Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (631)

Search Parameters:
Keywords = 2-propanol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1268 KB  
Article
An Iron-Dependent Alcohol Dehydrogenase Is Involved in Ethanol Metabolism of Aromatoleum aromaticum
by Yvonne Gemmecker, Iris Schall, Andreas Seubert, Nicole Paczia and Johann Heider
Reactions 2025, 6(3), 46; https://doi.org/10.3390/reactions6030046 - 1 Sep 2025
Viewed by 62
Abstract
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of [...] Read more.
The NAD+-dependent alcohol dehydrogenase AdhB from Aromatoleum aromaticum EbN1 belongs to family III of Fe-dependent alcohol dehydrogenases. It was recombinantly produced in Escherichia coli and biochemically characterized, showing activity only with ethanol or n-propanol. The enzyme contained substoichiometric amounts of Fe, Zn, and Ni and a yet unidentified nucleotide-like cofactor, as indicated by mass spectrometric data. As suggested by its narrow substrate spectrum and complementation of a related species to growth on ethanol, the most probable physiological function of AdhB is the oxidation of short aliphatic alcohols such as ethanol or n-propanol. The enzyme also exhibits a very high tolerance to ethanol and n-propanol, showing moderately substrate-inhibited Michaelis–Menten kinetics up to concentrations of 20% (v/v). AdhB can also be applied biotechnologically to convert acetate to ethanol in coupled enzyme assays with the tungsten enzyme aldehyde oxidoreductase, showing activity with either another aldehyde or pre-reduced benzyl viologen as electron donors. Full article
(This article belongs to the Special Issue Feature Papers in Reactions in 2025)
Show Figures

Graphical abstract

12 pages, 1627 KB  
Article
Coffee By-Products Studied by the Planar Ames Bioassay with pH Indicator Endpoint Using the 2LabsToGo-Eco
by Maryam Monazzah, Cedric Herrmann, Gertrud E. Morlock, Jannika Fuchs and Dirk W. Lachenmeier
Toxics 2025, 13(9), 739; https://doi.org/10.3390/toxics13090739 - 31 Aug 2025
Viewed by 206
Abstract
The mutagenic potential of coffee by-products, including Coffea leaves, blossoms, cherries, and silverskin, was studied using thin-layer chromatography (TLC) coupled with the recent planar Ames bioassay via pH indicator endpoint. The 2LabsToGo-Eco allowed for the separation and detection of mutagens in complex samples. [...] Read more.
The mutagenic potential of coffee by-products, including Coffea leaves, blossoms, cherries, and silverskin, was studied using thin-layer chromatography (TLC) coupled with the recent planar Ames bioassay via pH indicator endpoint. The 2LabsToGo-Eco allowed for the separation and detection of mutagens in complex samples. Hot water was the most effective extraction solvent in terms of yield and closely simulated the typical human consumption of coffee by-products. Separation was performed on TLC plates with a mixture of ethyl acetate, n-propanol, and water, followed by bioassay detection. The positive control 4-nitroquinoline 1-oxide exhibited clear mutagenic responses, confirming the proper bioassay performance. In the Ames bioautogram, none of the tested coffee by-products showed mutagenic zones, suggesting the absence of strongly acting, acute mutagens under the applied test conditions; however, given the only 5 h short incubation and the use of TA98 strain only, a longer incubation time and testing with additional Salmonella strains is recommended. The results provide new safety data for Coffea leaves and blossoms and are consistent with some previous studies demonstrating the safety of coffee by-products. However, further improvements in the sensitivity and selectivity of the planar Ames bioassay are demanded, and further in vivo and long-term safety studies are recommended. Considering natural variability, the different uses of pesticides and treatments, and the fluctuating supply chains, coffee by-products may differ highly. The planar bioassay technology using the affordable 2LabsToGo-Eco is a powerful toxicological screening option for the coffee industry, considering the increasing interest in utilizing coffee by-products. Full article
(This article belongs to the Special Issue Health Risk Evaluation of Hazardous Substances in Food)
Show Figures

