Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = γ-amino butyric acid (GABA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8018 KB  
Article
Synthesis and In Silico Evaluation of GABA, Pregabalin and Baclofen N-Heterocyclic Analogues as GABAB Receptor Agonists
by Zuleyma Martínez-Campos, Luis Eduardo Hernandez-Dominguez, Fatima Romero-Rivera, Diana López-López, María Vicky Corona-González, Susana T. López-Cortina, Francisco José Palacios-Can, Rodrigo Said Razo-Hernández and Mario Fernández-Zertuche
Organics 2025, 6(2), 13; https://doi.org/10.3390/org6020013 - 24 Mar 2025
Cited by 1 | Viewed by 1596
Abstract
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the [...] Read more.
γ-amino butyric acid (GABA) is an inhibitory neurotransmitter whose deficiency has been associated with various neurological disorders. However, its low liposolubility limits its use as a supplement. Thus, multiple investigations have focused on searching for lipophilic GABA analogs that can modulate the activity of the GABAB receptor, which could be associated with the etiology of some central nervous system disorders. The GABA analogs available on the market are Vigabatrin, Gabapentin as well as Pregabalin and Baclofen. In this work, we report on the synthesis of GABA analogs, taking the scaffold of GABA, Pregabalin, and Baclofen as a starting point. The analogs include structural features that could favor the affinity of the molecules for the GABAB receptor, such as heterocyclic rings in the γ-position and alkyl or p-Cl-phenyl substituents (in analogy to Pregabalin and Baclofen, respectively). These analogs were synthesized by a sequence of reactions involving an N-alkylation, a 1,4-conjugated addition of dialkyl and diarylcuprates and a basic hydrolysis. Furthermore, a computational molecular docking over the GABAB receptor was performed to evaluate the interaction of each compound in the Baclofen binding site. With this information, we evaluated our compounds as GABAB agonists through a QSAR analysis. Finally, by means of molecular similarity analysis, and in silico ADME prediction, we support our three best compounds (8ab, 8d) as potential GABAB receptor agonists. Full article
Show Figures

Graphical abstract

12 pages, 978 KB  
Article
Development of Starter Cultures for Precision Fermentation of Kombucha with Enriched Gamma-Aminobutyric Acid (GABA) Content
by Geun-Hyung Kim, Kwang-Rim Baek, Ga-Eun Lee, Ji-Hyun Lee, Ji-Hyun Moon and Seung-Oh Seo
Fermentation 2025, 11(1), 17; https://doi.org/10.3390/fermentation11010017 - 2 Jan 2025
Viewed by 2578
Abstract
Kombucha, a fermented tea beverage, is produced through the symbiotic interaction of several microbial strains, including acetic acid bacteria, lactic acid bacteria, and yeast, collectively known as symbiotic culture of bacteria and yeast (SCOBY). As its health benefits and distinctive flavor gain wider [...] Read more.
Kombucha, a fermented tea beverage, is produced through the symbiotic interaction of several microbial strains, including acetic acid bacteria, lactic acid bacteria, and yeast, collectively known as symbiotic culture of bacteria and yeast (SCOBY). As its health benefits and distinctive flavor gain wider recognition, consumer demand and research on kombucha fermentation have increased. This study focused on developing starter cultures to produce functional kombucha through precision fermentation technology using selected microbial strains newly isolated from food sources. The isolated bacterial and yeast strains were evaluated and selected based on their fermentation characteristics. Notably, a lactic acid bacterial strain was chosen for its ability to overproduce the γ-amino butyric acid (GABA), a functional food component known to enhance cognitive function and reduce mental stress. To produce the GABA-fortified kombucha, selected single strains of Acetobacter pasteurianus, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae were mixed and used as starter cultures. By optimizing the inoculation ratios and initial sugar concentration, a functional kombucha enriched with acetic acid, lactic acid, and GABA was successfully produced. The resulting kombucha demonstrated 2.2 mg/L of GABA production and 1.15 times higher antioxidant activity after the fermentation, highlighting its enhanced health-promoting properties. Full article
Show Figures

Figure 1

16 pages, 1971 KB  
Article
Memantine Improves the Disturbed Glutamine and γ-Amino Butyric Acid Homeostasis in the Brain of Rats Subjected to Experimental Autoimmune Encephalomyelitis
by Beata Dąbrowska-Bouta, Lidia Strużyńska, Marta Sidoryk-Węgrzynowicz and Grzegorz Sulkowski
Int. J. Mol. Sci. 2023, 24(17), 13149; https://doi.org/10.3390/ijms241713149 - 24 Aug 2023
Cited by 3 | Viewed by 1790
Abstract
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the [...] Read more.
Glutamine (Gln), glutamate (Glu), and γ-amino butyric acid (GABA) are essential amino acids for brain metabolism and function. Astrocyte-derived Gln is the precursor for the two most important neurotransmitters in the central nervous system (CNS), which are the excitatory neurotransmitter Glu and the inhibitory neurotransmitter GABA. In addition to their roles in neurotransmission, these amino acids can be used as alternative substrates in brain metabolism that enable metabolic coupling between astrocytes and neurons in the glutamate–glutamine cycle (GGC). The disturbed homeostasis of these amino acids within the tripartite synapse may be involved in the pathogenesis of various neurological diseases. Interactions between astrocytes and neurons in terms of Gln, Glu, and GABA homeostasis were studied in different phases of experimental allergic encephalomyelitis (EAE) in Lewis rats. The results of the study showed a decrease in the transport (uptake and release) of Gln and GABA in both neuronal and astrocyte-derived fractions. These effects were fully or partially reversed when the EAE rats were treated with memantine, a NMDA receptor antagonist. Changes in the expression and activity of selected glutamine/glutamate metabolizing enzymes, such as glutamine synthase (GS) and phosphate-activated glutaminase (PAG), which were affected by memantine, were observed in different phases of EAE. The results suggested perturbed homeostasis of Gln, Glu, and GABA during EAE, which may indicate alterations in neuron–astrocyte coupling and dysfunction of the tripartite synapse. Memantine appears to partially regulate the disturbed relationships between Gln, Glu, and GABA. Full article
(This article belongs to the Special Issue Neurotransmitters in Neurodegenerative Diseases)
Show Figures

Figure 1

15 pages, 1435 KB  
Article
Changes in Memory, Sedation, and Receptor Kinetics Imparted by the β2-N265M and β3-N265M GABAA Receptor Point Mutations
by Alifayaz Abdulzahir, Steven Klein, Chong Lor, Mark G. Perkins, Alyssa Frelka and Robert A. Pearce
Int. J. Mol. Sci. 2023, 24(6), 5637; https://doi.org/10.3390/ijms24065637 - 15 Mar 2023
Cited by 2 | Viewed by 1811
Abstract
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation [...] Read more.
Point mutations in the β2 (N265S) and β3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of β2-GABAARs to sedation and β3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the β3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the β2-N265M and β3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both β2-N265M and β3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in β2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. β2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function. Full article
Show Figures

Figure 1

15 pages, 1663 KB  
Article
Experimental Basis Sets of Quantification of Brain 1H-Magnetic Resonance Spectroscopy at 3.0 T
by Hyeon-Man Baek
Metabolites 2023, 13(3), 368; https://doi.org/10.3390/metabo13030368 - 1 Mar 2023
Cited by 2 | Viewed by 2706
Abstract
In vivo short echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare [...] Read more.
In vivo short echo time (TE) proton magnetic resonance spectroscopy (1H-MRS) is a useful method for the quantification of human brain metabolites. The purpose of this study was to evaluate the performance of an in-house, experimentally measured basis set and compare it with the performance of a vendor-provided basis set. A 3T clinical scanner with 32-channel receive-only phased array head coil was used to generate 16 brain metabolites for the metabolite basis set. For voxel localization, point-resolved spin-echo sequence (PRESS) was used with volume of interest (VOI) positioned at the center of the phantoms. Two different basis sets were subjected to linear combination of model spectra of metabolite solutions in vitro (LCModel) analysis to evaluate the in-house acquired in vivo 1H-MR spectra from the left prefrontal cortex of 22 healthy subjects. To evaluate the performance of the two basis sets, the Cramer-Rao lower bounds (CRLBs) of each basis set were compared. The LCModel quantified the following metabolites and macromolecules: alanine (Ala), aspartate (Asp), γ-amino butyric acid (GABA), glucose (Glc), glutamine (Gln), glutamate (Glu), glutathione (GHS), Ins (myo-Inositol), lactate (Lac), N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG), taurine (Tau), phosphoryl-choline + glycerol-phosphoryl-choline (tCho), N-acetylaspartate + N-acetylaspartylglutamate (tNA), creatine + phosphocreatine (tCr), Glu + Gln (Glx) and Lip13a, Lip13b, Lip09, MM09, Lip20, MM20, MM12, MM14, MM17, Lip13a + Lip13b, MM14 + Lip13a + Lip13b + MM12, MM09 + Lip09, MM20 + Lip20. Statistical analysis showed significantly different CRLBs: Asp, GABA, Gln, GSH, Ins, Lac, NAA, NAAG, Tau, tCho, tNA, Glx, MM20, MM20 + Lip20 (p < 0.001), tCr, MM12, MM17 (p < 0.01), and Lip20 (p < 0.05). The estimated ratio of cerebrospinal fluid (CSF) in the region of interest was calculated to be about 5%. Fitting performances are better, for the most part, with the in-house basis set, which is more precise than the vendor-provided basis set. In particular, Asp is expected to have reliable CRLB (<30%) at high field (e.g., 3T) in the left prefrontal cortex of human brain. The quantification of Asp was difficult, due to the inaccuracy of Asp fitting with the vendor-provided basis set. Full article
(This article belongs to the Topic Metabolism and Health)
Show Figures

