures

Figure 1

20 pages, 3079 KiB  
Article
Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome
by Ghulam Mustafa Kamal, Nafia Nazi, Asma Sabir, Muhammad Saqib, Xu Zhang, Bin Jiang, Jallat Khan, Ayesha Noreen, Jalal Uddin and Shahzad Murtaza
Separations 2023, 10(3), 186; https://doi.org/10.3390/separations10030186 - 8 Mar 2023
Cited by 8 | Viewed by 8632
Abstract
Ginger (Zingiber officinale Rosc; Zingiberaceae family) is an herb commonly used as a spice and remedy for a broad spectrum of diseases. The essential oil extracted from ginger is an effective antioxidant, anti-inflammatory, and antifungal agent. The present study has [...] Read more.
Ginger (Zingiber officinale Rosc; Zingiberaceae family) is an herb commonly used as a spice and remedy for a broad spectrum of diseases. The essential oil extracted from ginger is an effective antioxidant, anti-inflammatory, and antifungal agent. The present study has investigated the variations in yield and chemical composition of essential oils of two cultivars (Chinese and Thailand) of ginger locally available in Pakistan. Two different drying pretreatments were employed to observe the changes in compositional variations of the essential oils of ginger. The essential oil extracted from fresh, oven-dried, and sun-dried samples of two different cultivars of ginger was analyzed using gas chromatography-mass spectrometry (GC-MS). The essential oil yield was found to be highest for the sun-dried sample of each variety. The major compounds (>4%) overall in the essential oil of fresh, oven-dried, and sun-dried ginger samples from Thailand origin were camphene, 3-carene, o-cymene, caryophyllene, α-curcumene, sabinol trans, citral, and santalol. Major compounds overall in the essential oil of fresh, oven-dried, and sun-dried ginger samples of Chinese origin were α-pinene, Camphene, limonene, longicyclene, copaene, longifolene, β-sesquiphellandrene, alloaromadendrene, γ-muurolene, α-curcumene, α-farnesene, and citral. The inter-varietal variations and pretreatment methods considerably affected yield and chemical composition. Cluster analysis was performed to validate the results further. Significantly varying compounds responsible for the significant variation among varieties and treatments of the ginger were identifies by using the heat map. There was clear differentiation among Chinese and Thailand varieties due to the variation in the concentrations of the volatile compounds. The results obtained can be helpful for the ginger growers and end users to choose the ginger variety and the way of use that is more beneficial. Full article
Show Figures

Figure 1

15 pages, 9473 KiB  
Article
Identification and Functional Analysis of SabHLHs in Santalum album L.
by Ting Zhang, Xiaohong Chen, Yuping Xiong, Meiyun Niu, Yueya Zhang, Haifeng Yan, Yuan Li, Xinhua Zhang and Guohua Ma
Life 2022, 12(7), 1017; https://doi.org/10.3390/life12071017 - 8 Jul 2022
Cited by 2 | Viewed by 2932
Abstract
Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) β-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) [...] Read more.
Santalum album L., a semi-parasitic evergreen tree, contains economically important essential oil, rich in sesquiterpenoids, such as (Z) α- and (Z) β-santalol. However, their transcriptional regulations are not clear. Several studies of other plants have shown that basic-helix-loop-helix (bHLH) transcription factors (TFs) were involved in participating in the biosynthesis of sesquiterpene synthase genes. Herein, bHLH TF genes with similar expression patterns and high expression levels were screened by co-expression analysis, and their full-length ORFs were obtained. These bHLH TFs were named SaMYC1, SaMYC3, SaMYC4, SaMYC5, SabHLH1, SabHLH2, SabHLH3, and SabHLH4. All eight TFs had highly conserved bHLH domains and SaMYC1, SaMYC3, SaMYC4, and SaMYC5, also had highly conserved MYC domains. It was indicated that the eight genes belonged to six subfamilies of the bHLH TF family. Among them, SaMYC1 was found in both the nucleus and the cytoplasm, while SaMYC4 was only localized in the cytoplasm and the remaining six TFs were localized in nucleus. In a yeast one-hybrid experiment, we constructed decoy vectors pAbAi-SSy1G-box, pAbAi-CYP2G-box, pAbAi-CYP3G-box, and pAbAi-CYP4G-box, which had been transformed into yeast. We also constructed pGADT7-SaMYC1 and pGADT7-SabHLH1 capture vectors and transformed them into bait strains. Our results showed that SaMYC1 could bind to the G-box of SaSSy, and the SaCYP736A167 promoter, which SaSSy proved has acted as a key enzyme in the synthesis of santalol sesquiterpenes and SaCYP450 catalyzed the ligation of santalol sesquiterpenes into terpene. We have also constructed pGreenII 62-SK-SaMYC1, pGreenII 0800-LUC-SaSSy and pGreenII 0800-LUC-SaCYP736A167 via dual-luciferase fusion expression vectors and transformed them into Nicotiana benthamiana using an Agrobacterium-mediated method. The results showed that SaMYC1 was successfully combined with SaSSy or SaCYP736A167 promoter and the LUC/REN value was 1.85- or 1.55-fold higher, respectively, than that of the control group. Therefore, we inferred that SaMYC1 could activate both SaSSy and SaCYP736A167 promoters. Full article
Show Figures