Graphical abstract

19 pages, 1290 KB  
Article
Bioconversion of Corn Cob Acid Hydrolysates into Isoamyl Alcohol and Volatile Compounds Using Meyerozyma guilliermondii
by Nora Estela Ponce-Fernández, Leticia Casas-Godoy, Rebeca Astorga-Trejo, Cuauhtémoc Reyes-Moreno and Claudia Castro-Martínez
Biomass 2025, 5(3), 51; https://doi.org/10.3390/biomass5030051 - 28 Aug 2025
Viewed by 212
Abstract
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study [...] Read more.
Corn residues are an abundant and low-cost lignocellulosic feedstock that provides a renewable carbon platform for the production of biofuels, bioplastics, and high-value aromatic volatile compounds (AVCs). Isoamyl alcohol, an important AVC, has applications in the food, cosmetics, and biofuel industries. This study evaluated the bioconversion of corn cob acid hydrolysates by Meyerozyma guilliermondii into isoamyl alcohol and ethanol. Corn cob was selected as feedstock due to its high hemicellulose content. A Box–Behnken (BBD) design was used to optimize phosphoric acid hydrolysis. The optimal treatment (2.49% v/v H3PO4, 130 °C, 120 min, 1 mm particle size) generated 19.79 g L−1 xylose with 2.74 g L−1 acetic acid. Then, agitation speed and nitrogen concentration were optimized via a central composite design (CCD) in synthetic and hydrolysate-based media fermentations. Isoamyl alcohol specific yield after 48 h of fermentation was higher in hydrolysate medium (12.08 ± 0.67 mg·g−1) than in synthetic medium (8.274 ± 0.83 mg·g−1). Free amino nitrogen (FAN) and intracellular protein analyses revealed higher nitrogen consumption in synthetic media fermentation and greater biomass production in acid hydrolysate media. In addition to isoamyl alcohol (33 mg·L−1), and ethanol (10.18 g·L−1), 1-butanol (61.2 mg·L−1), 1-propanol (13.25 mg·L−1), and acetaldehyde (14.88 mg·L−1) were produced. These results demonstrate the potential of M. guilliermondii to convert corn cob into value-added products. Full article
Show Figures

Figure 1

19 pages, 2516 KB  
Article
CO2 Capture Performance and Preliminary Mechanistic Analysis of a Phase Change Absorbent
by Chuanyong Zhu, Yucai Zhang, Baoyue Zhang, Chongqing Xu, Guihuan Yan and Na Yang
Molecules 2025, 30(16), 3404; https://doi.org/10.3390/molecules30163404 - 18 Aug 2025
Viewed by 478
Abstract
Phase change absorbents are deemed a promising alternative for CO2 capture due to their excellent CO2 absorption performance, good stability, and low renewable energy consumption. To address the issues of insufficient loading capacity, low regeneration efficiency, and high energy consumption during [...] Read more.
Phase change absorbents are deemed a promising alternative for CO2 capture due to their excellent CO2 absorption performance, good stability, and low renewable energy consumption. To address the issues of insufficient loading capacity, low regeneration efficiency, and high energy consumption during regeneration in current chemical absorbents, a novel phase change absorbent was developed. As an amino acid ionic liquid phase change absorbent with tetraethylenepentamine as the cation, imidazole as the anion, and n-propanol as the phase separation agent, this absorbent offers a potential solution. The highest absorption capacity of the [TEPAH][Im]/NPA/H2O system at the optimal n-propanol-H2O ratio (1:1) reaches 1.34 mol·mol−1, and the viscosity of the CO2-rich phase amounts to a mere 3.58 mPa·s. Additionally, the desorption efficiency reached 91.1% at 363.15 K, while the loading capacity in the fifth cycle remained over 1.16 mol·mol−1. As n-propanol is present in the [TEPAH][Im]/NPA/H2O system, the rich phase makes up roughly 30% of the total volume. The energy consumption for regeneration of the [TEPAH][Im]/NPA/H2O phase change absorption system is 2.20 GJ·t−1 CO2. Under identical regeneration conditions, the system can reduce the regeneration energy consumption by 41.6%. Full article
Show Figures