Figure 1

19 pages, 3871 KB  
Article
Insights into Long-Term Acclimation Strategies of Grapevines (Vitis vinifera L.) in Response to Multi-Decadal Cyclical Drought
by Dilrukshi S. K. Nagahatenna, Tarita S. Furlan, Everard J. Edwards, Sunita A. Ramesh and Vinay Pagay
Agronomy 2022, 12(12), 3221; https://doi.org/10.3390/agronomy12123221 - 19 Dec 2022
Cited by 1 | Viewed by 1921
Abstract
Changing climatic conditions across Australia’s viticulture regions is placing increasing pressure on resources such as water and energy for irrigation. Therefore, there is a pressing need to identify superior drought tolerant grapevine clones by exploring the extensive genetic diversity of early European clones [...] Read more.
Changing climatic conditions across Australia’s viticulture regions is placing increasing pressure on resources such as water and energy for irrigation. Therefore, there is a pressing need to identify superior drought tolerant grapevine clones by exploring the extensive genetic diversity of early European clones in old vineyards. Previously, in a field trial, we identified drought-tolerant (DT) dry-farmed Cabernet Sauvignon clones that had higher intrinsic water use efficiency (WUEi) under prolonged soil moisture deficiency compared to drought-sensitive (DS) clones. To investigate whether the field-grown clones have been primed and confer the drought-tolerant phenotypes to their subsequent vegetative progenies, we evaluated the drought responses of DT and DS progenies under two sequential drought events in a glasshouse alongside progenies of commercial clones. The DT clonal progenies exhibited improved gas exchange, photosynthetic performance and WUEi under recurrent drought events relative to DS clonal progenies. Concentration of a natural priming agent, γ-amino butyric acid (GABA), was significantly higher in DT progenies relative to other progenies under drought. Although DT and commercial clones displayed similar drought acclimation responses, their underlying hydraulic, stomatal and photosynthetic regulatory mechanisms were quite distinct. Our study provides fundamental insights into potential intergenerational priming mechanisms in grapevine. Full article
Show Figures

