Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,821)

Search Parameters:
Keywords = 2–150 kHz

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4357 KB  
Article
Thermal Gas Flow Sensor Using SiGe HBT Oscillators Based on GaN/Si SAW Resonators
by Wenpu Cui, Jie Cui, Wenchao Zhang, Guofang Yu, Di Zhao, Jingqing Du, Zhen Li, Jun Fu and Tianling Ren
Micromachines 2025, 16(10), 1151; https://doi.org/10.3390/mi16101151 - 10 Oct 2025
Abstract
This paper presents a thermal gas flow sensing system, from surface acoustic wave (SAW) temperature sensor to oscillation circuit and multi-module miniaturization integration. A single-port GaN/Si SAW resonator with single resonant mode and excellent characteristics was fabricated. Combined with an in-house-developed SiGe HBT, [...] Read more.
This paper presents a thermal gas flow sensing system, from surface acoustic wave (SAW) temperature sensor to oscillation circuit and multi-module miniaturization integration. A single-port GaN/Si SAW resonator with single resonant mode and excellent characteristics was fabricated. Combined with an in-house-developed SiGe HBT, a temperature-sensitive high-frequency oscillator was constructed. Under constant temperature control, system-level flow measurement was achieved through dual-oscillation configuration and modular integration. The fabricated SAW device shows a temperature coefficient of frequency (TCF) −28.29 ppm/K and temperature linearity 0.998. The oscillator operates at 1.91 GHz with phase noise of −97.72/−118.62 dBc/Hz at 10/100 kHz offsets. The system demonstrates excellent dynamic response and repeatability, directly measuring 0–50 sccm flows. For higher flows (>50 sccm), a shunt technique extends the test range based on the 0–10 sccm linear region, where response time is <1 s with error <0.9%. Non-contact operation ensures high stability and long lifespan. The sensor shows outstanding performance and broad application prospects in flow measurement. Full article
Show Figures

Figure 1

22 pages, 13280 KB  
Article
An Airborne and Impact Sound Insulation Analysis of 3D Woven Textiles on the Floor in Buildings
by Ngan Thanh Vu, Won-Kee Hong and Seong-Kyum Kim
Buildings 2025, 15(20), 3643; https://doi.org/10.3390/buildings15203643 (registering DOI) - 10 Oct 2025
Abstract
Noise has detrimental effects on mental and physical health and quality of life, especially for those living in apartment buildings. Therefore, sound insulation materials are pivotal for reducing unwanted noise as well as enhancing acoustic comfort. This study offers a hybrid approach for [...] Read more.
Noise has detrimental effects on mental and physical health and quality of life, especially for those living in apartment buildings. Therefore, sound insulation materials are pivotal for reducing unwanted noise as well as enhancing acoustic comfort. This study offers a hybrid approach for analyzing 3D woven textile sound insulation material effectiveness, especially in residential buildings, by simulating airborne sound insulation and testing manufactured slab samples with 3D woven textile mortars in a laboratory using a tapping machine. At the same time, the JCA model and the transfer matrix method are employed to calibrate sound absorption coefficients (SAC) and simulate its airborne sound insulation effect in buildings in Seoul, South Korea. Results indicate that the maximum mean sound pressure level (SPL) of the 3D woven textile was reduced up to 9 dB in the octave band frequencies. The thickness improvement of 3D woven textiles enhances the mid- and high-frequency sound absorption effect, most pronounced in 3D woven textiles made of double-layer (DSRM) material, which demonstrated an air sound insulation efficiency around 28.5% greater than that of traditional materials. The maximum drop in impact sound pressure level (SPL) at 2 kHz is 13 dB. The study also proposes a strategy to optimize sound insulation performance, which is used as an effective solution for noise control in buildings. These findings lay the groundwork for research on the application of 3D woven textiles for sound insulation in residential buildings and offer prospects for sustainable textile composites in architectural building applications. Full article
(This article belongs to the Special Issue Acoustics and Well-Being: Towards Healthy Environments)
Show Figures