Graphical abstract

21 pages, 3201 KB  
Article
Role of p-Benzoquinone in the Photocatalytic Production of Solketal
by Alejandro Ariza-Pérez, Juan Martín-Gómez, M. Carmen Herrera-Beurnio, Francisco J. López-Tenllado, Jesús Hidalgo-Carrillo, Alberto Marinas and Francisco J. Urbano
Molecules 2025, 30(16), 3339; https://doi.org/10.3390/molecules30163339 - 11 Aug 2025
Viewed by 509
Abstract
The role of p-benzoquinone (BQ) as a photocatalyst in the synthesis of solketal under UV irradiation has been studied, along with the combined use of BQ/TiO2 P25 as a photocatalytic system for the process. The presence of the O2/O [...] Read more.
The role of p-benzoquinone (BQ) as a photocatalyst in the synthesis of solketal under UV irradiation has been studied, along with the combined use of BQ/TiO2 P25 as a photocatalytic system for the process. The presence of the O2/O2−• redox couple is essential for the reaction to take place. However, experiments with p-benzoquinone as a superoxide radical scavenger failed, with the opposite effect of enhancing the reaction being observed. It was found that p-benzoquinone and oxygen compete for photogenerated electrons in the conduction band of titania. A redox equilibrium between p-benzoquinone and hydroquinone (H2Q), mediated by the O2/O2−• system, was identified as a key factor in enabling the reaction. Furthermore, EPR spin-trapping experiments confirmed the presence of the carbon-centered radical 2-hydroxypropan-2-yl, which was determined to be the main radical species involved in the process. Either acetone or 2-propanol can generate this radical, with the BQ/H2Q redox system being pivotal in the formation of the hemiacetal intermediate. This intermediate is subsequently converted into the final acetal (solketal), with H2Q acting as a photoacid through an excited-state proton transfer (ESPT) mechanism. The photoacid behavior of hydroquinone was confirmed using pyridine as a basic probe, as the formation of hydroquinone–pyridine adducts was detected by Raman spectroscopy. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Graphical abstract

22 pages, 1368 KB  
Article
Liquid-Phase Hydrogenation over a Cu/SiO2 Catalyst of 5-hydroximethylfurfural to 2,5-bis(hydroxymethyl)furan Used in Sustainable Production of Biopolymers: Kinetic Modeling
by Juan Zelin, Hernán Antonio Duarte, Alberto Julio Marchi and Camilo Ignacio Meyer
Sustain. Chem. 2025, 6(3), 22; https://doi.org/10.3390/suschem6030022 - 6 Aug 2025
Viewed by 427
Abstract
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF [...] Read more.
2,5-bis(hydroxymethy)lfuran (BHMF), a renewable compound with extensive industrial applications, can be obtained by selective hydrogenation of the C=O group of 5-hydroxymethylfurfural (HMF), a platform molecule derived from lignocellulosic biomass. In this work, we perform kinetic modeling of the selective liquid-phase hydrogenation of HMF to BHMF over a Cu/SiO2 catalyst prepared by precipitation–deposition (PD) at a constant pH. Physicochemical characterization, using different techniques, confirms that the Cu/SiO2–PD catalyst is formed by copper metallic nanoparticles of 3–5 nm in size highly dispersed on the SiO2 surface. Before the kinetic study, the Cu/SiO2-PD catalyst was evaluated in three solvents: tetrahydrofuran (THF), 2-propanol (2-POH), and water. The pattern of catalytic activity and BHMF yield for the different solvents was THF > 2-POH > H2O. In addition, selectivity to BHF was the highest in THF. Thus, THF was chosen for further kinetic study. Several experiments were carried out by varying the initial HMF concentration (C0HMF) between 0.02 and 0.26 M and the hydrogen pressure (PH2) between 200 and 1500 kPa. In all experiments, BHMF selectivity was 97–99%. By pseudo-homogeneous modeling, an apparent reaction order with respect to HFM close to 1 was estimated for a C0HMF between 0.02 M and 0.065 M, while when higher than 0.065 M, the apparent reaction order changed to 0. The apparent reaction order with respect to H2 was nearly 0 when C0HMF = 0.13 M, while for C0HMF = 0.04 M, it was close to 1. The reaction orders estimated suggest that HMF is strongly absorbed on the catalyst surface, and thus total active site coverage is reached when the C0HMF is higher than 0.065 M. Several Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetic models were proposed, tested against experimental data, and statistically compared. The best fitting of the experimental data was obtained with an LHHW model that considered non-competitive H2 and HMF chemisorption and strong chemisorption of reactant and product molecules on copper metallic active sites. This model predicts both the catalytic performance of Cu/SiO2-PD and its deactivation during liquid-phase HMF hydrogenation. Full article
Show Figures

