Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,335)

Search Parameters:
Keywords = 3D printed models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 13648 KB  
Article
Research on Lightweight Design Performance of Offshore Structures Based on 3D Printing Technology
by Haoyu Jiang, Yifan Xie, Shengqing Zeng, Sixing Guo, Zehan Chen, Zhenjie Liang and Dapeng Zhang
J. Mar. Sci. Eng. 2025, 13(10), 2007; https://doi.org/10.3390/jmse13102007 (registering DOI) - 19 Oct 2025
Abstract
Traditional manufacturing methods struggle to incorporate complex internal configurations within structures, thus restricting the potential for enhancing the strength of offshore structures through internal design. However, the advent of 3D printing technology presents innovative solutions to this challenge. Previous research has investigated the [...] Read more.
Traditional manufacturing methods struggle to incorporate complex internal configurations within structures, thus restricting the potential for enhancing the strength of offshore structures through internal design. However, the advent of 3D printing technology presents innovative solutions to this challenge. Previous research has investigated the use of 3D printing to integrate lattice-like structures within conventional frameworks to achieve lightweight designs. Building upon this foundation, this paper models an embedded structure and other marine structures subjected to similar loads using simplified models and conducts a thorough investigation into their mechanical properties. Specifically, it examines the effects of the 3D-printed infill structure, infill rate, and tilt angle of printed specimens on the mechanical properties of 3D-printed components. The goal is to identify the optimal parameter combinations that ensure structural strength while also achieving a lightweight design and a secondary lightweight design for the embedded structure. This paper concludes, from tensile, torsional, and compressive experiments, that honeycomb infill structures, with specimens printed at an inclination angle of 0°, exhibit superior performance across all properties. Additionally, the bonding between the layers of the printed parts is identified as a key factor influencing the tensile and torsional properties. While increasing the infill rate can significantly improve the overall mechanical properties of specimens, it also results in a corresponding reduction in the lightweighting index. Full article
Show Figures

Figure 1

12 pages, 1298 KB  
Article
Effects of 3D Printing Parameters on the Coating Performance of Chinese Lacquer on PLA Substrates
by Yi Xie, Yuemin Feng, Alin Olarescu, Yushu Chen and Xinyou Liu
Coatings 2025, 15(10), 1222; https://doi.org/10.3390/coatings15101222 - 17 Oct 2025
Viewed by 212
Abstract
This study systematically investigates the influence of 3D printing parameters on the surface morphology and coating performance of polylactic acid (PLA) substrates finished with traditional Chinese lacquer. PLA specimens were fabricated using fused deposition modeling (FDM) with varying print speeds, layer heights, and [...] Read more.
This study systematically investigates the influence of 3D printing parameters on the surface morphology and coating performance of polylactic acid (PLA) substrates finished with traditional Chinese lacquer. PLA specimens were fabricated using fused deposition modeling (FDM) with varying print speeds, layer heights, and infill densities, followed by natural lacquer coating and controlled curing. Surface roughness, gloss, adhesion, and wear resistance were evaluated through standardized tests, while microstructural analysis using SEM revealed the interfacial morphology and film uniformity. Results indicate that layer height is the most dominant factor, exerting significant effects on all surface and coating properties. Increasing layer height led to higher surface roughness, which in turn reduced gloss due to enhanced diffuse scattering but improved adhesion and wear resistance through stronger mechanical interlocking. Print speed showed a secondary influence on adhesion, attributed to its effect on interlayer bonding and surface porosity, while infill density exhibited minimal influence except on wear resistance. The application of Chinese lacquer significantly reduced surface irregularities owing to its excellent self-leveling and gap-filling capabilities, producing smooth, durable, and well-adhered coatings. Overall, the study demonstrates that integrating traditional lacquer with modern FDM technology provides a sustainable and high-performance finishing solution for 3D-printed PLA, bridging cultural craftsmanship with advanced additive manufacturing for potential applications in decorative, protective, and eco-friendly products. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