Figure 1

12 pages, 3323 KB  
Article
Effects of Laser Shock Processing on the Mechanical Properties of 6061-T6 Aluminium Alloy Using Nanosecond and Picosecond Laser Pulses
by Martha Guadalupe Arredondo Bravo, Gilberto Gomez-Rosas, Miguel Morales, David Munoz-Martin, Juan Jose Moreno-Labella, Jose Manuel Lopez Lopez, Jose Guadalupe Quiñones Galvan, Carlos Rubio-Gonzalez, Francisco Javier Casillas Rodriguez and Carlos Molpeceres
Materials 2025, 18(20), 4649; https://doi.org/10.3390/ma18204649 - 10 Oct 2025
Abstract
Laser shock processing (LSP) is a surface treatment technique used to enhance mechanical properties such as hardness, corrosion resistance, and wear resistance. This study investigates the effects of LSP on a 6061-T6 aluminium alloy using four treatment conditions: nanosecond (ns-LSP), picosecond (ps-LSP), and [...] Read more.
Laser shock processing (LSP) is a surface treatment technique used to enhance mechanical properties such as hardness, corrosion resistance, and wear resistance. This study investigates the effects of LSP on a 6061-T6 aluminium alloy using four treatment conditions: nanosecond (ns-LSP), picosecond (ps-LSP), and a combination of nanosecond–picosecond (nsps-LSP) and picosecond–nanosecond (psns-LSP) pulses. Two laser systems were employed: a Q-switched Nd:YAG laser (850 mJ/pulse, 6 ns, 1064 nm, 10 Hz), and an Ekspla Atlantic 355-60 laser (0.110 mJ/pulse, 13 ps, 1064 nm, 1 kHz). All treatments induced compressive residual stresses up to 1 mm in depth. Additionally, improvements in microhardness were observed, particularly at deeper layers in the combined nsps-LSP treatment. Surface roughness was measured and compared. Among all configurations, the nsps-LSP treatment produced the highest compressive residual stresses (−428 MPa) and greater microhardness at depth. These results suggest that the combined nsps-LSP treatment represents a promising approach to enhance the mechanical performance of metallic components. Full article
(This article belongs to the Special Issue Advances in Laser Processing Technology of Materials—Second Edition)
Show Figures

Figure 1

12 pages, 1141 KB  
Article
Bitumen Extraction from Bituminous Sands by Ultrasonic Irradiation
by Yerzhan Imanbayev, Yerdos Ongarbayev, Akerke Abylaikhan, Binur Mussabayeva, Dinara Muktaly and Zhannur Myltykbayeva
ChemEngineering 2025, 9(5), 109; https://doi.org/10.3390/chemengineering9050109 - 10 Oct 2025
Abstract
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration [...] Read more.
This paper discusses the efficiency of ultrasonic-assisted bitumen extraction from bituminous sands of the Beke deposit (Mangistau region, Kazakhstan) using alkaline aqueous solutions. The process parameters, including ultrasonic frequency (22 kHz), power (up to 1500 W), solution pH (>12), and optimal NaOH concentration (1 wt.%) were optimized to achieve a maximum bitumen recovery of 98 wt.% within 8 min. The most effective sand-to-solution mass ratio was determined as 1:2, while the optimal process temperature was 75 °C. The application of ultrasound significantly enhances cavitation and reagent penetration, enabling efficient separation of bitumen with minimal chemical usage. Fourier-transform infrared (FTIR) spectroscopy and GC–MS analyses revealed the presence of aromatic hydrocarbons, paraffinic and naphthenic structures, as well as sulfur- and oxygen-containing functional groups (e.g., sulfoxides, carboxylic acids). These characteristics suggest moderate maturity and a high degree of aromaticity of the organic matter. Despite suitable thermal and compositional properties, the extracted bitumen exhibits a relatively low stiffness and softening point, indicating the need for additional upgrading (e.g., oxidation) prior to use in road construction. Although standard rheological tests (e.g., dynamic shear rhinometry) were not conducted in this study, the penetration and softening point values suggest a relatively soft binder, possibly unsuitable for high-temperature paving applications without modification. Future research will focus on rheological evaluation and oxidative upgrading to meet the ST RK 1373-2013 specification requirements. Full article
Show Figures