Graphical abstract

11 pages, 1947 KB  
Article
Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses
by Baiyila Wu, Xue Cao, Mingshan Fu, Yuxin Bao, Tiemei Wu, Kai Liu, Shubo Wen, Fenglin Gao, Haifeng Wang, Hua Mei and Yang Song
Agronomy 2025, 15(8), 1888; https://doi.org/10.3390/agronomy15081888 - 5 Aug 2025
Viewed by 305
Abstract
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus [...] Read more.
The purpose of this study was to investigate the effect of different additives on the microbial composition, fermentation quality, and bacterial community structure of big-bale Leymus chinensis silage. An experiment was set up with four treatment groups: a control (C) group, Lacticaseibacillus rhamnosus (L) group, molasses (M) group, and L. rhamnosus + molasses (LM) group, with three replications per group, and L. chinensis silages were fermented for 20 and 40 days. The lactic acid, acetic acid, 1,2-propanediol, and propionic acid contents increased, and pH, butyric acid, 1-propanol, and ethanol contents decreased in the L, M, and LM groups compared to the C group. In the LM group, the number of lactic acid bacteria was the highest, while the pH was the lowest. Enterobacter and Paucibacter were the main dominant genera in the C group. The addition of L. rhamnosus and molasses increased the relative abundance of Lactobacillus, Weissella, and Enterococcus. Lactobacillus abundance correlated positively (p < 0.01) with Lactococcus, Enterococcus, and Weissella and correlated negatively with Enterobacter and Paucibacter. Conversely, Enterobacter and Paucibacter showed a strong positive correlation (p < 0.01, R = 0.55) during fermentation. Lactobacillus, Enterococcus, and Weissella were positively associated (p < 0.01) with acetic and lactic acid levels, while Enterobacter abundance was correlated positively (p < 0.05, R = 0.43) with 1,2-propanediol content. In summary, the addition of both L. rhamnosus and molasses improved the fermentation quality and bacterial community structure of big-bale L. chinensis silage. In addition to inhibiting harmful microorganisms, this combination improved the fermentation products of big-bale L. chinensis silage through microbial regulation. Full article
(This article belongs to the Special Issue Innovative Solutions for Producing High-Quality Silage)
Show Figures

Figure 1

13 pages, 988 KB  
Article
Assessing the Applicability of a Partial Alcohol Reduction Method to the Fine Wine Analytical Composition of Pinot Gris
by Diána Ágnes Nyitrainé Sárdy, Péter Bodor-Pesti and Szabina Steckl
Foods 2025, 14(15), 2738; https://doi.org/10.3390/foods14152738 - 5 Aug 2025
Viewed by 355
Abstract
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster [...] Read more.
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster ripening and a higher sugar content, leading to a higher alcohol content during fermentation. The negative consequences are an imbalanced wine character and consumer reluctance, as lower alcoholic beverages are now in high demand. Over the last decade, several methods have been developed to handle this impact and reduce the alcohol content of wines. In this study, we used the MASTERMIND® REMOVE membrane-based dealcoholization system to reduce the alcohol concentration in of Pinot gris wines from 12.02% v/v to 10.69% v/v and to investigate the effect on analytical parameters in three steps (0.5%, 1%, and 1.5% reductions) along the treatment. To evaluate the impact of the partial alcohol reduction and identify correlations between the wine chemical parameters, data were analyzed with ANOVA, PCA, multivariate linear regression and cluster analysis. The results showed that except for the extract, sugar content and proline content, the treatment had a significant effect on the chemical parameters. Both free and total SO2 levels were significantly reduced as well as volatile acid, glycerol and succinic acid levels. It must be highlighted that some parameters were not differing significantly between the untreated and the final wine, while the change was statistically verified in the intermediate steps of the partial alcohol reduction. This was the case for example for n-Propanol, i-Amylalcohol, Acetaldehyde, and Ethyl acetate. The multivariate linear regression model explained 18.84% of the total variance, indicating a modest but meaningful relationship between the alcohol content and the investigated analytical parameters. Our results showed that even if the applied instrument significantly modified some of the wine chemical parameters, those changes would not influence significantly the wine sensory attributes. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