20 pages, 1165 KB  
Systematic Review
Influence of Different Post-Processing Procedures on the Accuracy of 3D Printed Dental Models Using Vat Polymerization: A Systematic Review
by Athanasia Morali, Ioannis Lyros, Spyridon Plakias, Giacomo Scuzzo and Ioannis A. Tsolakis
Appl. Sci. 2025, 15(20), 11123; https://doi.org/10.3390/app152011123 - 16 Oct 2025
Viewed by 267
Abstract
Introduction: Three-dimensional (3D) printing technology has rapidly evolved across various fields of medicine and dentistry, particularly in orthodontics. One key application in orthodontics is the fabrication of dental models. Numerous parameters throughout the dental cast fabrication workflow can influence the accuracy of [...] Read more.
Introduction: Three-dimensional (3D) printing technology has rapidly evolved across various fields of medicine and dentistry, particularly in orthodontics. One key application in orthodontics is the fabrication of dental models. Numerous parameters throughout the dental cast fabrication workflow can influence the accuracy of 3D-printed models. This review aims to evaluate the influence of post-processing procedures, specifically post-curing and post-rinsing, on the dimensional accuracy of 3D-printed dental casts. Materials and Methods: An initial data search was conducted using specific keywords across four databases (PubMed, Scopus, Web of Science, and Google Scholar). A secondary search of references and citations was also performed. This systematic review ultimately identified five studies that met the inclusion criteria (in vitro studies and studies referred to post-processing only of 3D-printed models) for further evaluation and analysis, whereas reviews, opinion studies, and papers in languages other than English were excluded. Based on the QUIN tool, all studies were assessed for their risk of bias. Because of the studies’ heterogeneity, a qualitative descriptive synthesis was conducted. Results: All five included studies were in vitro investigations. One study examined the influence of the post-curing process on dimensional accuracy, while the remaining four explored the impact of post-rinsing procedures on both dimensional accuracy and other surface characteristics of 3D-printed dental casts. Conclusions: According to the findings of the included studies, both post-curing and post-rinsing procedures had statistically significant effects on the dimensional accuracy of 3D-printed dental models. Nevertheless, all five studies concluded that the observed deviations remained within clinically acceptable limits, rendering the casts suitable for diagnostic orthodontic purposes or device fabrication. However, further research is needed to reinforce current findings and to enhance our understanding of the optimal post-processing protocols of additively manufactured dental casts. Full article
(This article belongs to the Special Issue 3D Printing Applications in Dentistry)
Show Figures

Figure 1

14 pages, 4515 KB  
Article
Fracture Characteristics of 3D-Printed Polymer Parts: Role of Manufacturing Process
by Mohammad Reza Khosravani, Payam Soltani, Majid R. Ayatollahi and Tamara Reinicke
J. Manuf. Mater. Process. 2025, 9(10), 339; https://doi.org/10.3390/jmmp9100339 - 16 Oct 2025
Viewed by 160
Abstract
Using traditional methods to fabricate geometrically complicated items was challenging, but Additive Manufacturing (AM) has made it possible. Although AM (3D printing) was first developed to produce prototypes, in recent years it has also been utilized for the fabrication of end-use products. As [...] Read more.
Using traditional methods to fabricate geometrically complicated items was challenging, but Additive Manufacturing (AM) has made it possible. Although AM (3D printing) was first developed to produce prototypes, in recent years it has also been utilized for the fabrication of end-use products. As a result, the mechanical strength of AMed parts has gained considerable significance. Three-dimensional printing has proved its capabilities in the fabrication of customizable parts with complex geometries. In the current study, the effects of manufacturing parameters on the mechanical strength and the fracture behavior of 3D-printed components have been investigated. To this aim, we fabricated specimens using Polyethylene Terephthalate Glycol (PETG) and the Fused Deposition Modeling (FDM) process. Particularly, the dumbbell-shaped and Single Edge Notched Bend (SENB) specimens were fabricated and examined to determine their tensile and fracture behaviors. Particularly, the notches in SENB specimens were introduced by two different techniques to investigate the influence of the manufacturing process on the mechanical performance of 3D-printed PETG parts. Moreover, finite element simulations were conducted to investigate the fracture behavior of the parts. The results indicate that the fracture loads of 3D-printed and milled parts are 599.1 N and 417.2 N, respectively. In addition, experiments confirm brittle fracture with no plastic deformation in all specimens with 3D-printed and milled notches. The outcomes of this study can be used for the future designs of FDM 3D-printed parts with a better structural performance. Full article
Show Figures