Figure 1

16 pages, 803 KB  
Article
FPGA Spectral Clustering Receiver for Phase-Noise-Affected Channels
by David Marquez-Viloria, Miguel Solarte-Sanchez, Andrés E. Castro-Ospina, Neil Guerrero-Gonzalez and Marin B. Marinov
Appl. Sci. 2025, 15(19), 10818; https://doi.org/10.3390/app151910818 - 8 Oct 2025
Viewed by 150
Abstract
This work extends our previous research on spectral clustering for mitigating nonlinear phase noise in optical communication systems by presenting the first complete FPGA implementation of the algorithm, including on-chip eigenvector computation with parallelization strategies. The implementation addresses the computational complexity challenges of [...] Read more.
This work extends our previous research on spectral clustering for mitigating nonlinear phase noise in optical communication systems by presenting the first complete FPGA implementation of the algorithm, including on-chip eigenvector computation with parallelization strategies. The implementation addresses the computational complexity challenges of spectral clustering through a heterogeneous CPU/FPGA co-design approach that partitions algorithmic stages between ARM processors and the FPGA fabric. While the achieved processing speeds of approximately 36 symbols per second do not yet meet the requirements for commercial optical transceivers, our hardware prototype demonstrates the feasibility and practical challenges of deploying advanced clustering algorithms on real-time hardware architectures. We detail the parallel Jacobi method for eigenvector computation, the Greedy K-means++ initialization strategy, and the comprehensive hardware mapping of all clustering stages. The system processes streaming m-QAM data through a windowed architecture and integrates a demapper to ensure label consistency, demonstrating improved bit error rate performance compared to K-means under severe phase noise conditions of −90 dBc/Hz at a 1 MHz offset. This implementation offers valuable insights into memory bandwidth limitations and resource utilization trade-offs, underscoring the crucial role of FPGAs as a bridge between algorithm development and high-speed optical system deployment. Full article
(This article belongs to the Special Issue Recent Applications of Field-Programmable Gate Arrays (FPGAs))
Show Figures

Figure 1

17 pages, 763 KB  
Article
Ultrasound Thawing Optimization as a Novel Strategy to Improve Quality of Slowly Frozen Chicken Breast
by Suelen Priscila Santos, Silvino Sasso Robalo, Monica Voss, Bianca Campos Casarin, Bibiana Alves dos Santos, Renius de Oliveira Mello, Juliano Smanioto Barin, Cristiano Ragagnin de Menezes, Paulo Cezar Bastianello Campagnol and Alexandre José Cichoski
Foods 2025, 14(19), 3446; https://doi.org/10.3390/foods14193446 - 8 Oct 2025
Viewed by 177
Abstract
Chicken meat is highly consumed worldwide due to its nutritional value, but its high water content and abundance of polyunsaturated fatty acids make it particularly vulnerable to structural and oxidative damage during freezing and thawing. Slow freezing, in particular, generates large ice crystals [...] Read more.
Chicken meat is highly consumed worldwide due to its nutritional value, but its high water content and abundance of polyunsaturated fatty acids make it particularly vulnerable to structural and oxidative damage during freezing and thawing. Slow freezing, in particular, generates large ice crystals that severely impair water-holding capacity (WHC), increase drip loss, promote color deterioration, and intensify protein and lipid oxidation. Innovative thawing strategies are therefore required to mitigate these quality losses. Ultrasound (US) has been successfully applied to accelerate thawing of fast-frozen meat; however, its potential for slowly frozen chicken breast remains poorly understood. This study aimed to evaluate the effects of US-assisted thawing at two frequencies (25 and 130 kHz), two amplitudes (100% and 60%), and three operating modes (normal, sweep, and degas) on the quality of slowly frozen chicken breast. Conventional thawing required 50 min, yielding WHC of 9.87%, drip loss of 4.65%, free sulfhydryls of 16.38 µmol/g, and ∆E of 3.91. In contrast, the optimized US condition (25 kHz, 100% amplitude, sweep mode) thawed samples in only 18 min, with markedly improved WHC (23.14%), reduced drip loss (3.25%), higher preservation of free sulfhydryls (24.69 µmol/g), and minimal color change (∆E = 3.72). Conversely, less effective parameters (e.g., 130 kHz, 60% amplitude, normal mode) prolonged thawing and compromised quality, with WHC dropping to 9.96% and drip loss increasing to 9.05%. Overall, US reduced thawing time under all conditions, but quality responses depended strongly on the applied parameters. The present findings demonstrate the novelty of optimizing US frequency, amplitude, and mode for thawing slowly frozen chicken breast, highlighting sweep mode at 25 kHz and 100% amplitude as the most effective strategy. Future research should explore its scalability and industrial applicability for poultry processing. Full article
Show Figures

