Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = 2-n-Octyl-4-isothiazolin-3-one (OIT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2711 KB  
Article
A Commonly Used Biocide 2-N-octyl-4-isothiazolin-3-oneInduces Blood–Brain Barrier Dysfunction via Cellular Thiol Modification and Mitochondrial Damage
by Donghyun Kim, Eun-Hye Kim, Sungbin Choi, Kyung-Min Lim, Lu Tie, Arshad Majid and Ok-Nam Bae
Int. J. Mol. Sci. 2021, 22(5), 2563; https://doi.org/10.3390/ijms22052563 - 4 Mar 2021
Cited by 17 | Viewed by 4989
Abstract
Isothiazolinone (IT) biocides are potent antibacterial substances commonly used as preservatives or disinfectants, and 2-n-Octyl-4-isothiazolin-3-one (OIT; octhilinone) is a common IT biocide that is present in leather products, glue, paints, and cleaning products. Although humans are exposed to OIT through personal and industrial [...] Read more.
Isothiazolinone (IT) biocides are potent antibacterial substances commonly used as preservatives or disinfectants, and 2-n-Octyl-4-isothiazolin-3-one (OIT; octhilinone) is a common IT biocide that is present in leather products, glue, paints, and cleaning products. Although humans are exposed to OIT through personal and industrial use, the potentially deleterious effects of OIT on human health are still unknown. To investigate the effects of OIT on the vascular system, which is continuously exposed to xenobiotics through systemic circulation, we treated brain endothelial cells with OIT. OIT treatment significantly activated caspase-3-mediated apoptosis and reduced the bioenergetic function of mitochondria in a bEnd.3 cell-based in vitro blood–brain barrier (BBB) model. Interestingly, OIT significantly altered the thiol redox status, as evidenced by reduced glutathione levels and protein S-nitrosylation. The endothelial barrier function of bEnd.3 cells was significantly impaired by OIT treatment. OIT affected mitochondrial dynamics through mitophagy and altered mitochondrial morphology in bEnd.3 cells. N-acetyl cysteine significantly reversed the effects of OIT on the metabolic capacity and endothelial function of bEnd.3 cells. Taken together, we demonstrated that the alteration of the thiol redox status and mitochondrial damage contributed to OIT-induced BBB dysfunction, and we hope that our findings will improve our understanding of the potential hazardous health effects of IT biocides. Full article
Show Figures

Graphical abstract

10 pages, 2426 KB  
Communication
Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One
by Seong Ho Hong and Sang Wook Kang
Polymers 2020, 12(11), 2712; https://doi.org/10.3390/polym12112712 - 16 Nov 2020
Cited by 2 | Viewed by 2074
Abstract
In this study, a cellulose acetate (CA) membrane with pores generated by a water pressure treatment was investigated for its ability to serve as a pretreatment filter device for the detection of 2-n-octyl-4-isothiazolin-3-one (OIT). Pores were generated by applying a water pressure of [...] Read more.
In this study, a cellulose acetate (CA) membrane with pores generated by a water pressure treatment was investigated for its ability to serve as a pretreatment filter device for the detection of 2-n-octyl-4-isothiazolin-3-one (OIT). Pores were generated by applying a water pressure of 8 bar to a membrane manufactured using a CA-based polymer solution. The CA used for the manufacturing was an environment-friendly, low-cost and highly energy-efficient material. Furthermore, since the fabricated porous CA polymeric film possessed many hydrophilic functional groups, it could strongly bind hydrophilic substances while avoiding interaction with hydrophobic substances. OIT, which comprises a hydrophobic bond that forms weak bonds over time, can break down more easily than hydrophilic impurities. The different extents of interaction occurring between either the toxic fungicide OIT or the hydrophilic impurities and the CA film were determined by Fourier-transform infrared (FT-IR) spectroscopy. The physicochemical changes in the resulting membrane, which occurred when the pores were generated, were investigated through scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Full article
(This article belongs to the Collection Polymer Materials for Adsorption Applications)
Show Figures

Figure 1

12 pages, 2239 KB  
Article
Adsorption of Isothiazolone Biocides in Textile Reverse Osmosis Concentrate by Powdered Activated Carbon
by Bing-Tian Li, Zhuo Chen, Wen-Long Wang, Ying-Xue Sun, Tian-Hui Zhou, Ang Li, Qian-Yuan Wu and Hong-Ying Hu
Water 2018, 10(4), 532; https://doi.org/10.3390/w10040532 - 23 Apr 2018
Cited by 13 | Viewed by 5286
Abstract
Isothiazolones have been widely applied as non-oxidizing biocides to prevent biofouling of reverse osmosis (RO) membranes. However, few studies have investigated suitable RO concentrate treatments to remove these biocides. This study evaluated the adsorption behavior of four isothiazolone biocides, 2-methyl-4-isothiazolin-3-one (MIT), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), [...] Read more.
Isothiazolones have been widely applied as non-oxidizing biocides to prevent biofouling of reverse osmosis (RO) membranes. However, few studies have investigated suitable RO concentrate treatments to remove these biocides. This study evaluated the adsorption behavior of four isothiazolone biocides, 2-methyl-4-isothiazolin-3-one (MIT), 5-chloro-2-methyl-4-isothiazolin-3-one (CMIT), 1,2-benzisothiazol-3(2H)-one (BIT), and 2-n-octyl-4-isothiazolin-3-one (OIT), by powdered activated carbon (PAC). Isothiazolones adsorption was found to obey pseudo second-order kinetics. Langmuir adsorption isotherms were more suitable to simulation of the adsorption effects than Freundlich isotherms. The adsorption amount followed the order OIT > BIT > CMIT > MIT, in accordance with the isothiazolones octanol/water partition coefficients (Kow), indicating that hydrophobicity is the main factor for influencing adsorption amounts. Following normalization with Kow, the amounts of isothiazolones adsorbed at equilibrium and normalized aqueous concentrations showed a linear relationship in a log-linear form. 1,2-benzisothiazol-3(2H)-one is anionic at high pH, and difficult to adsorb, while neutral BIT is more likely to be adsorbed. Textile reverse osmosis concentrate had an adverse effect on MIT, CMIT and BIT adsorption, but little effect on adsorption of OIT, which has a high log Kow value. There was competition between organics and isothiazolones for PAC adsorption sites, which influenced the adsorption efficiency. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop