Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = 3(2H)-pyridazinone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 7410 KB  
Article
Synthesis, Characterization and Cytotoxic Evaluation of New Pyrrolo[1,2-b]pyridazines Obtained via Mesoionic Oxazolo-Pyridazinones
by Beatrice-Cristina Ivan, Stefania-Felicia Barbuceanu, Camelia Mia Hotnog, Octavian Tudorel Olaru, Adriana Iuliana Anghel, Robert Viorel Ancuceanu, Mirela Antonela Mihaila, Lorelei Irina Brasoveanu, Sergiu Shova, Constantin Draghici, George Mihai Nitulescu and Florea Dumitrascu
Int. J. Mol. Sci. 2023, 24(14), 11642; https://doi.org/10.3390/ijms241411642 - 19 Jul 2023
Cited by 7 | Viewed by 2699
Abstract
New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed [...] Read more.
New pyrrolo[1,2-b]pyridazines were synthesized by 3 + 2 cycloaddition reaction between mesoionic oxazolo-pyridazinones and methyl/ethyl propiolate. The mesoionic compounds were generated in situ by action of acetic anhydride on 3(2H)pyridazinone acids obtained from corresponding esters by alkaline hydrolysis followed by acidification. The structures of the compounds were confirmed by elemental analyses and IR, 1H-NMR, 13C-NMR, and X-ray diffraction data. The regioselectivity of cycloaddition was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were evaluated for their cytotoxicity on plant cells (Triticum aestivum L.) and crustacean animal cells (Artemia franciscana Kellogg and Daphnia magna Straus). The results indicated that the tested compounds exhibited low toxicity on the plant cell (IC50 values higher than 200 µM), while on Artemia nauplii no lethality was observed. Daphnia magna assay showed that pyrrolo[1,2-b]pyridazines 5a and 5c could exhibit toxic effects, whereas, for the other compounds, toxicity was low to moderate. Also, the cytotoxic effects of the compounds were tested on three human adenocarcinoma-derived adherent cell lines (colon LoVo, ovary SK-OV-3, breast MCF-7). The in vitro compound-mediated cytotoxicity assays, performed by the MTS technique, demonstrated dose- and time-dependent cytotoxic activity for several compounds, the highest anti-tumor activity being observed for 5a, 2c, and 5f, especially against colon cancer cells. Full article
Show Figures

Figure 1

18 pages, 120 KB  
Article
An Efficient Synthesis and Reactions of Novel Indol-ylpyridazinone Derivatives with Expected Biological Activity
by Samar A. Abubshait
Molecules 2007, 12(1), 25-42; https://doi.org/10.3390/12010025 - 10 Jan 2007
Cited by 33 | Viewed by 11590
Abstract
Reaction of 4-anthracen-9-yl-4-oxo-but-2-enoic acid (1) with indole gave the corresponding butanoic acid 2. Cyclocondensation of 2 with hydrazine hydrate, phenyl hydrazine, semicarbazide and thiosemicarbazide gave the pyridazinone derivatives 3a-d. Reaction of 3a with POCl3 for 30 min gave the chloropyridazine derivative 4a, [...] Read more.
Reaction of 4-anthracen-9-yl-4-oxo-but-2-enoic acid (1) with indole gave the corresponding butanoic acid 2. Cyclocondensation of 2 with hydrazine hydrate, phenyl hydrazine, semicarbazide and thiosemicarbazide gave the pyridazinone derivatives 3a-d. Reaction of 3a with POCl3 for 30 min gave the chloropyridazine derivative 4a, which was used to prepare the corresponding carbohydrate hydrazone derivatives 5a-d. Reaction of chloropyridazine 4a with some aliphatic or aromatic amines and anthranilic acid gave 6a-f and 7, respectively. When the reaction of the pyridazinone derivative 3a with POCl3 was carried out for 3 hr an unexpected product 4b was obtained. The structure of 4b was confirmed by its reaction with hydrazine hydrate to give hydrazopyridazine derivative 9, which reacted in turn with acetyl acetone to afford 10. Reaction of 4b with methylamine gave 11, which reacted with methyl iodide to give the trimethylammonium iodide derivative 12. The pyridazinone 3a also reacted with benzene- or 4-toluenesulphonyl chloride to give 13a-b and with aliphatic or aromatic aldehydes to give 14a-g. All proposed structures were supported by IR, 1H-NMR, 13C-NMR, and MS spectroscopic data. Some of the new products showed antibacterial activity. Full article
Show Figures

Figure 1

Back to TopTop