Figure 1

14 pages, 2439 KB  
Article
A Traceable Low-Frequency Attenuation Standard from 1 kHz to 10 MHz for Next-Generation Wireless and EMC Calibration
by Anton Widarta
Sensors 2025, 25(19), 6227; https://doi.org/10.3390/s25196227 - 8 Oct 2025
Viewed by 187
Abstract
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an [...] Read more.
The growing demand for traceable, high-precision attenuation measurements in electromagnetic compatibility (EMC) testing and low-frequency wireless communication systems has driven the development of a primary attenuation standard covering 1 kHz to 10 MHz. The system employs a dual channel null-detection method using an inductive voltage divider (IVD) as a reference, ensuring the highest accuracy and traceability while eliminating sensitivity to detector nonlinearity. Attenuation at 1 kHz, 9 kHz, and 10 kHz is measured directly against the IVD ratio, while higher-frequency measurements (100 kHz–10 MHz) are performed via heterodyne detection, down-converting signals to 1 kHz for comparison. To ensure comparable accuracy at higher attenuation levels, a double-step method is applied at 9 kHz and 10 kHz to mitigate the increased IVD uncertainty above 1 kHz. Linearity is ensured by suppressing common-mode currents with toroidal ferrite chokes and minimizing inter-channel coupling. Type B (non-statistical) measurement uncertainties are evaluated, with major contributions from the IVD reference, system errors, and mismatch. The expanded uncertainties are 2.2 × 10−3 dB at 20 dB, 3.0 × 10−3 dB at 40 dB, and 4.0 × 10−3 dB at 60 dB attenuation. To facilitate wider dissemination and extend the calibration range, a resistive step attenuator with 10 dB pads is evaluated as a practical transfer standard, providing a simple and robust solution for traceable attenuation calibration in this frequency range. Full article
(This article belongs to the Special Issue Novel Signal Processing Techniques for Wireless Communications)
Show Figures

Figure 1

21 pages, 2942 KB  
Article
A Real-Time Six-Axis Electromagnetic Field Monitoring System with Wireless Transmission and Intelligent Vector Analysis for Power Environments
by Xiran Zheng, Xuecong Li, Yucheng Mai, Wendong Li, Meiqi Chen, Gengjie Huang, Zheng Zhang and Yue Wang
Appl. Sci. 2025, 15(19), 10785; https://doi.org/10.3390/app151910785 - 7 Oct 2025
Viewed by 243
Abstract
Accurate and real-time monitoring of low-frequency electromagnetic field (EMF) is essential in power and industrial environments, yet most conventional approaches still suffer from limited spatial coverage, manual operation, and insufficient digitization. To address these challenges, this paper proposes an intelligent EMF monitoring system [...] Read more.
Accurate and real-time monitoring of low-frequency electromagnetic field (EMF) is essential in power and industrial environments, yet most conventional approaches still suffer from limited spatial coverage, manual operation, and insufficient digitization. To address these challenges, this paper proposes an intelligent EMF monitoring system that integrates six-axis magnetic field sensing, temperature compensation, vector synthesis, Sub-1 GHz wireless communication, and real-time data visualization. The system supports simultaneous measurement of both AC and DC magnetic fields across the 30 Hz–100 kHz range, with specific optimization for power-frequency conditions (50/60 Hz). Designed with modular integration and low power consumption, it is suitable for portable deployment in field scenarios. Comprehensive laboratory and substation tests demonstrate high accuracy, with maximum measurement errors of 1.17% under zero-field and 1.42% under applied-field conditions—well below the ±5% tolerance defined by international standards. Wireless performance tests further confirm stable long-distance communication, achieving ranges of up to 5 km without significant transmission errors, while overall system measurement error reached as low as 0.015%. These results verify the system’s robustness, fidelity, and compliance with international safety standards. Overall, the proposed platform provides a practical and scalable solution for intelligent EMF monitoring, offering strong potential for deployment in industrial environments and infrastructure-critical applications. Full article
Show Figures