27 pages, 1893 KB  
Article
Separating 2-Propanol and Water: A Comparative Study of Extractive Distillation, Salting-Out, and Extraction
by Aleksandra Sander, Marko Rogošić, Leonarda Frljak, Daniela Vasiljević, Iva Blažević and Jelena Parlov Vuković
Separations 2025, 12(8), 196; https://doi.org/10.3390/separations12080196 - 26 Jul 2025
Viewed by 702
Abstract
Separating azeotropes is an important, difficult, and expensive task, in particular for the 2-propanol–water mixture. The literature on the problem is rich in modeling studies but often lacking even the simplest experimental confirmation. In this paper, extractive distillation, liquid–liquid equilibrium-based extraction, and salting-out [...] Read more.
Separating azeotropes is an important, difficult, and expensive task, in particular for the 2-propanol–water mixture. The literature on the problem is rich in modeling studies but often lacking even the simplest experimental confirmation. In this paper, extractive distillation, liquid–liquid equilibrium-based extraction, and salting-out were experimentally tested for the desired separation. Among the four tested extractive distillation entrainers, none was able—in the investigated experimental setup—to push the system over the azeotropic composition threshold. Four novel hydrophobic deep eutectic extraction media were tested for the desired separation, and those based on menthol or thymol with decanoic acid were found most promising. Among 16 tested salting-out agents, 5 of them produced two-liquid phases, and only 4 hydrophilic inorganic salts promoted 2-propanol separation, with sodium carbonate being the most promising candidate. The purity of the products was tested with FTIR and 1H-NMR. The experimental findings were compared with COSMO-RS model predictions, with moderate success. Full article
Show Figures

Figure 1

20 pages, 2100 KB  
Article
Enantioseparation of Proton Pump Inhibitors by HPLC on Polysaccharide-Type Stationary Phases: Enantiomer Elution Order Reversal, Thermodynamic Characterization, and Hysteretic Effect
by Máté Dobó, Gergely Molnár, Ali Mhammad, Gergely Dombi, Arash Mirzahosseini, Zoltán-István Szabó and Gergő Tóth
Int. J. Mol. Sci. 2025, 26(15), 7217; https://doi.org/10.3390/ijms26157217 - 25 Jul 2025
Viewed by 331
Abstract
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 [...] Read more.
The separation of three proton pump inhibitors (omeprazole, lansoprazole, and rabeprazole) as exemplified molecules containing chiral sulfoxide groups was investigated in polar organic liquid chromatographic mode on seven different polysaccharide stationary phases (Chiralcel OD and OJ; Chiralpak AD, AS, and IA; Lux Cellulose-2 and -4). Different alcohols, such as methanol, ethanol, 1-propanol, 2-propanol, and their combinations, were used as eluents. After method optimization, semi-preparative enantioseparation was successfully applied for the three proton pump inhibitors to collect the individual enantiomers. A detailed investigation was conducted into elution order reversal, thermodynamic parameters, the effect of eluent mixtures, and the hysteresis of retention time and selectivity. Using Chiralpak AS, containing the amylose tris[(S)-α-methylbenzylcarbamate] chiral selector, the separation of the investigated enantiomers was achieved in all four neat eluents, with methanol providing the best results. In many cases, a reversal of the enantiomer elution order was observed. In addition to chiral-selector-dependent reversal, eluent-dependent reversal was also observed. Notably, even replacing methanol with ethanol altered the enantiomer elution order. Both enthalpy- and entropy-controlled enantioseparation were also observed in several cases; however, temperature-dependent elution order reversal was not. The hysteresis of retention and selectivity was further investigated on amylose-type columns in methanol–2-propanol and methanol–ethanol eluent mixtures. The phenomenon was observed on all amylose columns regardless of the eluent mixtures employed. Hystereticity ratios were calculated and used to compare the hysteresis behaviors of different systems. Multivariate statistical analysis revealed that Chiralpak AS exhibited the most distinct enantioselective behavior among the tested columns, likely due to the absence of a direct connection between the carbamate moiety and the aromatic substituent. The present study aided in understanding the mechanisms leading to enantiomer recognition, which is crucial for developing new chiral stationary phases and chiral HPLC method development in general. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

