Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = β-TCP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Viewed by 317
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

27 pages, 2300 KB  
Review
Collagen-Composite Scaffolds for Alveolar Bone and Dental Tissue Regeneration: Advances in Material Development and Clinical Applications—A Narrative Review
by Natesan Thirumalaivasan
Dent. J. 2025, 13(9), 396; https://doi.org/10.3390/dj13090396 - 29 Aug 2025
Viewed by 527
Abstract
Background/Objectives: The use of collagen-based scaffolds in dentition tissue engineering has gained significance and importance in the field as they are structurally equivalent and biologically compatible with the native extracellular matrix (ECM). In this review, collagen-composite scaffolds for pulp, alveolar bone, and periodontal [...] Read more.
Background/Objectives: The use of collagen-based scaffolds in dentition tissue engineering has gained significance and importance in the field as they are structurally equivalent and biologically compatible with the native extracellular matrix (ECM). In this review, collagen-composite scaffolds for pulp, alveolar bone, and periodontal regeneration are analyzed in terms of materials, fabrication techniques, and clinical outcomes. Methods: Recent developments in collagen scaffolds are highlighted in this review, with a focus on type I collagen due to its structural strength and arginine–glycine–aspartic acid (RGD) motifs, which promote cell adhesion and differentiation. Composite materials, freeze-drying, electrospinning, and 3D bioprinting, which are used to improve the functionality of the scaffold, are key developments. Results: This review shows progress in collagen-based scaffolds for restoring dental tissues, such as dentin, gingival tissue, or bone, in humans. Electrospinning and 3D bioprinting are new manufacturing techniques that enhance the functionality of scaffold devices, and incorporating bioactive molecules increases the regenerative capacity; however, stability and long-term efficacy are still problems. Conclusions: Although they have a lot of potential, collagen-composite scaffolds face challenges like rapid degradation and limited mechanical strength. To make long-lasting, tailored dental regeneration therapies feasible, future research needs to improve smart biomaterials, gene delivery, and personalized designs for dental regenerative therapy. Full article
(This article belongs to the Topic Oral Health Management and Disease Treatment)
Show Figures

Graphical abstract

17 pages, 2406 KB  
Article
Microscopic and Crystallographic Analysis of Increased Acid Resistance of Melted Dental Enamel Using 445 nm Diode Laser: An Ex-Vivo Study
by Samir Nammour, Marwan El Mobadder, Aldo Brugnera, Praveen Arany, Mireille El Feghali, Paul Nahas and Alain Vanheusden
Dent. J. 2025, 13(8), 376; https://doi.org/10.3390/dj13080376 - 19 Aug 2025
Viewed by 341
Abstract
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and [...] Read more.
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and X-ray diffraction (XRD) crystallographic analysis. Methods: A total of 126 extracted human teeth were used. A total of 135 (n = 135) enamel discs (4 × 4 mm) from 90 teeth were assigned to either a laser-irradiated group or an untreated control group for SEM, ESCA, and XRD analyses. Additionally, 24 mono-rooted teeth were used to measure pulp temperature changes during laser application. Laser irradiation was performed using a 445 nm diode laser with a pulse width of 200 ms, a repetition rate of 1 Hz, power of 1.25 W, an energy density of 800 J/cm2, a power density of 3980 W/cm2, and a 200 µm activated fiber. Following acid etching, SEM was conducted to assess microstructural and ionic alterations. The ESCA was used to evaluate the Ca/P ratio, and XRD analyses were performed on enamel powders to determine changes in phase composition and crystal lattice parameters. Results: The laser protocol demonstrated thermal safety, with minimal pulp chamber temperature elevation (0.05667 ± 0.04131 °C). SEM showed that laser-treated enamel had a smoother surface morphology and reduced acid-induced erosion compared with controls. Results of the ESCA revealed no significant difference in the Ca/P ratio between groups. XRD confirmed the presence of hydroxyapatite structure in laser-treated enamel and detected an additional diffraction peak corresponding to a pyrophosphate phase, potentially enhancing acid resistance. Results of the spectral analysis showed the absence of α-TCP and β-TCP phases and a reduction in the carbonate content in the laser group. Furthermore, a significant decrease in the a-axis lattice parameter suggested lattice compaction in laser-treated enamel. Conclusions: Irradiation with a 445 nm diode laser effectively enhances enamel resistance to acid demineralization. This improvement may be attributed to chemical modifications, particularly pyrophosphate phase formation, and structural changes including prism-less enamel formation, surface fusion, and decreased permeability. These findings provide novel insights into the mechanisms of laser-induced enhancement of acid resistance in enamel. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