Figure 1

20 pages, 5591 KB  
Article
Mechanical Uniaxial Compression of 3D-Printed Non-Periodic ASA Lattice Structures Using Semi-Controlled Design Models
by Nebojša Rašović, Inga Krešić and Jasmin Kaljun
Polymers 2025, 17(20), 2775; https://doi.org/10.3390/polym17202775 - 16 Oct 2025
Viewed by 224
Abstract
This work examines the mechanical behaviour of 3D-printed stochastic lattice structures fabricated using a semi-controlled design. A primary goal is to predict and optimize the mechanical response of these Acrylic Styrene Acrylonitrile (ASA) filament structures when subjected to compressive stress. By transitioning from [...] Read more.
This work examines the mechanical behaviour of 3D-printed stochastic lattice structures fabricated using a semi-controlled design. A primary goal is to predict and optimize the mechanical response of these Acrylic Styrene Acrylonitrile (ASA) filament structures when subjected to compressive stress. By transitioning from a purely stochastic method to a semi-controlled tessellation approach within Rhinoceros 7 software, we effectively generated the proposed design models. This methodology results in mechanical responses that are both predictable and reliable. The design parameters, including nodal formation, strut thickness, and lattice generation based on a predefined geometric routine, are associated with the regulation of the relative density. This approach aims to minimize the effect of relative density on the actual stiffness and strength evaluation. Our findings are cantered on the compressive testing of structures, which were generated using a Voronoi population distributed along a parabolic curve. We analyzed their mechanical response to the point of failure by examining stress–strain fluctuations. Three distinct behaviour stages are observed: elastic range, plastic range, and collapse without densification. The influence of crosslink geometry on the elastic responses was highlighted, with parabolic configurations affecting the peak stresses and elastic line slopes. The structures exhibited purely brittle behaviour, characterized by abrupt local cracking and oscillatory plateau formation in the plastic stage. Full article
(This article belongs to the Special Issue Latest Research on 3D Printing of Polymer and Polymer Composites)
Show Figures

Graphical abstract

22 pages, 9522 KB  
Article
Advancing FDM 3D Printing Simulations: From G-Code Conversion to Precision Modelling in Abaqus
by Taoufik Hachimi, Fouad Ait Hmazi, Fatima Ezzahra Arhouni, Hajar Rejdali, Yahya Riyad and Fatima Majid
J. Manuf. Mater. Process. 2025, 9(10), 338; https://doi.org/10.3390/jmmp9100338 - 16 Oct 2025
Viewed by 285
Abstract
This study presents a newly developed program that seamlessly converts G-code into formats compatible with Abaqus, enabling precise finite element simulations for FDM 3D printing. The tool operates on a two-pronged framework: a mathematical model incorporating key print parameters (layer thickness, extrusion temperature, [...] Read more.
This study presents a newly developed program that seamlessly converts G-code into formats compatible with Abaqus, enabling precise finite element simulations for FDM 3D printing. The tool operates on a two-pronged framework: a mathematical model incorporating key print parameters (layer thickness, extrusion temperature, print speed, and raster width) and a shape generator managing geometric parameters (fill density, pattern, and raster orientation). Initially, a predefined virtual section, based on predetermined dimensions, enhanced the correlation between experimental results and simulations. Subsequently, a corrected virtual section, derived from the mathematical model using the Box–Behnken methodology, improves accuracy, achieving a virtual thickness error of 1.06% and a width error of 8%. The model is validated through tensile testing of ASTM D638 specimens at 0°, 45°, and 90° orientations, using adaptive C3D4 mesh elements (0.35–0.6 mm). Results demonstrate that the corrected cross-section significantly improved simulation accuracy, reaching correlations above 95% in the elastic zone and 90% in the elastoplastic zone across all orientations. By optimizing the workflow from design to manufacturing, this program offers substantial benefits for the aerospace, medical, and automotive sectors, enhancing both the efficiency of the printing process and the reliability of simulations. Full article
Show Figures

Figure 1

21 pages, 3554 KB  
Article
3D Reconstruction and Printing of Small, Morphometrically Complex Food Replicas and Comparison with Real Objects by Digital Image Analysis: The Case of Popcorn Flakes
by Beatriz M. Ferrer-González, Ricardo Aguilar-Garay, Carla I. Acosta-Ramírez, Liliana Alamilla-Beltrán, Georgina Calderón-Domínguez, Humberto Hernández-Sánchez and Gustavo F. Gutiérrez-López
Appl. Sci. 2025, 15(20), 11102; https://doi.org/10.3390/app152011102 - 16 Oct 2025
Viewed by 149
Abstract
Popcorn maize (Zea mays everta) exhibits complex morphologies that challenge structural analysis. This study assessed the fidelity of the three-dimensional (3D) reconstruction and printing of four popcorn morphologies, unilateral, bilateral, multilateral, and mushroom, by integrating structured-light 3D scanning and (DIA), which can [...] Read more.
Popcorn maize (Zea mays everta) exhibits complex morphologies that challenge structural analysis. This study assessed the fidelity of the three-dimensional (3D) reconstruction and printing of four popcorn morphologies, unilateral, bilateral, multilateral, and mushroom, by integrating structured-light 3D scanning and (DIA), which can support the construction of food replicas. Morphometric parameters (projected area, perimeter, Feret diameter, circularity, and roundness) and fractal descriptors (fractal dimension, lacunarity, and entropy) were quantified as the relative ratios of printed/real parameters (P/R) to compare real flakes with their 3D-printed counterparts. Results revealed the lowest mean errors for Feret diameter (6%) and projected area (10%), while deviations in circularity and roundness were more pronounced in mushroom flakes. With respect to the actual mean values of the morphological parameters, real flakes showed slightly larger perimeter values (86 mm for real and 82 mm for printed objects) and a higher fractal dimension (1.36 for real and 1.33 for printed), indicating greater texture irregularity, whereas the projected area remained highly comparable (225 mm2 in real/229 mm2 in printed). These parameters reinforced that the overall morphological fidelity remained high (P/R = 0.9–1.0), despite localized deviations in circularity and fractal descriptors. Less complex morphologies (unilateral and bilateral) demonstrated higher structural fidelity (P/R = 0.95), whereas multilateral and mushroom types showed greater variability due to surface irregularity. Fractal dimension and lacunarity effectively described textural complexity, highlighting the role of flake geometry and moisture in determining expansion patterns and printing accuracy. Principal Component Analysis confirmed that circularity and fractal indicators are critical descriptors for distinguishing morphological fidelity. Overall, the findings demonstrated that 3D scanning and printing provided reliable physical replicas of irregular food structures as popcorn flakes supporting their application in food engineering. Full article
(This article belongs to the Special Issue Advanced Technologies for Food Packaging and Preservation)
Show Figures

Figure 1

22 pages, 2440 KB  
Article
Behaviors of Sediment Particles During Erosion Driven by Turbulent Wave Action
by Fei Wang, Jun Xu and Bryce Vaughan
GeoHazards 2025, 6(4), 66; https://doi.org/10.3390/geohazards6040066 - 15 Oct 2025
Viewed by 167
Abstract
Sediment erosion under turbulent wave action is a highly dynamic process shaped by the interaction between wave properties and sediment characteristics. Despite extensive empirical research, the underlying mechanisms of wave-induced erosion remain insufficiently understood, particularly regarding the threshold energy required for particle mobilization [...] Read more.
Sediment erosion under turbulent wave action is a highly dynamic process shaped by the interaction between wave properties and sediment characteristics. Despite extensive empirical research, the underlying mechanisms of wave-induced erosion remain insufficiently understood, particularly regarding the threshold energy required for particle mobilization and the factors governing displacement patterns. This study employed a custom-built wave flume and a 3D-printed sampler to examine sediment behavior under controlled wave conditions. Rounded glass beads, chosen to eliminate the influence of particle shape, were used as sediment analogs with a similar specific gravity to natural sand. Ten experiments were conducted to systematically assess the effects of particle size, particle number, input voltage (wave power), and water depth on sediment response. The results revealed that (1) only a fraction of particles were mobilized, with the remainder forming stable interlocking structures; (2) the number of displaced particles increased with particle size, particle count, and water depth; (3) a threshold wave power is required to initiate erosion, though buoyancy under shallow conditions reduces this threshold; and (4) wave steepness, rather than voltage or wave height alone, provided the strongest predictor of sediment displacement. These findings highlight the central role of wave steepness in erosion modeling and call for its integration into predictive frameworks. The study concludes with methodological limitations and proposes future research directions, including expanded soil types, large-scale flume testing, and advanced flow field measurements. Full article
Show Figures

Figure 1

37 pages, 9578 KB  
Article
Machine Learning-Assisted Synergistic Optimization of 3D Printing Parameters for Enhanced Mechanical Properties of PLA/Boron Nitride Nanocomposites
by Sundarasetty Harishbabu, Nashmi H. Alrasheedi, Borhen Louhichi, P. S. Rama Sreekanth and Santosh Kumar Sahu
Machines 2025, 13(10), 949; https://doi.org/10.3390/machines13100949 - 14 Oct 2025
Viewed by 228
Abstract
Additive manufacturing via fused deposition modeling (FDM) offers a versatile method for fabricating complex polymer parts; however, enhancing their mechanical properties remains a significant challenge, particularly for biopolymers such as polylactic acid (PLA). PLA is widely used in 3D printing due to its [...] Read more.
Additive manufacturing via fused deposition modeling (FDM) offers a versatile method for fabricating complex polymer parts; however, enhancing their mechanical properties remains a significant challenge, particularly for biopolymers such as polylactic acid (PLA). PLA is widely used in 3D printing due to its biodegradability and ease of processing, but its relatively low mechanical strength and impact resistance limit its broader applications. This study explores the reinforcement of PLA with boron nitride nanoplatelets (BNNPs) to improve its mechanical properties. This study also aims to optimize key FDM process parameters, such as reinforcement content, nozzle temperature, printing speed, layer thickness, and sample orientation, using a Taguchi L27 design. Results show that the addition of 0.04 wt.% BNNP significantly improves the mechanical properties of PLA, enhancing tensile strength by 44.2%, Young’s modulus by 45.5%, and impact strength by over 500% compared to pure PLA. Statistical analysis (ANOVA) reveals that printing speed and nozzle temperature are the primary factors affecting tensile strength and Young’s modulus, while impact strength is primarily influenced by nozzle temperature and reinforcement content. Machine learning models, such as CatBoost and Gaussian process regression, predict mechanical properties with high accuracy (R2 > 0.98), providing valuable insights for tailoring PLA/BNNP composites and optimizing FDM process parameters. This integrated approach presents a promising path for developing high-performance, sustainable nanocomposites for advanced additive manufacturing applications. Full article
Show Figures

Figure 1

26 pages, 4528 KB  
Article
House Dust Mite Nebulization Drives Alarmin and Complement Activation in a Murine Tracheal Air–Liquid Interface Culture System
by Janti Haj Ahmad, Philip Einwohlt, Mareike Ohms, Doris Wilflingseder and Jörg Köhl
Cells 2025, 14(20), 1598; https://doi.org/10.3390/cells14201598 - 14 Oct 2025
Viewed by 279
Abstract
Air–liquid interface (ALI) cultures offer a physiologically relevant in vitro model of the airway epithelium (AE), capable of recapitulating key structural and functional features observed in vivo. In this study, we established and validated a murine ALI culture system comprising pseudostratified epithelia with [...] Read more.
Air–liquid interface (ALI) cultures offer a physiologically relevant in vitro model of the airway epithelium (AE), capable of recapitulating key structural and functional features observed in vivo. In this study, we established and validated a murine ALI culture system comprising pseudostratified epithelia with functional tight junctions, ciliated cells and goblet cells. To assess their innate immune functions, we designed and 3D-printed an autoclavable aerosol deposition chamber, which allowed us to expose differentiated AE cultures to house dust mite (HDM) allergen. Upon HDM exposure, AE cells mounted a time-dependent innate immune response characterized by the secretion of complement component C3, the generation of its active cleavage products C3a and increased expression of C3aR and C5aR1. This was associated with increased intracellular TSLP and IL-25 production and TSLP release in AE cells. Progressive loss of tight junction integrity and reduced transepithelial electrical resistance (TEER) demonstrated epithelial susceptibility to allergen protease-induced cell damage. Together, we established a murine ALI system preserving airway epithelial architecture and a nebulization system to study innate immune activation of AE cells in response to HDM mimicking the initial phase of allergen sensitization. More generally, we described a powerful and accessible platform for studying epithelial-driven mechanisms in murine airway immune responses. Full article
(This article belongs to the Special Issue Novel Insights into Molecular Mechanisms and Therapy of Asthma)
Show Figures

Figure 1

17 pages, 3635 KB  
Article
Evaluation of Medical-Grade Polycaprolactone for 3D Printing: Mechanical, Chemical, and Biodegradation Characteristics
by Eun Chae Kim, Jae-Seok Kim, Yun Jin Yu, Sang-Gi Yu, Dong Yeop Lee, Dong-Mok Lee, So-Jung Gwak, Kyoung Duck Seo and Seung-Jae Lee
Polymers 2025, 17(20), 2730; https://doi.org/10.3390/polym17202730 - 11 Oct 2025
Viewed by 380
Abstract
Polycaprolactone (PCL) is one of the most widely used polymers in tissue engineering owing to its excellent biocompatibility, biodegradability, and processability. Nevertheless, most previous studies have primarily employed research-grade PCL, thereby limiting its clinical translation. In this study, four types of medical-grade PCL [...] Read more.
Polycaprolactone (PCL) is one of the most widely used polymers in tissue engineering owing to its excellent biocompatibility, biodegradability, and processability. Nevertheless, most previous studies have primarily employed research-grade PCL, thereby limiting its clinical translation. In this study, four types of medical-grade PCL (RESOMER® C203, C209, C212, and C217) were systematically evaluated for their applicability in three-dimensional (3D) printing, with respect to printability, mechanical characteristics, chemical stability, and biodegradation behavior. Among these, C209 and C212 exhibited superior printability and mechanical strength. FT-IR analysis showed that the chemical structure of PCL remained unchanged after both 3D printing and E-beam sterilization, while compressive testing demonstrated no significant differences in mechanical characteristics. In vitro degradation assessment revealed a time-dependent decrease in molecular weight. For kinetic analysis, both C209 and C212 were fitted using pseudo-first-order and pseudo-second-order models, which yielded comparable coefficients of determination (R2), suggesting that degradation may be governed by multiple factors rather than a single kinetic pathway. Taken together, these findings indicate that medical-grade PCL, particularly C209 and C212, is highly suitable for 3D printing. Furthermore, this study provides fundamental insights that may facilitate the clinical translation of PCL-based scaffolds for tissue engineering and biomedical implantation. Full article
(This article belongs to the Special Issue Polymeric Materials and Their Application in 3D Printing, 2nd Edition)
Show Figures

Figure 1

18 pages, 3411 KB  
Article
A Comparative Analysis of the Additive Manufacturing Alternatives for Producing Steel Parts
by Mathias Sæterbø, Wei Deng Solvang and Pourya Pourhejazy
Metals 2025, 15(10), 1126; https://doi.org/10.3390/met15101126 - 10 Oct 2025
Viewed by 248
Abstract
Companies are increasingly turning to additive manufacturing as the demand for one-off 3D-printed metal parts rises. The differences in available additive manufacturing technologies necessitate considering both cost and externalities to select the most suitable alternative. This study compares some of the most prevalent [...] Read more.
Companies are increasingly turning to additive manufacturing as the demand for one-off 3D-printed metal parts rises. The differences in available additive manufacturing technologies necessitate considering both cost and externalities to select the most suitable alternative. This study compares some of the most prevalent metal additive manufacturing technologies through a shop floor-level operational analysis. A steel robotic gripper is considered as a case study, based on which of the complex, interconnected operational factors that influence costs over time are analyzed. The developed cost model facilitates the estimation of costs, identification of cost drivers, and analysis of the impact of various operations management decisions on overall costs. We found that cost performance across Powder-Bed Fusion (PBF), Wire Arc Additive Manufacturing (WAAM), and CNC machining is determined by part design, quantity, and machine utilization. Although producing parts with complex internal features favors additive manufacturing, CNC outperforms in terms of economy of scale. While PBF offers excellent design freedom and parallel production, it incurs high fixed costs per build in under-utilized situations. A rough but fast method, such as Directed-Energy Deposition (DED)-based additive manufacturing, is believed to be more cost-efficient for large, simple shapes, but is not suitable when fine details are required. Laser-based DED approaches address this limitation of WAAM. Full article
Show Figures