22 pages, 848 KB  
Article
Modeling Prediction of Physical Properties in Sustainable Biodiesel–Diesel–Alcohol Blends via Experimental Methods and Machine Learning
by Kaan Yeşilova, Özgün Yücel and Başak Temur Ergan
Processes 2025, 13(7), 2310; https://doi.org/10.3390/pr13072310 - 20 Jul 2025
Viewed by 591
Abstract
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range [...] Read more.
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range of 10 °C to 40 °C. Biodiesel was synthesized via alkali-catalyzed transesterification (6:1 methanol-to-oil molar ratio, 0.5 wt % NaOH of oil) and blended with diesel and alcohols (ethanol and propanol) in varying volume ratios. The experimental results revealed that blend density decreased from 0.8622 g/cm3 at 10 °C to 0.8522 g/cm3 at 40 °C for a blend containing ethanol. Similarly, the viscosity showed a significant reduction with temperature, e.g., the blend exhibited a viscosity decline from 8.5 mPa·s at 10 °C to 7.2 mPa·s at 40 °C. Increasing the alcohol or diesel content further reduced density and viscosity due to the lower intrinsic properties of these components. The machine learning models, Gaussian process regression (GPR), support vector regression (SVR), artificial neural networks (ANN), and decision tree regression (DTR), were applied to predict the properties of these blends. GPR demonstrated the best predictive performance for both density and viscosity. These findings confirm the strong potential of GPR for the accurate and reliable prediction of fuel blend properties, supporting the formulation of alternative fuels optimized for diesel engine performance. These aspects contribute new insights into modelling strategies for sustainable fuel formulations. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

27 pages, 2644 KB  
Article
Nutraceutical Potential of Sideroxylon cinereum, an Endemic Mauritian Fruit of the Sapotaceae Family, Through the Elucidation of Its Phytochemical Composition and Antioxidant Activity
by Cheetra Bhajan, Joyce Govinden Soulange, Vijayanti Mala Ranghoo-Sanmukhiya, Remigiusz Olędzki, Daniel Ociński, Irena Jacukowicz-Sobala, Adam Zając, Melanie-Jayne R. Howes and Joanna Harasym
Molecules 2025, 30(14), 3041; https://doi.org/10.3390/molecules30143041 - 20 Jul 2025
Viewed by 501
Abstract
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of [...] Read more.
Sideroxylon cinereum, an endemic Mauritian fruit, was investigated through comprehensive chemical analyses of solvent extracts from its pulp and seed. Dried fruit materials were subjected to maceration using water and organic solvents including methanol, ethanol, propanol, and acetone to obtain extracts of varying polarity. Preliminary phytochemical screening revealed the presence of several bioactive compounds, with pulp extracts generally richer in phytochemicals than seed extracts. UV-Vis and FTIR analyses confirmed key organic constituents, including sulfoxides in seeds. HPLC quantification showed notable citric acid content in the pulp (15.63 mg/g dry weight). Antioxidant assays indicated that organic solvent extracts of the pulp had superior free radical scavenging activity, while the seed’s aqueous extract exhibited the highest ferric reducing power. GC–MS profiling identified a diverse bioactive profile rich in terpenes, notably lanosterol acetate (>45% in both pulp and seeds). It is important to note that these findings are based on solvent extracts, which may differ from the phytochemical composition of the whole fruit as typically consumed. Among the extracts, aqueous fractions are likely the most relevant to dietary intake. Overall, the extracts of Sideroxylon cinereum pulp and seed show potential as sources of bioactive compounds for functional product development. Full article
Show Figures

Figure 1

13 pages, 11974 KB  
Article
A Study and Comparative Analysis of the Action of the Deacidifying Products Bookkeeper® and Nanorestore Paper® on Plant Textile Fibres
by A. Nani, C. Ricci, A. Gatti and A. Agostino
Heritage 2025, 8(7), 287; https://doi.org/10.3390/heritage8070287 - 19 Jul 2025
Viewed by 479
Abstract
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The [...] Read more.
The aim of this study is to evaluate the effectiveness of deacidifying treatments for the restoration of textiles used as supports for works of art, with particular attention to the chemical stability, colour variation and mechanical resistance of the materials over time. The present study involved the analysis of two products: BookkeeperTM, containing magnesium oxide, and NanorestoreTM, a dispersion of calcium hydroxide in alcoholic solutions of ethanol and 2-propanol. The products were applied to a series of tests on cotton, linen and jute fabrics. The experimental approach comprised an artificial degradation process of the fabrics, followed by the application of the treatments and an accelerated ageing cycle. A series of parameters were monitored throughout the experiment, encompassing surface pH, chromatic shifts ascertained through colorimetric measurements and the morphological transformations of the fabrics, as elucidated by scanning electron microscopy (SEM-EDS). The findings yielded from this study have enabled the delineation of the behaviour exhibited by the treated materials over an extended timeframe. This underscores the significance of a judicious selection of treatments, contingent upon the particular chemical and physical attributes inherent to the fabrics in question. Full article
(This article belongs to the Section Materials and Heritage)
Show Figures

