Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = 3-mercaptohexan-1-ol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1689 KB  
Article
Influence of Vineyard Location, Cluster Thinning and Spontaneous Alcoholic Fermentation on Wine Composition
by Franc Čuš, Anastazija Jež Krebelj and Mateja Potisek
Foods 2025, 14(7), 1101; https://doi.org/10.3390/foods14071101 - 22 Mar 2025
Viewed by 630
Abstract
The influence of the vineyard location, the yield per vine and the type of alcoholic fermentation on the composition of Merlot wine from two consecutive vintages was investigated in a simultaneous experiment. Grapes from two locations and two crop loads per vine, from [...] Read more.
The influence of the vineyard location, the yield per vine and the type of alcoholic fermentation on the composition of Merlot wine from two consecutive vintages was investigated in a simultaneous experiment. Grapes from two locations and two crop loads per vine, from controlled and thinned vines, were vinified. At the same time, grapes from control vines were vinified with inoculated and spontaneous alcoholic fermentation. Comparisons of the wine composition were made using a targeted metabolomic approach, microbiological analysis and sensory evaluation. It has been confirmed that the composition of Merlot wine is essentially determined by the location of the vineyard. The analytical marker used to distinguish the two locations was the content of 3-mercaptohexan-1-ol (significantly higher in location B with 38–130%). It has also been shown that the type of alcoholic fermentation has a greater influence on the composition of the wine than the crop load. The analytical marker used for the cluster thinning was the pH of the wine, which increased significantly by 0.03 to 0.08 units with the lower crop load, and for the type of alcoholic fermentation, the concentration of 2-phenethyl acetate, which relates to the sum of acetates and 2-phenylethanol, which increased significantly by 58–299%, 54–218%, and 24–46% in the spontaneously fermented wines. Both the location of the vineyard and spontaneous alcoholic fermentation influenced the significant differences in the sensory characteristics of the wine, while cluster thinning had no such influence. The other influences of the two technical factors on the wine composition depended on the location of the vineyard and the vintage. It can also be concluded that spontaneous alcoholic fermentation reduced the influence of the vintage on the wine composition, while the opposite was the case with cluster thinning. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

13 pages, 3179 KB  
Article
Electrochemical Biosensor Designed to Distinguish Tetracyclines Derivatives by ssDNA Aptamer Labelled with Ferrocene
by Kamila Malecka-Baturo, Apostolos Zaganiaris, Iwona Grabowska and Katarzyna Kurzątkowska-Adaszyńska
Int. J. Mol. Sci. 2022, 23(22), 13785; https://doi.org/10.3390/ijms232213785 - 9 Nov 2022
Cited by 16 | Viewed by 3183
Abstract
Controlling food safety and preventing the growing spread of antibiotics into food products have been challenging problems for the protection of human health. Hence, the development of easy-to-use, fast, and sensitive analytical methods for the detection of antibiotics in food products has become [...] Read more.
Controlling food safety and preventing the growing spread of antibiotics into food products have been challenging problems for the protection of human health. Hence, the development of easy-to-use, fast, and sensitive analytical methods for the detection of antibiotics in food products has become one of the priorities in the food industry. In this paper, an electrochemical platform based on the ssDNA aptamer for the selective detection of tetracycline has been proposed. The aptasensor is based on a thiolated aptamer, labelled with ferrocene, which has been covalently co-immobilized onto a gold electrode surface with 6-mercaptohexan-1-ol. The changes in the redox activity of ferrocene observed on the aptamer–antibiotics interactions have been the basis of analytical signal generation registered by square-wave voltammetry. Furthermore, the detection of tetracycline-spiked cow milk samples has been successfully demonstrated. The limits of detection (LODs) have been obtained of 0.16 nM and 0.20 nM in the buffer and spiked cow milk, respectively, which exceed the maximum residue level (225 nM) more than 1000 times. The proposed aptasensor offers high selectivity for tetracycline against other structurally related tetracycline derivatives. The developed biosensor characterized by simplicity, a low detection limit, and high reliability shows practical potential for the detection of tetracycline in animal-origin milk. Full article
(This article belongs to the Special Issue Molecular Biosensor)
Show Figures