Figure 1

26 pages, 5226 KB  
Article
Target Metabolites to Slow Down Progression of Amyotrophic Lateral Sclerosis in Mice
by Destiny Ogbu, Yongguo Zhang, Katerina Claud, Yinglin Xia and Jun Sun
Metabolites 2022, 12(12), 1253; https://doi.org/10.3390/metabo12121253 - 12 Dec 2022
Cited by 15 | Viewed by 2873
Abstract
Microbial metabolites affect the neuron system and muscle cell functions. Amyotrophic lateral sclerosis (ALS) is a multifactorial neuromuscular disease. Our previous study has demonstrated elevated intestinal inflammation and dysfunction of the microbiome in patients with ALS and an ALS mouse model (human-SOD1G93A [...] Read more.
Microbial metabolites affect the neuron system and muscle cell functions. Amyotrophic lateral sclerosis (ALS) is a multifactorial neuromuscular disease. Our previous study has demonstrated elevated intestinal inflammation and dysfunction of the microbiome in patients with ALS and an ALS mouse model (human-SOD1G93A transgenic mice). However, the metabolites in ALS progression are unknown. Using an unbiased global metabolomic measurement and targeted measurement, we investigated the longitudinal changes of fecal metabolites in SOD1G93A mice over the course of 13 weeks. We further compared the changes of metabolites and inflammatory response in age-matched wild-type (WT) and SOD1G93A mice treated with the bacterial product butyrate. We found changes in carbohydrate levels, amino acid metabolism, and the formation of gamma-glutamyl amino acids. Shifts in several microbially contributed catabolites of aromatic amino acids agree with butyrate-induced changes in the composition of the gut microbiome. Declines in gamma-glutamyl amino acids in feces may stem from differential expression of gamma-glutamyltransferase (GGT) in response to butyrate administration. Due to the signaling nature of amino acid-derived metabolites, these changes indicate changes in inflammation, e.g., histamine, and contribute to differences in systemic levels of neurotransmitters, e.g., γ-Aminobutyric acid (GABA) and glutamate. Butyrate treatment was able to restore some of the healthy metabolites in ALS mice. Moreover, microglia in the spinal cord were measured by IBA1 staining. Butyrate treatment significantly suppressed the IBA1 level in the SOD1G93A mice. Serum IL-17 and LPS were significantly reduced in the butyrate-treated SOD1G93A mice. We have demonstrated an inter-organ communications link among microbial metabolites, neuroactive metabolites from the gut, and inflammation in ALS progression. The study supports the potential to use metabolites as ALS hallmarks and for treatment. Full article
(This article belongs to the Special Issue The Role of Gut Microbes in Metabolism Regulation)
Show Figures

Graphical abstract

21 pages, 638 KB  
Review
Narrative Review on the Effects of Oat and Sprouted Oat Components on Blood Pressure
by DeAnn J. Liska, ElHadji Dioum, Yifang Chu and Eunice Mah
Nutrients 2022, 14(22), 4772; https://doi.org/10.3390/nu14224772 - 11 Nov 2022
Cited by 17 | Viewed by 6664
Abstract
Hypertension (HTN) is a major risk factor for cardiovascular disease (CVD) and cognitive decline. Elevations in blood pressure (BP) leading to HTN can be found in young adults with increased prevalence as people age. Oats are known to decrease CVD risk via an [...] Read more.
Hypertension (HTN) is a major risk factor for cardiovascular disease (CVD) and cognitive decline. Elevations in blood pressure (BP) leading to HTN can be found in young adults with increased prevalence as people age. Oats are known to decrease CVD risk via an established effect of β-glucan on the attenuation of blood cholesterol. Many past studies on CVD and oats have also reported a decrease in BP; however, a thorough assessment of oats and BP has not been conducted. Moreover, oats deliver several beneficial dietary components with putative beneficial effects on BP or endothelial function, such as β-glucan, γ-amino butyric acid (GABA), and phytochemicals such as avenanthramides. We conducted a comprehensive search for systematic reviews, meta-analyses, and clinical intervention studies on oats and BP and identified 18 randomized controlled trials (RCTs) and three meta-analyses that supported the role of oats in decreasing BP. Emerging data also suggest oat consumption may reduce the use of anti-hypertensive medications. The majority of these studies utilized whole oats or oat bran, which include a vast array of oat bioactives. Therefore, we also extensively reviewed the literature on these bioactives and their putative effect on BP-relevant mechanisms. The data suggest several oat components, such as GABA, as well as the delivery of high-quality plant protein and fermentable prebiotic fiber, may contribute to the anti-HTN effect of oats. In particular, GABA is enhanced in oat sprouts, which suggests this food may be particularly beneficial for healthy BP management. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