Figure 1

21 pages, 9205 KB  
Article
Effect of Different Printing Designs and Resin Types on the Accuracy of Orthodontic Model
by Sabahattin Bor and Fırat Oğuz
Polymers 2025, 17(20), 2724; https://doi.org/10.3390/polym17202724 - 10 Oct 2025
Viewed by 430
Abstract
This study aimed to evaluate the effect of resin type and printing design on the dimensional accuracy of three dimensional (3D) printed orthodontic models, considering their clinical relevance for applications such as in-house aligner fabrication. Since low-cost Liquid Crystal Display (LCD) printers have [...] Read more.
This study aimed to evaluate the effect of resin type and printing design on the dimensional accuracy of three dimensional (3D) printed orthodontic models, considering their clinical relevance for applications such as in-house aligner fabrication. Since low-cost Liquid Crystal Display (LCD) printers have been increasingly adopted in practice but data on their trueness and precision with different resins and print designs were limited, the study sought to provide evidence-based insights into their reliability. A mandibular model was designed using Blenderfordental (B4D, version 1.1.2024; Dubai, United Arab Emirates) software and fabricated with the Anycubic Photon Mono 7 Pro 14K (Anycubic, Shenzhen, China) LCD printer. The model was printed in vertical orientation using three different print designs at two layer thicknesses (50 µm and 100 µm). Four resins (Elegoo, Anycubic, eSUN, and Phrozen) were used, and each resin was printed with all three designs, yielding 126 models per resin and a total of 504 printed models. Dimensional deviations between the printed and reference models were assessed using root mean square (RMS) values and color-coded deviation maps. Significant differences in trueness were found among resins and print designs at both layer thicknesses (p < 0.001). At a layer thickness of 50 µm, eSUN and Anycubic showed superior trueness, whereas Phrozen exhibited the highest deviations. At a layer thickness of 100 µm, Anycubic, eSUN, and Phrozen generally performed better than Elegoo. Overall, printing at 100 µm yielded better performance than at 50 µm. Precision analysis revealed resin-dependent differences, with eSUN showing significantly higher precision than Elegoo at both layer thicknesses (p = 0.006 at 100 µm, p < 0.001 at 50 µm) and superior precision compared to Phrozen at 50 µm (p = 0.019). Both resin selection and print design significantly affect the dimensional accuracy of 3D-printed dental models. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