Figure 1

17 pages, 3439 KiB  
Article
Exogenous Paclobutrazol Reinforces the Antioxidant and Antimicrobial Properties of Lavender (Lavandula officinalis L.) Oil through Modulating Its Composition of Oxygenated Terpenes
by Salwa M. El-Sayed, Karim. M. Hassan, Ahmed. N. Abdelhamid, Eman E. Yousef, Yasmin M. R. Abdellatif, Samah H. Abu-Hussien, Mohamed A. Nasser, Walaa. A. Elshalakany, Doaa Bahaa Eldin Darwish, Awatif M. Abdulmajeed, Nadiyah M. Alabdallah, Salem Mesfir Al-Qahtani, Nadi Awad Al-Harbi, Eldessoky S. Dessoky, Hatem Ashour and Mohamed F. M. Ibrahim
Plants 2022, 11(12), 1607; https://doi.org/10.3390/plants11121607 - 19 Jun 2022
Cited by 10 | Viewed by 3317
Abstract
Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of [...] Read more.
Plant growth regulators can affect the primary and secondary metabolites of various plant species. However, the effect of paclobutrazol (PBZ) on the composition of lavender oil, especially related to the terpenoid pathway, is still unclear in literatures. In this study, the effect of PBZ as a foliar spray (0.200, 400 and 600 ppm) on the vegetative growth, phytochemical content, and both antioxidant and antimicrobial properties of lavender oil were investigated. The results indicated that all examined PBZ treatments led to a significant (p ≤ 0.05) decrease in growth parameters compared to the untreated plants. Meanwhile, the yield of essential oil was significantly decreased by the treatment of PBZ at 200 ppm compared to the control. In contrast, applied-PBZ significantly enhanced the chlorophyll content and displayed a marked change in the composition of the essential oil. This change included an obvious and significant increase in 3-carene, eucalyptol, γ–terpinene, α-pinocarvone, caryophyllene, β-vetivenene, β-santalol, ledol, geranyl isovalerate, farnesol, caryophyllene oxide, and phytol percentage. Generally, the highest significant values were achieved by the treatment of 400 ppm compared to the other treatments. Furthermore, this treatment showed the highest free radical scavenging activity against DPPH (1,1-diphenyl-2-picrylhydrazyl) by 13% over the control. Additionally, to determine the antimicrobial activities of the extracted oil, each treatment was examined against two strains of Gram positive bacteria (S. aureus and B. cereus), two strains of Gram negative bacteria (S. enteritidis and E. coli), and two fungal species (C. albicans and A. niger) represent the yeast modal and filamentous fungus, respectively. The findings demonstrated that all examined species were more sensitive to the oil that was extracted from lavender plants, treated with 400 ppm PBZ, compared to the other concentrations. Full article
(This article belongs to the Special Issue Roles of Secondary Metabolites in Plants)
Show Figures

Figure 1

Back to TopTop