12 pages, 3255 KB  
Article
Plant-Derived Bone Substitute Presents Effective Osteointegration in Several Clinical Settings: A Pilot Study from a Single Center
by Gianluca Conza, Adriano Braile, Antonio Davide Vittoria, Nicola Di Cristofaro, Annalisa Itro, Gabriele Martin, Gabriella Toro, Pier Francesco Indelli, Vincenzo Salini and Giuseppe Toro
Bioengineering 2025, 12(8), 861; https://doi.org/10.3390/bioengineering12080861 - 11 Aug 2025
Viewed by 501
Abstract
Background: Bone loss management is a tough challenge in orthopedic and trauma surgery that is generally treated using graft or substitute. Bone is the second most common transplanted tissue behind blood. Autologous bone graft represents the gold standard, while allograft is generally used [...] Read more.
Background: Bone loss management is a tough challenge in orthopedic and trauma surgery that is generally treated using graft or substitute. Bone is the second most common transplanted tissue behind blood. Autologous bone graft represents the gold standard, while allograft is generally used as a secondary option, considering their impressive osteoconductive and osteoinductive properties. However, both allograft and autograft sources are limited. Therefore, synthetic bone substitutes gained popularity due to their low cost and ease of application. β-tri-Calcium phosphate (β-TCP) is a promising material implemented as a bone substitute. One of the limits of bone substitutes is related to their three-dimensional organization, which rarely replicates that of the normal bone. b.Bone™ is a novel bone substitute derived from rattan wood with a unique 3D structure that mimics the architecture of the human bone. This study aims to objectively evaluate the osteointegration of b.Bone™ in complex clinical settings. Methods: We retrospectively evaluated eight patients who underwent surgeries requiring filling bone loss through the use of b.Bone™. Osteointegration of the bone substitute was evaluated radiologically using a modified Van Hemert classification. Results: Eight patients were enrolled into this study: five females and three males with a mean age of 53,75 years old. b.Bone™ was applied in the following shapes: granules in four cases, cylinders in three cases and a prism in one. In four patients, the osteointegration reached a grade Van Hemert 4, three a grade 3, and only one a grade 2. Conclusions: β-TCP-based bone substitutes, such as those derived from rattan, appear to facilitate successful osteointegration in various clinical settings. Future studies with larger cohorts and longer follow-ups are necessary to evaluate the long-term efficacy of this promising substitute. Full article
Show Figures