20 pages, 8391 KB  
Article
Short Expandable-Wing Suture Anchor for Osteoporotic and Small Bone Fixation: Validation in a 3D-Printed Coracoclavicular Reconstruction Model
by Chia-Hung Tsai, Shao-Fu Huang, Rong-Chen Lin, Pao-Wei Lee, Cheng-Ying Lee and Chun-Li Lin
J. Funct. Biomater. 2025, 16(10), 379; https://doi.org/10.3390/jfb16100379 - 10 Oct 2025
Viewed by 580
Abstract
Suture anchors are widely used for tendon and ligament repair, but their fixation strength is compromised in osteoporotic bone and limited bone volume such as the coracoid process. Existing designs are prone to penetration and insufficient cortical engagement under such conditions. In this [...] Read more.
Suture anchors are widely used for tendon and ligament repair, but their fixation strength is compromised in osteoporotic bone and limited bone volume such as the coracoid process. Existing designs are prone to penetration and insufficient cortical engagement under such conditions. In this study, we developed a novel short expandable-wing (SEW) suture anchor (Ti6Al4V) designed to enhance pull-out resistance through a deployable wing mechanism that locks directly against the cortical bone. Finite element analysis based on CT-derived bone material properties demonstrated reduced intra-bone displacement and improved load transfer with the SEW compared to conventional anchors. Mechanical testing using matched artificial bone surrogates (N = 3 per group) demonstrated significantly higher static pull-out strength in both normal (581 N) and osteoporotic bone (377 N) relative to controls (p < 0.05). Although the sample size was limited, results were consistent and statistically significant. After cyclic loading, SEW anchor fixation strength increased by 25–56%. In a 3D-printed anatomical coracoclavicular ligament reconstruction model, the SEW anchor provided nearly double the fixation strength of the hook plate, underscoring its superior stability under high-demand clinical conditions. This straightforward implantation protocol—requiring only a 5 mm drill hole without tapping, followed by direct insertion and knob-driven wing deployment—facilitates seamless integration into existing surgical workflows. Overall, the SEW anchor addresses key limitations of existing anchor designs in small bone volume and osteoporotic environments, demonstrating strong potential for clinical translation. Full article
(This article belongs to the Special Issue Three-Dimensional Printing and Biomaterials for Medical Applications)
Show Figures

Figure 1

16 pages, 2215 KB  
Article
Comparative Analysis of Implant Deviation with Varying Angulations and Lengths Using a Surgical Guide: An In Vitro Experimental Study
by Bakhan Ahmed Mohammed and Ranj Adil Jalal
Prosthesis 2025, 7(5), 125; https://doi.org/10.3390/prosthesis7050125 - 9 Oct 2025
Viewed by 286
Abstract
Implant placement requires a digital workflow and the use of surgical guides. However, there is divergence in the angulation length of influence and precision. Therefore, a 3D assessment is also required. This insertion study aims to evaluate the accuracy in vitro by utilizing [...] Read more.
Implant placement requires a digital workflow and the use of surgical guides. However, there is divergence in the angulation length of influence and precision. Therefore, a 3D assessment is also required. This insertion study aims to evaluate the accuracy in vitro by utilizing guided templates, deviation analysis, depth, and orientation over different lengths and angles. Methods and Materials: This study comprises a total of 180 implants placed in 90 resin-printed mandibular models, divided into nine groups (a 3 × 3 factorial design, n = 20/group). A reference model was created using Real GUIDE software (version 5.3), integrating a CBCT scanner (Carestream CS 9600, Medit Corp., Seoul, Republic of Korea) and an intraoral scanner (Medit i900) (Medit Corp., Seoul, Republic of Korea). Implant planning and surgical guide design were digitally executed and printed with Mazic resin (Vericom Co., Ltd., Chuncheon, Republic of Korea). Implants were placed using Oxy Implant PSK Line (Oxy Implant, Brescia, Italy) fixtures in mannequins. Postoperative CBCT scans were used to measure deviations in angular, vertical, and lateral dimensions using CS Imaging (v8.0.22) (Carestream Dental LLC, Atlanta, GA, USA). Statistical analysis was run by using SPSS v26. Results: The results demonstrated that implant angulation significantly impacted the precision of placement. Angulating escalation leads to intensive deviations, which are linear and angular calculations. On the one hand, the most significant deviations were observed at a 25° angulation, particularly in the buccal and lingual apex regions. On the other hand, 0° exhibited minimal deviations. Longer implants showed reduced angular deviations, whereas shorter implants (8.5 mm) exhibited higher vertical deviations, particularly at 0° of angulation. Moderate angulation (15°) with 11.5 mm implants provided the highest precision, while 0° angulation with 15 mm implants consistently exhibited the least deviation. These findings pinpoint the fundamental importance of angulation and implant length for exceptional placement accuracy. Conclusions: This study demonstrates the influence of placement accuracy with static guides on implant angulation and length. Moderate angulation, which is (15°), enhances accuracy, particularly within 11.5 mm implants. On the other hand, steeper angles (25°) and longer implants (15 mm) result in elevated deviations. Guidance formation and operator experience are also vital. Full article
Show Figures

Figure 1

Back to TopTop