Figure 1

24 pages, 3652 KB  
Article
A Modern Ultrasonic Cleaning Tank Developed for the Jewelry Manufacturing Process and Its Cleaning Efficiency
by Chatchapat Chaiaiad, Pawantree Borthai and Jatuporn Thongsri
Inventions 2025, 10(5), 90; https://doi.org/10.3390/inventions10050090 - 7 Oct 2025
Viewed by 108
Abstract
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities [...] Read more.
This research details the development and evaluation of a Modern Ultrasonic Cleaning Tank (MUCT) designed to enhance cleaning efficiency in jewelry manufacturing, particularly for silver jewelry, replacing the traditional method, which was less efficient and had higher operating costs. The MUCT offers capabilities of single- or dual-frequency ultrasonic operation (28 kHz and 40 kHz) and adjustable transducer positioning. An advanced method involving computer simulations, utilizing harmonic response analysis and transient dynamic analysis, was employed to determine the acoustic pressure inside the MUCT, thereby indicating the cavitation intensity required to achieve high cleaning efficiency. Simulation results confirm that this design can distribute acoustic pressure throughout the MUCT, as intended. A prototype MUCT was assembled, and its operation was validated through foil corrosion tests, ultrasonic power concentration (UPC) measurements, and jewelry cleaning tests. The results revealed that the MUCT’s center provided the maximum UPC of 28 W/L and an acoustic pressure of 30.43 MPa, effectively operating at single and dual frequencies, and achieving superior dirt removal. The highest cleaning efficiency of 100% was achieved using dual frequency with a 97% water and 3% dishwashing liquid mixture at 60 °C, exceeding the 23.52% obtained with water at 27 °C without ultrasonic treatment. The MUCT, successfully integrated into the manufacturing process, offers customizable features to meet various cleaning needs, providing flexibility, improved performance, and cost savings. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 9446 KB  
Article
Exploring the Mediterranean: AUV High-Resolution Mapping of the Roman Wreck Offshore of Santo Stefano al Mare (Italy)
by Christoforos Benetatos, Stefano Costa, Giorgio Giglio, Claudio Mastrantuono, Roberto Mo, Costanzo Peter, Candido Fabrizio Pirri, Adriano Rovere and Francesca Verga
J. Mar. Sci. Eng. 2025, 13(10), 1921; https://doi.org/10.3390/jmse13101921 - 7 Oct 2025
Viewed by 194
Abstract
Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. [...] Read more.
Historically, the Mediterranean Sea has been an area of cultural exchange and maritime commerce. One out of many submerged archaeological sites is the Roman shipwreck that was discovered in 2006 off the coast of Santo Stefano al Mare, in the Ligurian Sea, Italy. The wreck was dated to the 1st century B.C. and consists of a well-preserved cargo ship of Roman amphorae that were likely used for transporting wine. In this study, we present the results of the first underwater survey of the wreck using an Autonomous Underwater Vehicle (AUV) industrialized by Graal Tech. The AUV was equipped with a NORBIT WBMS multibeam sonar, a 450 kHz side-scan sonar, and inertial navigation systems. The AUV conducted multiple high-resolution surveys on the wreck site and the collected data were processed using geospatial analysis methods to highlight local anomalies directly related to the presence of the Roman shipwreck. The main feature was an accumulation of amphorae, covering an area of approximately 10 × 7 m with a maximum height of 1 m above the seabed. The results of this interdisciplinary work demonstrated the effectiveness of integrating AUV technologies with spatial analysis techniques for underwater archaeological applications. Furthermore, the success of this mission highlighted the potential for broader applications of AUVs in the study of the seafloor, such as monitoring seabed movements related to offshore underground energy storage or the identification of objects lying on the seabed, such as cables or pipelines. Full article
Show Figures