Graphical abstract

17 pages, 1800 KB  
Article
Healing Kinetics of Sinus Lift Augmentation Using Biphasic Calcium Phosphate Granules: A Case Series in Humans
by Michele Furlani, Valentina Notarstefano, Nicole Riberti, Emira D’Amico, Tania Vanessa Pierfelice, Carlo Mangano, Elisabetta Giorgini, Giovanna Iezzi and Alessandra Giuliani
Bioengineering 2025, 12(8), 848; https://doi.org/10.3390/bioengineering12080848 - 6 Aug 2025
Viewed by 549
Abstract
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed [...] Read more.
Sinus augmentation provides a well-established model for investigating the three-dimensional morphometry and macromolecular dynamics of bone regeneration, particularly when using biphasic calcium phosphate (BCP) graft substitutes. This case series included six biopsies from patients who underwent maxillary sinus augmentation using BCP granules composed of 30% hydroxyapatite (HA) and 70% β-tricalcium phosphate (β-TCP). Bone core biopsies were obtained at healing times of 6 months, 9 months, and 12 months. Histological evaluation yielded qualitative and quantitative insights into new bone distribution, while micro-computed tomography (micro-CT) and Raman microspectroscopy (RMS) were employed to assess the three-dimensional architecture and macromolecular composition of the regenerated bone. Micro-CT analysis revealed progressive maturation of the regenerated bone microstructure over time. At 6 months, the apical regenerated area exhibited a significantly higher mineralized volume fraction (58 ± 5%) compared to the basal native bone (44 ± 11%; p = 0.0170), as well as significantly reduced trabecular spacing (Tb.Sp: 187 ± 70 µm vs. 325 ± 96 µm; p = 0.0155) and degree of anisotropy (DA: 0.37 ± 0.05 vs. 0.73 ± 0.03; p < 0.0001). By 12 months, the mineralized volume fraction in the regenerated area (53 ± 5%) was statistically comparable to basal bone (44 ± 3%; p > 0.05), while Tb.Sp (211 ± 20 µm) and DA (0.23 ± 0.09) remained significantly lower (Tb.Sp: 395 ± 41 µm, p = 0.0041; DA: 0.46 ± 0.04, p = 0.0001), indicating continued structural remodelling and organization. Raman microspectroscopy further revealed dynamic macromolecular changes during healing. Characteristic β-TCP peaks (e.g., 1315, 1380, 1483 cm−1) progressively diminished over time and were completely absent in the regenerated tissue at 12 months, contrasting with their partial presence at 6 months. Simultaneously, increased intensity of collagen-specific bands (e.g., Amide I at 1661 cm−1, Amide III at 1250 cm−1) and carbonate peaks (1065 cm−1) reflected active matrix formation and mineralization. Overall, this case series provides qualitative and quantitative evidence that bone regeneration and integration of BCP granules in sinus augmentation continues beyond 6 months, with ongoing maturation observed up to 12 months post-grafting. Full article
Show Figures

Figure 1

12 pages, 2807 KB  
Article
Evaluation of Hydroxyapatite–β-Tricalcium Phosphate Collagen Composites for Socket Preservation in a Canine Model
by Dong Woo Kim, Donghyun Lee, Jaeyoung Ryu, Min-Suk Kook, Hong-Ju Park and Seunggon Jung
J. Funct. Biomater. 2025, 16(8), 286; https://doi.org/10.3390/jfb16080286 - 3 Aug 2025
Viewed by 1012
Abstract
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% [...] Read more.
This study aimed to compare the performance of three hydroxyapatite–β-tricalcium phosphate (HA–β-TCP) collagen composite grafts in a canine model for extraction socket preservation. Eight mongrel dogs underwent atraumatic bilateral mandibular premolar extraction, and sockets were randomly grafted with HBC28 (20% high-crystalline HA, 80% β-TCP bovine collagen), HBC37 (30% HA, 70% β-TCP, bovine collagen), or HPC64 (60% HA, 40% β-TCP, porcine collagen). Grafts differed in their HA–β-TCP ratio and collagen origin and content. Animals were sacrificed at 4 and 12 weeks, and the healing sites were evaluated using micro-computed tomography (micro-CT) and histological analysis. At 12 weeks, all groups showed good socket maintenance with comparable new bone formation. However, histological analysis revealed that HBC28 had significantly higher residual graft volume, while HPC64 demonstrated more extensive graft resorption. Histomorphometric analysis confirmed these findings, with statistically significant differences in residual graft area and bone volume fraction. No inflammatory response or adverse tissue reactions were observed in any group. These results suggest that all three HA–β-TCP collagen composites are biocompatible and suitable for socket preservation, with varying resorption kinetics influenced by graft composition. Selection of graft material may thus be guided by the desired rate of replacement by new bone. Full article
(This article belongs to the Special Issue Biomechanical Studies and Biomaterials in Dentistry)
Show Figures