Figure 1

15 pages, 850 KB  
Article
The Sensorial and Chemical Changes in Beer Brewed with Yeast Genetically Modified to Release Polyfunctional Thiols from Malt and Hops
by Richard W. Molitor, Jeremy I. Roop, Charles M. Denby, Charles J. Depew, Daniel S. Liu, Sara E. Stadulis and Thomas H. Shellhammer
Fermentation 2022, 8(8), 370; https://doi.org/10.3390/fermentation8080370 - 5 Aug 2022
Cited by 10 | Viewed by 9996
Abstract
The biotransformation of hop aroma, particularly by the cysteine S-conjugate beta-lyase enzyme (CSL), has been a recent topic of tremendous interest among brewing scientists and within the brewing community. During a process often referred to as biotransformation, yeast-encoded enzymes convert flavorless precursor molecules [...] Read more.
The biotransformation of hop aroma, particularly by the cysteine S-conjugate beta-lyase enzyme (CSL), has been a recent topic of tremendous interest among brewing scientists and within the brewing community. During a process often referred to as biotransformation, yeast-encoded enzymes convert flavorless precursor molecules found in barley and hops into volatile thiols that impart a variety of desirable flavors and aromas in beer. Two volatile thiols of particular interest are 3-mercaptohexan-1-ol (3MH) and its acetate ester, 3-mercaptohexyl acetate (3MHA), which impart guava and passionfruit flavors, respectively. In this study, a parental Saccharomyces cerevisiae brewing strain that displayed low thiol biotransformation activity was genetically manipulated (GM) to substantially increase its thiol biotransformation potential. Construction of this GM strain involved integration of a gene encoding a highly active CSL enzyme that converts thiol precursors into the volatile thiol, 3MH. Three additional strains were subsequently developed, each of which paired CSL expression with expression of an alcohol acyltransferase (AAT) gene. It was hypothesized that expression of an AAT in conjunction with CSL would increase production of 3MHA. Fermentation performance, sensory characteristics, and 3MH/3MHA production were evaluated for these four GM strains and their non-GM parent in 1.5hL fermentations using 100% barley malt wort hopped at low levels with Cascade hops. No significant deviations in fermentation performance (time to attenuation, final gravity, alcohol content, wort fermentability) or finished beer chemistry were observed between the GM strains and the parent strain with the exception of the speed of vicinal diketones reduction post-fermentation, which was quicker for the GM strains. The GM strains produced beer that had up to 73-fold and 8-fold higher 3MH and 3MHA concentrations than the parent strain, achieving concentrations that were up to 79-fold greater than their sensory detection thresholds. The beers were described as intensely tropical and fruity, and were associated with guava, passionfruit, mango, pineapple and sweaty aromas. These experiments demonstrate the potential of genetic modification to dramatically enhance yeast biotransformation ability without creating off flavors or affecting fermentation performance. Full article
(This article belongs to the Section Fermentation for Food and Beverages)
Show Figures

Figure 1

19 pages, 2305 KB  
Article
Modulation of Volatile Thiol Release during Fermentation of Red Musts by Wine Yeast
by Antonio G. Cordente, Christopher D. Curtin, Mark Solomon, Allie C. Kulcsar, Flynn Watson, Lisa Pisaniello, Simon A. Schmidt and Damian Espinase Nandorfy
Processes 2022, 10(3), 502; https://doi.org/10.3390/pr10030502 - 2 Mar 2022
Cited by 10 | Viewed by 4583
Abstract
During the alcoholic fermentation of grape sugars, wine yeast produces a range of secondary metabolites that play a critical role in the aroma profile of wines. One of the most impactful yeast-modified compound families, particularly in white wines, are the ‘fruity’ polyfunctional thiols, [...] Read more.
During the alcoholic fermentation of grape sugars, wine yeast produces a range of secondary metabolites that play a critical role in the aroma profile of wines. One of the most impactful yeast-modified compound families, particularly in white wines, are the ‘fruity’ polyfunctional thiols, which include 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP). While the formation and stylistic contribution of these thiols have been extensively researched in white wines, little is known about the conditions leading to their formation in red wines. In this study, we explored the ability of yeast strains to modulate the release of these aroma compounds during the fermentation of two red musts. In laboratory-scale Pinot Noir fermentations, the formation of 3-MH strongly correlated with yeast β-lyase activity, particularly with the presence of certain genotypes of the flavour-releasing gene IRC7. Subsequent production of Grenache wine at the pilot scale, with detailed compositional and sensory analysis, was undertaken to confirm laboratory-scale observations. A commercial wine strain used for expressing ‘fruity’ thiols in Sauvignon Blanc was shown to produce wines that exhibited more intense red fruit aromas. These results reveal an opportunity for winemakers to shape red wine aroma and flavour by using yeasts that might typically be considered for white wine production. Full article
(This article belongs to the Special Issue Role of Yeast in Wine Fermentation Processes)
Show Figures