14 pages, 3089 KB  
Article
A Metabolic Network Mediating the Cycling of Succinate, a Product of ROS Detoxification into α-Ketoglutarate, an Antioxidant
by Félix Legendre, Alex MacLean, Sujeenthar Tharmalingam and Vasu D. Appanna
Antioxidants 2022, 11(3), 560; https://doi.org/10.3390/antiox11030560 - 16 Mar 2022
Cited by 6 | Viewed by 3696
Abstract
Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, [...] Read more.
Sulfur is an essential element for life. However, the soil microbe Pseudomonas (P.) fluorescens can survive in a low sulfur environment. When cultured in a sulfur-deficient medium, the bacterium reprograms its metabolic pathways to produce α-ketoglutarate (KG) and regenerate this keto-acid from succinate, a by-product of ROS detoxification. Succinate semialdehyde dehydrogenase (SSADH) and KG decarboxylase (KGDC) work in partnership to synthesize KG. This process is further aided by the increased activity of the enzymes glutamate decarboxylase (GDC) and γ-amino-butyrate transaminase (GABAT). The pool of succinate semialdehyde (SSA) generated is further channeled towards the formation of the antioxidant. Spectrophotometric analyses, HPLC experiments and electrophoretic studies with intact cells and cell-free extracts (CFE) pointed to the metabolites (succinate, SSA, GABA) and enzymes (SSADH, GDC, KGDC) contributing to this KG-forming metabolic machinery. Real-time polymerase chain reaction (RT-qPCR) revealed significant increase in transcripts of such enzymes as SSADH, GDC and KGDC. The findings of this study highlight a novel pathway involving keto-acids in ROS scavenging. The cycling of succinate into KG provides an efficient means of combatting an oxidative environment. Considering the central role of KG in biological processes, this metabolic network may be operative in other living systems. Full article
Show Figures

Graphical abstract

20 pages, 1435 KB  
Article
The Effects of Matcha and Decaffeinated Matcha on Learning, Memory and Proteomics of Hippocampus in Senescence-Accelerated (SAMP8) Mice
by Kiharu Igarashi, Makiko Takagi and Yoichi Fukushima
Nutrients 2022, 14(6), 1197; https://doi.org/10.3390/nu14061197 - 11 Mar 2022
Cited by 9 | Viewed by 4438
Abstract
Although the benefits of the consumption of green tea and its components, including catechins and theanine, regarding aging, memory impairment and age-related cognitive decline have been investigated in senescence-accelerated prone mice (SAMP8), studies that simultaneously measured the kinds of proteins that vary in [...] Read more.
Although the benefits of the consumption of green tea and its components, including catechins and theanine, regarding aging, memory impairment and age-related cognitive decline have been investigated in senescence-accelerated prone mice (SAMP8), studies that simultaneously measured the kinds of proteins that vary in their expression due to the administration of green tea and its extracts were not found. In this study, the effect of dietary and decaffeinated matcha on protein expression in the hippocampus of SAMP 8 was examined comprehensively, mainly using proteomics. Although improvements in memory and the hair appearance of the back coat were limited upon administering the samples, the following regulations were observed in some of the proteins involved in neuron degeneration, Parkinson’s and Alzheimer’s diseases, synapse transmission and nerve cell plasticity, antioxidation, glutamate transport and metabolism, GABA (γ-amino butyric acid) formation and transport and excitatory amino acid transporters: proteins downregulated upon sample intake (p < 0.05): brain acid-soluble protein 1, microtubule-associated protein tau, synapsin-2, sodium- and chloride-dependent GABA transporter; proteins that tended to decrease upon sample intake (0.05 < p < 0.10): Parkinson’s disease (autosomal recessive and early-onset) 7 and synapsin-1; proteins upregulated upon sample intake (p > 0.95): glutathione S-transferase Mu 1, tubulin alpha-1A chain, dynamin-2, calcium/calmodulin-dependent protein kinase type II subunit gamma and tyrosine 3-monooxygenase/tyrosine 5-monooxygenase activation protein epsilon polypeptide; proteins that tended to increase upon sample intake (0.95 > p > 0.90): glutathione S-transferase Mu7 and soluble carrier family 1 (glial high-affinity glutamate transporter); proteins that tended to decrease: sodium- and chloride-dependent GABA transporter 3. These results indicate that matcha and decaffeinated matcha could reduce aging and cognitive impairment by regulating the expression of these proteins. Furthermore, these proteins could be used as markers for the evaluation of food and its available components for reducing aging and cognitive impairment. Full article
(This article belongs to the Special Issue Polyphenols and Polyphenol-Rich Foods in Neurodegenerative Disorders)
Show Figures