Figure 1

21 pages, 3738 KB  
Article
Morphologic Pattern Differences in Reconstructive Tissue Repair of Bone Defects Mediated by Bioactive Ceramics and Hydrogels: A Microscopic Follow-Up Evaluation of Re-Ossification
by Róbert Boda, Viktória Hegedűs, Sándor Manó, Andrea Keczánné-Üveges, Balázs Dezső and Csaba Hegedűs
Gels 2025, 11(7), 529; https://doi.org/10.3390/gels11070529 - 9 Jul 2025
Viewed by 437
Abstract
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated [...] Read more.
Although publications have documented the osteo-inductive effects of various bioactive materials on tissue sections, the associated morphologic patterns of tissue remodeling pathways at the cellular level have not been detailed. Therefore, we present a comparative histopathological follow-up evaluation of bone defect repair mediated by silica aerogels and methacrylate hydrogels over a 6-month period, which is the widely accepted time course for complete resolution. Time-dependent microscopic analysis was conducted using the “critical size model”. In untreated rat calvaria bone defects (control), re-ossification exclusively started at the lateral regions from the edges of the remaining bone. At the 6th month, only a few new bones were formed, which were independent of the lateral ossification. The overall ossification resulted in a 57% osseous encroachment of the defect. In contrast, aerogels (AE), hydrogels (H), and their β-tricalcium-phosphate (βTCP)-containing counterparts, which were used to fill the bone defects, characteristically induced rapid early ossification starting from the 1st month. This was accompanied by fibrous granulomatous inflammation with multinucleated giant macrophages, which persisted in decreasing intensity throughout the observational time. In addition to lateral ossification, multiple and intense intralesional osseous foci developed as early as the 1st month, and grew progressively thereafter, reflecting the osteo-inductive effects of all compounds. However, both βTCP-containing bone substituents generated larger amounts and more mature new bones inside the defects. Nevertheless, only 72.8–76.9% of the bone defects treated with AE and H and 80.5–82.9% of those treated with βTCP-containing counterparts were re-ossified by the 6th month. Remarkably, by this time, some intra-osseous hydrogels were found, and traces of silica from AE were still detectable, indicating these as the causative agents for the persistent osseous–fibrous granulomatous inflammation. When silica or methacrylate-based bone substituents are used, chronic ossifying fibrous granulomatous inflammation develops. Although 100% re-ossification takes more than 6 months, by this time, the degree of osteo-fibrous solidification provides functionally well-suited bone repair. Full article
Show Figures

Figure 1

25 pages, 3738 KB  
Article
Morphometric, Biomechanical and Macromolecular Performances of β-TCP Macro/Micro-Porous Lattice Scaffolds Fabricated via Lithography-Based Ceramic Manufacturing for Jawbone Engineering
by Carlo Mangano, Nicole Riberti, Giulia Orilisi, Simona Tecco, Michele Furlani, Christian Giommi, Paolo Mengucci, Elisabetta Giorgini and Alessandra Giuliani
J. Funct. Biomater. 2025, 16(7), 237; https://doi.org/10.3390/jfb16070237 - 28 Jun 2025
Viewed by 1626
Abstract
Effective bone tissue regeneration remains pivotal in implant dentistry, particularly for edentulous patients with compromised alveolar bone due to atrophy and sinus pneumatization. Biomaterials are essential for promoting regenerative processes by supporting cellular recruitment, vascularization, and osteogenesis. This study presents the development and [...] Read more.
Effective bone tissue regeneration remains pivotal in implant dentistry, particularly for edentulous patients with compromised alveolar bone due to atrophy and sinus pneumatization. Biomaterials are essential for promoting regenerative processes by supporting cellular recruitment, vascularization, and osteogenesis. This study presents the development and characterization of a novel lithography-printed ceramic β-TCP scaffold, with a macro/micro-porous lattice, engineered to optimize osteoconduction and mechanical stability. Morphological, structural, and biomechanical assessments confirmed a reproducible microarchitecture with suitable porosity and load-bearing capacity. The scaffold was also employed for maxillary sinus augmentation, with postoperative evaluation using micro computed tomography, synchrotron imaging, histology, and Fourier Transform Infrared Imaging analysis, demonstrating active bone regeneration, scaffold resorption, and formation of mineralized tissue. Advanced imaging supported by deep learning tools revealed a well-organized osteocyte network and high-quality bone, underscoring the scaffold’s biocompatibility and osteoconductive efficacy. These findings support the application of these 3D-printed β-TCP scaffolds in regenerative dental medicine, facilitating tissue regeneration in complex jawbone deficiencies. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Figure 1

23 pages, 4598 KB  
Article
Piezodynamic Behavior of HA-BT Osteoconductive Coatings Under LIPUS Stimulation in Lab-on-a-Chip Model: A Promising Strategy for Bone Regeneration
by Karime Carrera Gutiérrez, Oscar Omar Morales Morales, Irene Leal-Berumen, Edmundo Berumen Nafarrate, Carlos A. Poblano-Salas, Andrés Castro Beltrán, Roberto Gómez Batres and Víctor M. Orozco Carmona
Coatings 2025, 15(7), 765; https://doi.org/10.3390/coatings15070765 - 27 Jun 2025
Viewed by 609
Abstract
Bone regeneration demands biomaterials capable of supporting tissue integration and mimicking the native piezodynamic properties of bone. In this study, hydroxyapatite–barium titanate (HA-BT) composite coatings with varying BT content (10, 30, and 50 wt%) were developed to enhance the piezoelectric response and corrosion [...] Read more.
Bone regeneration demands biomaterials capable of supporting tissue integration and mimicking the native piezodynamic properties of bone. In this study, hydroxyapatite–barium titanate (HA-BT) composite coatings with varying BT content (10, 30, and 50 wt%) were developed to enhance the piezoelectric response and corrosion resistance of Ti6Al4V implants. The coatings were synthesized via high-energy ball milling and atmospheric plasma spraying (APS). XRD analysis with Rietveld refinement confirmed the presence of HA along with secondary phases (TTCP, β-TCP, CaO). Electrochemical tests revealed lower corrosion current densities for the coatings containing ≤30% BT, indicating improved stability in physiological environments. Cytotoxicity assays (MTT) demonstrated biocompatibility across all formulations. Piezoresponse force microscopy (DART-SS-PFM) confirmed enhanced d33-eff values for the 50% BT coating (>15 pm/V); however, biological assays under low-intensity pulsed ultrasound (LIPUS) stimulation showed increased osteocalcin expression for ≤30% BT, while 50% BT induced cellular stress. Overall, HA-BT coatings with up to 30% BT exhibited optimal electrochemical stability, favorable piezoelectric performance, and enhanced biological response, underscoring their potential for orthopedic implant applications and regenerative tissue engineering. Full article
Show Figures

Graphical abstract

15 pages, 1657 KB  
Article
Evaluation of Two Alloplastic Biomaterials in a Critical-Size Rat Calvarial Defect Model
by Amanda Finger Stadler, Marta Liliana Musskopf, Vishal Gohel, Jonathan Reside, Eric Everett, Patricia Miguez and Cristiano Susin
J. Funct. Biomater. 2025, 16(6), 214; https://doi.org/10.3390/jfb16060214 - 6 Jun 2025
Viewed by 1119
Abstract
Aim: to evaluate the bone regeneration capacity of two alloplastic biomaterials in a critical-size rat calvarial defect model. Methods: A total of 80 rats were randomized into 8 groups of 10 animals each. An Ø8 mm, critical-size calvarial defect was created, and the [...] Read more.
Aim: to evaluate the bone regeneration capacity of two alloplastic biomaterials in a critical-size rat calvarial defect model. Methods: A total of 80 rats were randomized into 8 groups of 10 animals each. An Ø8 mm, critical-size calvarial defect was created, and the following treatments were randomly allocated: sham surgery, deproteinized bovine bone mineral (DBBM) + collagen membrane (CM), poly-(lactic-co-glycolic-acid) (PLGA)-coated pure phase β-tricalcium phosphate (β-TCP), or PLGA-coated 60% hydroxyapatite (HA):40%β-TCP. Animals were allowed to heal for 2 and 6 weeks. Microcomputed tomography (μCT) was used to evaluate mineralized tissue and biomaterial displacement. Histological samples were used to evaluate new bone formation. Results: μCT analysis showed no significant differences among groups for total volume of mineralized tissue or residual biomaterials. DBBM + CM showed significantly increased horizontal biomaterial displacement at 2 weeks but not at 6 weeks. Histological analysis showed that sham surgery had a significantly higher percentage of bone area fraction than the DBBM + CM and PLGA + β-TCP at 2 weeks, but not at 6 weeks. Residual biomaterial area fraction showed no significant differences among experimental groups at any healing time. Conclusions: The alloplastic biomaterials showed suitable construct integrity and retention in the defect. All biomaterials were associated with limited new bone formation comparable to the sham surgery control. Full article
(This article belongs to the Special Issue Dental Biomaterials in Implantology and Orthodontics)
Show Figures