Figure 1

17 pages, 3647 KB  
Article
Novel Experimental and Simulation Investigation of Transducer Coupling and Specimen Geometry Effects in Low-Frequency Ultrasonic Testing
by Piotr Wiciak, Edward Ginzel, Giovanni Cascante and Maria Anna Polak
Appl. Sci. 2025, 15(19), 10772; https://doi.org/10.3390/app151910772 - 7 Oct 2025
Viewed by 105
Abstract
Conventional characterization of ultrasonic testing (UT) transducers primarily focuses on determining centre frequency and usable bandwidth. However, the relative amplitude distribution across different frequency components—particularly in low-frequency transducers used for civil engineering applications—remains largely overlooked. This paper introduces a comprehensive methodology to assess [...] Read more.
Conventional characterization of ultrasonic testing (UT) transducers primarily focuses on determining centre frequency and usable bandwidth. However, the relative amplitude distribution across different frequency components—particularly in low-frequency transducers used for civil engineering applications—remains largely overlooked. This paper introduces a comprehensive methodology to assess the influence of transducer coupling and specimen geometry on ultrasonic pulse velocity signals. The novel approach combines high-frequency laser Doppler vibrometry, real-time photoelastic imaging, and computer simulations using commercial semi-analytical wave-propagation software. The methodology is applied to the characterization of a 250 kHz UT transducer, with particular emphasis on how coupling with a solid test medium alters its frequency response. A glass specimen with an acoustic impedance comparable to that of concrete is used to simulate practical testing conditions. Vibration patterns recorded at the distal end of the specimen are analysed through computer simulations and validated experimentally using a novel photoelastic system capable of capturing wave–specimen interactions at ultrasonic frequencies in real time. The findings offer valuable insights into frequency-dependent signal behaviour and transducer–medium interactions, providing practical guidance for the design and optimization of UT inspections in concrete and other highly attenuative materials commonly encountered in civil engineering. Full article
Show Figures

Figure 1

17 pages, 2509 KB  
Article
Feasibility Study of Flywheel Mitigation Controls Using Hamiltonian-Based Design for E3 High-Altitude Electromagnetic Pulse Events
by Connor A. Lehman, Rush D. Robinett, David G. Wilson and Wayne W. Weaver
Energies 2025, 18(19), 5294; https://doi.org/10.3390/en18195294 - 7 Oct 2025
Viewed by 223
Abstract
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel [...] Read more.
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel system presents the advantage of employing custom optimal control laws, in contrast to the conventional approach of utilizing passive blocking capacitors. A Hamiltonian-based optimal control law for energy storage is derived and integrated into models of both the transformer and the flywheel energy storage system. This Hamiltonian-based feedback control law is subsequently compared against an energy-optimal feedforward control law to validate its optimality. The analysis reveals that the required energy storage capacity is 13Wh, the necessary power output is less than 5kW at any given time during the insult, and the required bandwidth for the controller is around 5Hz. These specifications can be met by commercially available flywheel devices. This methodology can be extended to other energy storage devices to ensure that their specifications adequately address the requirements for HEMP mitigation. Full article
Show Figures

Figure 1

13 pages, 1190 KB  
Article
1H NMR Relaxation Processes in Lung Tissues at Low Magnetic Fields
by Karol Kołodziejski, Farman Ullah, Łukasz Klepacki, Jerzy Gielecki and Danuta Kruk
Molecules 2025, 30(19), 4002; https://doi.org/10.3390/molecules30194002 - 7 Oct 2025
Viewed by 223
Abstract
Proton spin–lattice and spin–spin NMR relaxation studies were conducted on lung tissue samples from 10 patients. For each case, relaxation properties of tumor tissue were compared with those of the corresponding reference tissue. The spin–lattice relaxation measurements were performed over a wide frequency [...] Read more.
Proton spin–lattice and spin–spin NMR relaxation studies were conducted on lung tissue samples from 10 patients. For each case, relaxation properties of tumor tissue were compared with those of the corresponding reference tissue. The spin–lattice relaxation measurements were performed over a wide frequency range, from 10 kHz to 10 MHz, spanning three orders of magnitude. These were complemented by both spin–lattice and spin–spin relaxation data acquired at 18.7 MHz. Notably, the spin–spin relaxation process exhibited a bi-exponential character. This relaxation behavior was quantitatively analyzed using dedicated models to achieve two main goals: to evaluate the diagnostic potential of low-field NMR relaxometry, and to gain insights into the dynamics of water and macromolecules in tissue, in comparison with aqueous solutions of proteins and polymers. The frequency dependence of the spin–lattice relaxation rates was well described by a power-law function, with an exponent of approximately 0.3 closely matching the theoretical prediction for reptation dynamics in polymer systems, associated with the intermolecular relaxation contribution. The combined analysis of spin–lattice and spin–spin relaxation data revealed specific parameters (such as ratios between the relaxation rates or between the amplitudes of individual relaxation components) that can be considered as potential markers of pathological changes affecting molecular dynamics in tissues. Full article
Show Figures