Figure 1

11 pages, 2369 KB  
Article
GABAA Receptor-Mediated Sleep-Promoting Effect of Saaz–Saphir Hops Mixture Containing Xanthohumol and Humulone
by Byungjick Min, Yejin Ahn, Hyeok-Jun Cho, Woong-Kwon Kwak, Hyung Joo Suh and Kyungae Jo
Molecules 2021, 26(23), 7108; https://doi.org/10.3390/molecules26237108 - 24 Nov 2021
Cited by 12 | Viewed by 4307
Abstract
Hops contain flavonoids that have sedative and sleep-promoting activities such as α-acid, β-acid, and xanthohumol. In this study, the sleep-enhancing activity of a Saaz–Saphir hops mixture was measured. In the caffeine-induced insomnia model, the administration of a Saaz–Saphir mixture increased the sleep time [...] Read more.
Hops contain flavonoids that have sedative and sleep-promoting activities such as α-acid, β-acid, and xanthohumol. In this study, the sleep-enhancing activity of a Saaz–Saphir hops mixture was measured. In the caffeine-induced insomnia model, the administration of a Saaz–Saphir mixture increased the sleep time compared to Saaz or Saphir administration alone, which was attributed to the increase in NREM sleep time by the δ-wave increase. Oral administration of the Saaz–Saphir mixture for 3 weeks increased the γ-amino butyric acid (GABA) content in the brain and increased the expression of the GABAA receptor. As the GABA antagonists picrotoxin and bicuculline showed a decrease in sleep activity, it was confirmed that the GABAA receptor was involved in the Saaz–Saphir mixture activity. In addition, the GABAA receptor antagonist also reduced the sleep activity induced by xanthohumol and humulone contained in the Saaz–Saphir mixture. Therefore, xanthohumol and humulone contained in the Saaz–Saphir mixture showed sleep-promoting activity mediated by the GABAA receptors. The mixture of the Saaz and Saphir hop varieties may thus help mitigate sleep disturbances compared to other hop varieties. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

21 pages, 896 KB  
Review
United States Pharmacopeia (USP) Safety Review of Gamma-Aminobutyric Acid (GABA)
by Hellen A. Oketch-Rabah, Emily F. Madden, Amy L. Roe and Joseph M. Betz
Nutrients 2021, 13(8), 2742; https://doi.org/10.3390/nu13082742 - 10 Aug 2021
Cited by 94 | Viewed by 28185
Abstract
Gamma-amino butyric acid (GABA) is marketed in the U.S. as a dietary supplement. USP conducted a comprehensive safety evaluation of GABA by assessing clinical studies, adverse event information, and toxicology data. Clinical studies investigated the effect of pure GABA as a dietary [...] Read more.
Gamma-amino butyric acid (GABA) is marketed in the U.S. as a dietary supplement. USP conducted a comprehensive safety evaluation of GABA by assessing clinical studies, adverse event information, and toxicology data. Clinical studies investigated the effect of pure GABA as a dietary supplement or as a natural constituent of fermented milk or soy matrices. Data showed no serious adverse events associated with GABA at intakes up to 18 g/d for 4 days and in longer studies at intakes of 120 mg/d for 12 weeks. Some studies showed that GABA was associated with a transient and moderate drop in blood pressure (<10% change). No studies were available on effects of GABA during pregnancy and lactation, and no case reports or spontaneous adverse events associated with GABA were found. Chronic administration of GABA to rats and dogs at doses up to 1 g/kg/day showed no signs of toxicity. Because some studies showed that GABA was associated with decreases in blood pressure, it is conceivable that concurrent use of GABA with anti-hypertensive medications could increase risk of hypotension. Caution is advised for pregnant and lactating women since GABA can affect neurotransmitters and the endocrine system, i.e., increases in growth hormone and prolactin levels. Full article
(This article belongs to the Special Issue Amino Acid Nutrition and Metabolism Related to Health and Well Being)
Show Figures