Figure 1

16 pages, 3491 KB  
Article
Poly(ε-Caprolactone)/Sodium Bicarbonate/β-Tricalcium Phosphate Composites: Surface Characterization and Early Biological Response
by Alessandro Mosca Balma, Riccardo Pedraza, Clarissa Orrico, Sara Meinardi, Tullio Genova, Giovanna Gautier di Confiengo, Maria Giulia Faga, Ilaria Roato and Federico Mussano
Materials 2025, 18(11), 2600; https://doi.org/10.3390/ma18112600 - 3 Jun 2025
Cited by 1 | Viewed by 597
Abstract
Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL [...] Read more.
Bone graft substitutes combining the mechanical features of poly-ε-caprolactone (PCL) and the bioactivity of β-tricalcium phosphate (β-TCP) have been widely reported in the literature. Surprisingly, however, very little is known about the incorporation of carbonate at a biomimicking level. The authors studied β-TCP/PCL composites at 20 wt.% and 40 wt.%, either enriched or not with sodium bicarbonate (at 2 wt.% and 4 wt.%), through SEM and EDX analyses; surface free energy estimation; pH measurement after 1, 2, and 3 days of incubation in cell media; nanoindentation; and a protein adsorption test with bovine serum albumin. The early biological response was assessed using adipose mesenchymal stem cells, as an established in vitro model, via cellular adhesion (20 min), spreading (24 h), and viability assays (1, 3, 7 days). By increasing the β-TCP content, the composites’ hardnesses and Young’s moduli (EiT) were improved, as well as their protein adsorption compared to neat PCL. Sodium bicarbonate increased the polar component of the surface energy, alkalinized the composite with a higher β-TCP content, and attenuated its early negative cell response. Further investigation is needed to deepen the knowledge of the mechanisms underpinning the mechanical features and long-term biological behavior. Full article
Show Figures