Figure 1

14 pages, 648 KB  
Article
Aroma and Sensory Profiles of Sauvignon Blanc Wines from Commercially Produced Free Run and Pressed Juices
by Katie Parish-Virtue, Mandy Herbst-Johnstone, Flo Bouda, Bruno Fedrizzi, Rebecca C. Deed and Paul A. Kilmartin
Beverages 2021, 7(2), 29; https://doi.org/10.3390/beverages7020029 - 25 May 2021
Cited by 6 | Viewed by 6455
Abstract
Sauvignon blanc is the most important grape cultivar within the New Zealand wine industry, and wines from the Marlborough region are renowned for their intense aromas including tropical, passionfruit, and green capsicum. Quality Sauvignon blanc wines are usually made from free run juice, [...] Read more.
Sauvignon blanc is the most important grape cultivar within the New Zealand wine industry, and wines from the Marlborough region are renowned for their intense aromas including tropical, passionfruit, and green capsicum. Quality Sauvignon blanc wines are usually made from free run juice, although press fractions can be included. The chemical aroma composition and sensory profiles of two wine sets made from three press fractions (free run, light press and heavy press) were compared. The compounds 3-mercaptohexan-1-ol and 3-mercaptohexyl acetate were found to decrease between free run and heavily pressed wines while hexyl acetate, hexanol, and benzyl alcohol increased. The accompanying sensory analysis showed that free run wines were marked by aromas of Passionfruit/sweaty, Boxwood and Fresh green capsicum, while the heavy pressed wines were described by French vanilla/bourbon, Floral and Banana lolly attributes, consistent with the aroma chemical composition. Full article
(This article belongs to the Special Issue Featured Papers in Wine, Spirits and Oenological Products Section)
Show Figures

Graphical abstract

13 pages, 1010 KB  
Article
Evidence of the Possible Interaction between Ultrasound and Thiol Precursors
by Tomas Roman, Loris Tonidandel, Giorgio Nicolini, Elisabetta Bellantuono, Laura Barp, Roberto Larcher and Emilio Celotti
Foods 2020, 9(1), 104; https://doi.org/10.3390/foods9010104 - 19 Jan 2020
Cited by 17 | Viewed by 4915
Abstract
The effect of ultrasound (20 kHz, 153 μm) on the prefermentation extraction mechanisms in Sauvignon Blanc grapes was studied, focusing on 3-mercaptohexan-1-ol (3MH) and 4-mercapto-4-methyl-pentan-2-one (4MMP) precursors linked to glutathione (GSH) and cysteine (Cys). The treatment determined a positive extraction trend between the [...] Read more.
The effect of ultrasound (20 kHz, 153 μm) on the prefermentation extraction mechanisms in Sauvignon Blanc grapes was studied, focusing on 3-mercaptohexan-1-ol (3MH) and 4-mercapto-4-methyl-pentan-2-one (4MMP) precursors linked to glutathione (GSH) and cysteine (Cys). The treatment determined a positive extraction trend between the duration (untreated, 3 and 5 min) and the conductivity or the concentration of catechins and total phenols, significantly differentiated after 5 min. Nevertheless, the concentration of the thiol precursors in grape juice not only remained undifferentiated, but that of 3-S-glutathionyl mercaptohexan-1-ol showed a negative trend with the treatment time applied (168 ± 43, 156 ± 36, and 149 ± 32 μg/L, respectively, for control, 3 and 5 min). The divergence on the effect between families of compounds suggests an interaction between the sonication treatment and thiol precursor molecules. In order to evaluate the possible degradation properly, ultrasound was applied in a model solution spiked with 3MH and 4MMP precursors, reproducing the conditions of grapes. Except for Cys-3MH, the mean concentration (n = 5) for the rest of the precursors was significantly lower in treated samples, predominantly in those linked to glutathione (~−22% and ~18% for GSH-3MH and GSH-4MMP) rather than to cysteine (~−6%~−8% for Cys-3MH and Cys-4MMP). The degradation of precursors was associated with a significant increase of 3MH and 4MMP. The formation of volatile thiols following sonication is interesting from a technological point of view, as they are key aroma compounds of wine and potentially exploitable in the wine industry through specific vinification protocols. Full article
(This article belongs to the Special Issue Winemaking Technology)
Show Figures

Graphical abstract

Back to TopTop