Figure 1

16 pages, 6052 KB  
Article
Crystal Form Investigation and Morphology Control of Salbutamol Sulfate via Spherulitic Growth
by Xinyue Qiu, Hongcheng Li, Yanni Du, Xuan Chen, Shichao Du, Yan Wang and Fumin Xue
Crystals 2025, 15(7), 651; https://doi.org/10.3390/cryst15070651 - 16 Jul 2025
Viewed by 428
Abstract
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate [...] Read more.
Salbutamol sulfate is a selective β2-receptor agonist used to treat asthma and chronic obstructive pulmonary disease. The crystals of salbutamol sulfate usually appear as needles with a relatively large aspect ratio, showing poor powder properties. In this study, spherical particles of salbutamol sulfate were obtained via antisolvent crystallization. Four different antisolvents, including ethanol, n-propanol, n-butanol, and sec-butanol, were selected, and their effects on crystal form and morphology were compared. Notably, a new solvate of salbutamol sulfate with sec-butanol has been obtained. The novel crystal form was characterized by single-crystal X-ray diffraction, revealing a 1:1 stoichiometric ratio between solvent and salbutamol sulfate in the crystal lattice. In addition, the effects of crystallization temperature, solute concentration, ratio of antisolvent to solvent, feeding rate, and stirring rate on the morphology of spherical particles were investigated in different antisolvents. We have found that crystals grown from the n-butanol–water system at optimal conditions (25 °C, antisolvent/solvent ratio of 9:1, and drug concentration of 0.2 g·mL−1) could be developed into compact and uniform spherulites. The morphological evolution process was also monitored, and the results indicated a spherulitic growth pattern, in which sheaves of plate-like crystals gradually branched into a fully developed spherulite. This work paves a feasible way to develop new crystal forms and prepare spherical particles of pharmaceuticals. Full article
(This article belongs to the Special Issue Crystallization and Purification)
Show Figures

Figure 1

37 pages, 5685 KB  
Article
Enhanced Biofuel Production from Mixed Marine Microalgae Using UV and UV/H2O2 Pretreatment: Optimization of Carbohydrate Release and Fermentation Efficiency
by Malak Alsarayreh and Fares AlMomani
Fermentation 2025, 11(7), 402; https://doi.org/10.3390/fermentation11070402 - 14 Jul 2025
Viewed by 490
Abstract
The robust structure of algal cell walls presents a major barrier in the recovery of fermentable sugars and intracellular lipids for biofuel production. This study investigates the effectiveness of ultraviolet (UV) radiation and UV-assisted hydrogen peroxide (UV/H2O2) pretreatment on [...] Read more.
The robust structure of algal cell walls presents a major barrier in the recovery of fermentable sugars and intracellular lipids for biofuel production. This study investigates the effectiveness of ultraviolet (UV) radiation and UV-assisted hydrogen peroxide (UV/H2O2) pretreatment on a local mixed marine algal culture to enhance biofuel production through cell wall disruption. Local mixed cultures of marine microalgae (LMCMA) were pretreated with UV for various exposure times (5–30 min) and with UV/H2O2 using H2O2 concentrations ranging from 0.88 to 3.53 mM. The impact of pretreatment was evaluated based on morphological changes (SEM and TEM), elemental composition (C, H, N), sugar release, and downstream fermentation yields of ethanol, methanol, 1-propanol, 1-butanol, and 1-pentanol using Saccharomyces cerevisiae. UV pretreatment at 20–30 min yielded the highest carbohydrate release (up to 0.025 g/gDCW), while UV/H2O2 at 1.76 mM achieved maximum sugar liberation (0.0411 g/gDCW). Fermentation performance was enhanced under optimized conditions, with peak ethanol yields of 0.3668 g ethanol/g carbohydrates (UV, 30 min, 48 h) and 0.251 g ethanol/g (UV/H2O2, 0.88 mM, 24 h). This study also demonstrated selective production of higher alcohols under varying fermentation temperatures (30–37 °C). These findings highlight the potential of combining oxidative pretreatment and process optimization to enhance biofuel recovery from environmentally relevant algal biomass. Full article
(This article belongs to the Special Issue Cyanobacteria and Eukaryotic Microalgae (2nd Edition))
Show Figures

Figure 1

Back to TopTop