Figure 1

21 pages, 10272 KB  
Article
Fluoride Casein Phosphopeptide and Tri-Calcium Phosphate Treatments for Enamel Remineralization: Effects on Surface Properties and Biofilm Resistance
by Cecilia Carlota Barrera-Ortega, Sandra E. Rodil, Phaedra Silva-Bermudez, Arturo Delgado-Cardona, Argelia Almaguer-Flores and Gina Prado-Prone
Dent. J. 2025, 13(6), 246; https://doi.org/10.3390/dj13060246 - 30 May 2025
Viewed by 906
Abstract
Objectives: This study aimed to compare in vitro the protective effect of two enamel remineralizing agents, a varnish containing β-tricalcium phosphate with sodium fluoride (β-TCP-F) and a paste containing casein phosphopeptide-amorphous calcium phosphate with sodium fluoride (CPP-ACP-F), on artificially demineralized human enamel. Methods: [...] Read more.
Objectives: This study aimed to compare in vitro the protective effect of two enamel remineralizing agents, a varnish containing β-tricalcium phosphate with sodium fluoride (β-TCP-F) and a paste containing casein phosphopeptide-amorphous calcium phosphate with sodium fluoride (CPP-ACP-F), on artificially demineralized human enamel. Methods: A total of 120 human third molar enamel specimens were randomly assigned to four groups (n = 30 each): Group I (healthy enamel, control), Group II (initially demineralized, lesioned enamel), Group III (demineralized enamel and treated with β-TCP-F), and Group IV (demineralized enamel and treated with CPP-ACP-F). Groups II–IV underwent, for 15 days, a daily pH cycling regimen consisting of 21 h of demineralization under pH 4.4, followed by 3 h of remineralization under pH 7. Groups III and IV were treated with either β-TCP-F or CPP-ACP-F, prior to each 24 h demineralization–remineralization cycle. Fluoride ion release was measured after each pH cycle. Surface hardness, roughness, wettability, and Streptococcus mutans biofilm formation were assessed on days 5, 10, and 15 after a daily pH cycle. Results: CPP-ACP-F treatment showed a larger improvement in surface hardness (515.2 ± 10.7) compared to β-TCP-F (473.6 ± 12.8). Surface roughness decreased for both treatments compared to initially lesioned enamel; however, the decrease in roughness in the β-TCP-F group only reached a value of 1.193 μm after 15 days of treatment, a significantly larger value in comparison to healthy enamel. On the other hand, the decrease in roughness in the CPP-ACP-F treatment group reached a value of 0.76 μm, similar to that of healthy enamel. Contact angle measurements indicated that wettability increased in both treatment groups (β-TCP-F: 71.01°, CPP-ACP-F: 65.24°) compared to initially lesioned samples in Group II, reaching WCA values similar to or smaller than those of healthy enamel surfaces. Conclusions: Both treatments, β-TCP-F and CPP-ACP-F, demonstrated protective effects against enamel demineralization, with CPP-ACP-F showing superior enhancement of surface hardness and smoother enamel texture under in vitro pH cycling conditions. β-TCP-F varnish and CPP-ACP-F paste treatments counteracted surface modifications produced on human healthy enamel by in vitro demineralization. Full article
(This article belongs to the Special Issue Dental Materials Design and Application)
Show Figures

Figure 1

14 pages, 2678 KB  
Article
Doping of Hollow Urchin-like MnO2 Nanoparticles in Beta-Tricalcium Phosphate Scaffold Promotes Stem Cell Osteogenic Differentiation
by Enze Qian, Ahmed Eltawila and Yunqing Kang
Int. J. Mol. Sci. 2025, 26(11), 5092; https://doi.org/10.3390/ijms26115092 - 26 May 2025
Viewed by 485
Abstract
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. [...] Read more.
Effective osteogenesis for bone regeneration is still considerably challenging for a porous β-tricalcium phosphate (β-TCP) scaffold to achieve. To overcome this challenge, hollow manganese dioxide (H-MnO2) nanoparticles with an urchin-like shell structure were prepared and added in the porous β-TCP scaffold. A template-casting method was used to prepare the porous H-MnO2/β-TCP scaffolds. As a control, solid manganese dioxide (S-MnO2) nanoparticles were also added into β-TCP scaffolds. Human bone mesenchymal stem cells (hBMSC) were seeded in the porous scaffolds and characterized through cell viability assay and alkaline phosphatase (ALP) assay. Results from in vitro protein loading and releasing experiments showed that H-MnO2 can load significantly higher proteins and release more proteins compared to S-MnO2 nanoparticles. When they were doped into β-TCP, MnO2 nanoparticles did not significantly change the surface wettability and mechanical properties of porous β-TCP scaffolds. In vitro cell viability results showed that MnO2 nanoparticles promoted cell proliferation in a low dose, but inhibited cell growth when the added concentration went beyond 0.5%. At a range of lower than 0.5%, H-MnO2 doped β-TCP scaffolds promoted the early osteogenesis of hBMSCs. These results suggested that H-MnO2 in the porous β-TCP scaffold has promising potential to stimulate osteogenesis. More studies would be performed to demonstrate the other functions of urchin-like H-MnO2 nanoparticles in the porous β-TCP. Full article
Show Figures