Graphical abstract

5 pages, 523 KB  
Article
Postacute Administration of the GABAA α5 Antagonist S44819 Promotes Recovery of Peripheral Limb Fine Motor Skills after Permanent Distal Middle Cerebral Artery Occlusion in Rats
by Marta Pace, Matteo Falappa, Patricia Machado, Laura Facchin, Dirk M Hermann and Claudio L Bassetti
Clin. Transl. Neurosci. 2020, 4(2), 14; https://doi.org/10.1177/2514183x20948306 - 20 Nov 2020
Cited by 1 | Viewed by 903
Abstract
Background: Ischemic stroke causes hypoexcitability in the peri-infarct motor neocortex that stems from increased tonic γ-amino-butyric acid (GABA) activity in neurons. This hypoexcitability, while neuroprotective in the acute phase, may impair neuroplasticity and functional recovery in the subacute phase of stroke. The [...] Read more.
Background: Ischemic stroke causes hypoexcitability in the peri-infarct motor neocortex that stems from increased tonic γ-amino-butyric acid (GABA) activity in neurons. This hypoexcitability, while neuroprotective in the acute phase, may impair neuroplasticity and functional recovery in the subacute phase of stroke. The purpose of this study is to investigate the effect of delayed and prolonged administration of S44819, which is a potent and competitive selective antagonist of GABAA receptors, on the skilled reaching function in a rodent model of stroke. Methods: Male Sprague–Dawley rats (n = 15) were subjected to permanent middle cerebral artery occlusion. Starting 3 days after stroke, a vehicle or S44819 (3 or 10 mg/kg, BID) was delivered orally twice a day for 28 days. All animals were euthanized 2 weeks later after the washout period. A single pellet reaching task (SPR) was performed before (baseline value) and after the ischemic surgery at several time points (3, 10, 17, 24, 31, 38, and 45 days) to assess the motor deficit. Infarct volume and body changes were also evaluated. Results: S44819, administered at 10 but not 3 mg/kg, significantly improves SPR results over the 45 days after the ischemic surgery. No effect was observed in the infarct size and in the body weight over time between the groups investigated. Conclusion: S44819 at 10 mg/kg significantly enhances motor recovery on a skilled reaching task after sensory-motor cortex lesion. Additionally, our study, in light of the results of the RESTORE BRAIN (Randomized Efficacy and Safety Trial of Oral GABAA α5 antagonist S44819 after Recent ischemic Event) trial, may help clinicians to design clinical studies and stratify variables and patients adequately. Full article
15 pages, 2465 KB  
Article
Succinic Semialdehyde Dehydrogenase Deficiency: In Vitro and In Silico Characterization of a Novel Pathogenic Missense Variant and Analysis of the Mutational Spectrum of ALDH5A1
by Heiko Brennenstuhl, Miroslava Didiasova, Birgit Assmann, Mariarita Bertoldi, Gianluca Molla, Sabine Jung-Klawitter, Oya Kuseyri Hübschmann, Julian Schröter, Thomas Opladen and Ritva Tikkanen
Int. J. Mol. Sci. 2020, 21(22), 8578; https://doi.org/10.3390/ijms21228578 - 13 Nov 2020
Cited by 9 | Viewed by 3127
Abstract
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of [...] Read more.
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ-amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ-hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease-causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots. Full article
(This article belongs to the Special Issue Molecular Research on Inherited Disorders)
Show Figures

Figure 1

11 pages, 2009 KB  
Article
The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling
by Meagan Kurland, Bryn O’Meara, Dana K. Tucker and Brian D. Ackley
J. Dev. Biol. 2020, 8(1), 5; https://doi.org/10.3390/jdb8010005 - 3 Mar 2020
Cited by 3 | Viewed by 4570
Abstract
Nervous systems are comprised of diverse cell types that differ functionally and morphologically. During development, extrinsic signals, e.g., growth factors, can activate intrinsic programs, usually orchestrated by networks of transcription factors. Within that network, transcription factors that drive the specification of features specific [...] Read more.
Nervous systems are comprised of diverse cell types that differ functionally and morphologically. During development, extrinsic signals, e.g., growth factors, can activate intrinsic programs, usually orchestrated by networks of transcription factors. Within that network, transcription factors that drive the specification of features specific to a limited number of cells are often referred to as terminal selectors. While we still have an incomplete view of how individual neurons within organisms become specified, reporters limited to a subset of neurons in a nervous system can facilitate the discovery of cell specification programs. We have identified a fluorescent reporter that labels VD13, the most posterior of the 19 inhibitory GABA (γ-amino butyric acid)-ergic motorneurons, and two additional neurons, LUAL and LUAR. Loss of function in multiple Wnt signaling genes resulted in an incompletely penetrant loss of the marker, selectively in VD13, but not the LUAs, even though other aspects of GABAergic specification in VD13 were normal. The posterior Hox gene, egl-5, was necessary for expression of our marker in VD13, and ectopic expression of egl-5 in more anterior GABAergic neurons induced expression of the marker. These results suggest egl-5 is a terminal selector of VD13, subsequent to GABAergic specification. Full article
(This article belongs to the Special Issue Caenorhabditis elegans - A Developmental Genetic Model System)
Show Figures

Figure 1

Back to TopTop