Figure 1

12 pages, 1963 KB  
Article
Touch Piezoelectric Sensor for Vibration Intensity Testing
by Algimantas Rotmanas, Regimantas Bareikis, Irmantas Gedzevičius and Audrius Čereška
Sensors 2025, 25(19), 6196; https://doi.org/10.3390/s25196196 - 6 Oct 2025
Viewed by 291
Abstract
The article presents research on a wide frequency range piezo sensor applied to surfaces by touch. It details the design of the piezo sensor, its operating principles, and usage characteristics. Calculations of the main vibration forms and modes, modeling, and experimental verifications are [...] Read more.
The article presents research on a wide frequency range piezo sensor applied to surfaces by touch. It details the design of the piezo sensor, its operating principles, and usage characteristics. Calculations of the main vibration forms and modes, modeling, and experimental verifications are provided. The objective of the research was to create a lightweight, ergonomic device that enables quick detection and testing of ultrasonic vibrations on objects (ultrasonic concentrators, their replaceable tips, concentrator mounting structures, device casings, etc.) with a brief touch—up to 1 s. After optimizing the design parameters and conducting tests, it was determined that the piezo sensor identifies vibrations in the range of 20–96 kHz, which is a commonly used range in ultrasonic vibration systems (UVS). A distinctive feature of the sensor is that in this frequency range, it does not generate amplitude peaks, and its structural elements do not enter into the resonances of lower modes (1–5). The piezo sensor is not intended to determine precise vibration amplitudes and forms. It is designed to quickly find the points of minimum and maximum vibrations in vibrating objects, where precise measurements will later be conducted. The conducted research will assist in the design and manufacturing of such devices. Full article
Show Figures

Figure 1

22 pages, 4298 KB  
Article
Electronic Noise Measurement of a Magnetoresistive Sensor: A Comparative Study
by Cristina Davidaș, Elena Mirela Ștețco, Liviu Marin Viman, Mihai Sebastian Gabor, Ovidiu Aurel Pop and Traian Petrișor
Sensors 2025, 25(19), 6182; https://doi.org/10.3390/s25196182 - 6 Oct 2025
Viewed by 280
Abstract
The intrinsic noise of giant magnetoresistive (GMR) sensors is large at low frequencies, and their resolution is inevitably significantly limited. Investigation of GMR noise requires the use of measurement systems that have lower noise than the sample. In this context, the main purpose [...] Read more.
The intrinsic noise of giant magnetoresistive (GMR) sensors is large at low frequencies, and their resolution is inevitably significantly limited. Investigation of GMR noise requires the use of measurement systems that have lower noise than the sample. In this context, the main purpose of this study is to evaluate the effectiveness of two electronic noise measurement configurations of a single GMR sensing element. The first method connects the sample in a voltage divider configuration and the second method connects in a Wheatstone bridge configuration. Three amplification set-ups were investigated: a low-noise amplifier, an ultra-low-noise amplifier and an instrumentation amplifier. Using cross-correlation, the noise of the measurement system introduced by the amplifiers was reduced. Noise spectra were recorded at room temperature in the frequency range of 0.5 Hz to 10 kHz, under different sample bias voltages. The measurements were performed in zero applied magnetic field and in a field corresponding to the maximum sensitivity of the sensor. From the noise spectra, the detectivity of the sensor was determined to be in the 200–300 nT/√Hz range. Good agreement was observed between the results obtained using all three set-ups, suggesting the effectiveness of the noise measurement systems applied to the magnetoresistive sensor. Full article
(This article belongs to the Special Issue Advances and Applications of Magnetic Sensors: 2nd Edition)
Show Figures

Figure 1

Back to TopTop