Figure 1

21 pages, 6865 KB  
Article
Chitosan-Oligosaccharide-Bearing Biphasic Calcium Phosphate Bone Cement: Preparation and Angiogenic Activity In Vitro
by Jianshen Liu, Xinghua Guo, Qishi Che and Zhengquan Su
Molecules 2025, 30(11), 2286; https://doi.org/10.3390/molecules30112286 - 23 May 2025
Viewed by 622
Abstract
Although calcium phosphate bone cement has some advantages (it is easy to form, self-curing, and does not produce heat), some disadvantages remain that limit its clinical application. Therefore, the question of how we can modify CPC and further improve the various properties of [...] Read more.
Although calcium phosphate bone cement has some advantages (it is easy to form, self-curing, and does not produce heat), some disadvantages remain that limit its clinical application. Therefore, the question of how we can modify CPC and further improve the various properties of calcium phosphate bone cement is a current research hotspot. In this paper, the preparation conditions and technology of biphasic calcium phosphate (BCP) were optimized; chitosan oligosaccharide (COSM) with MW ≤ 3000 Da was added to the optimal formulation of biphasic calcium phosphate cement particles, and its physical and chemical properties were characterized. The results showed that BCP bone cement carrier for clinical operations was successfully constructed by the high-temperature solid-state reaction method, and COSM-BCP bone cement particles were obtained by loading COSM drugs with an angiogenesis effect. Its formula is biphasic calcium phosphate powder with the molar ratio of α-TCP/β-TCP of 1. The curing time of the prepared BCP particles is 24 ± 1 min, the compressive strength is 29.58 ± 1.89 MPa, and the porosity reaches 52.09%. The loaded COSM can be released continuously and stably in vitro, and has the effect of promoting angiogenesis. The safety evaluation of COSM-BCP bone cement particles and the preliminary pharmacodynamic study of its angiogenesis in vitro provide a promising clinical application basis for the development of drug-loaded biological bone substitute materials. Full article
Show Figures

Graphical abstract

23 pages, 5205 KB  
Article
Femtosecond Laser-Engineered β-TCP Scaffolds: A Comparative Study of Green-Synthesized AgNPs vs. Ion Doping Against S. aureus for Bone Regeneration
by Marco Oliveira, Liliya Angelova, Georgi Avdeev, Liliana Grenho, Maria Helena Fernandes and Albena Daskalova
Int. J. Mol. Sci. 2025, 26(10), 4888; https://doi.org/10.3390/ijms26104888 - 20 May 2025
Viewed by 698
Abstract
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with [...] Read more.
Implant-associated infections, particularly those linked to Staphylococcus aureus (S. aureus), continue to compromise the clinical success of β-tricalcium phosphate (β-TCP) implants despite their excellent biocompatibility and osteoconductivity. This investigation aims to tackle these challenges by integrating femtosecond (fs)-laser surface processing with two complementary strategies: ion doping and functionalization with green-synthesized silver nanoparticles (AgNPs). AgNPs were produced via fs-laser photoreduction using green tea leaf extract (GTLE), noted for its anti-inflammatory and antioxidant properties. Fs-laser processing was applied to modify β-TCP scaffolds by systematically varying scanning velocities, fluences, and patterns. Lower scanning velocities generated organized nanostructures with enhanced roughness and wettability, as confirmed by scanning electron microscopy (SEM), optical profilometry, and contact angle measurements, whereas higher laser energies induced significant phase transitions between hydroxyapatite (HA) and α-tricalcium phosphate (α-TCP), as revealed by X-ray diffraction (XRD). AgNP-functionalized scaffolds demonstrated markedly superior antibacterial activity against S. aureus compared to the ion-doped variants, attributed to the synergistic interplay of nanostructure-mediated surface disruption and AgNP-induced bactericidal mechanisms. Although ion-doped scaffolds exhibited limited direct antibacterial effects, they showed concentration-dependent activity in indirect assays, likely due to controlled ion release. Both strategies promoted osteogenic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) under defined conditions, albeit with transient cytotoxicity at higher fluences and excessive ion doping. Overall, this approach holds promise for markedly improving antibacterial efficacy and osteogenic compatibility, potentially transforming bone regeneration therapies. Full article
(This article belongs to the Special Issue Recent Research of Nanomaterials in Molecular Science: 2nd Edition)
Show Figures

Figure 1

Back to TopTop