Advances in 3D Printing Technologies: Materials, Processes, and Applications

Special Issue Editors


E-Mail Website
Guest Editor
Mechanical Engineering Department, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
Interests: numerical analysis; 3D printing; design optimization; buckling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Faculty of Engineering and Information Technology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Nicolae Iorga Street 1, 540088 Târgu Mureș, Romania
2. Interdisciplinary Biomedical Research Center, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Nicolae Iorga Street 1, 540088 Târgu Mureș, Romania
Interests: management; innovation; healthcare; rehabilitation; quality management
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We invite you to submit your research for this Special Issue of the Machines journal,  published by MDPI, entitled “Advances in 3D Printing Technologies: Materials, Processes, and Applications”. This Special Issue aims to explore the latest developments in 3D printing, addressing the growing demand for innovative, efficient, and sustainable solutions across various industries. 

Recent advancements in materials, such as biocompatible polymers, high-performance composites, and sustainable alternatives, are expanding the capabilities of 3D printing technologies. Furthermore, emerging applications in healthcare, aerospace, automotive, and beyond are driving the development of cutting-edge processes, including hybrid methods and precision manufacturing. IoT-enabled monitoring and AI-driven design optimization are further revolutionizing the landscape, enabling smarter, adaptive, and more efficient additive manufacturing workflows. Despite these innovations, challenges remain in areas like scalability, process optimization, and material behavior under unique stress states, necessitating continued research. 

For this Special Issue, we welcome submissions showcasing novel materials, process innovations, and real-world applications. Contributions should include experimental, computational, or theoretical approaches to enhance the understanding and implementation of 3D printing, with a focus on integrating IoT and AI to further advance the field. 

We encourage you to submit your work in the following research areas:

- Development of advanced materials for 3D printing;

- Hybrid and non-traditional printing techniques;

- IoT-enabled monitoring and control in 3D printing;

- Precision, scalability, and optimization in additive manufacturing;

- Sustainable materials and processes; 

- Applications in healthcare, aerospace, and automotive industries;

- Characterization and modeling of printed materials;

- Multi-material and multi-scale printing;

- Quality assurance and defect analysis;

- Process monitoring, data-driven methods, and Industry 4.0 integration.

You may choose our Joint Special Issue in Machines.

Dr. Maria Tanase
Dr. Cristina Veres
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Manufacturing and Materials Processing is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • 3D printing technologies
  • additive manufacturing
  • advanced materials
  • process optimization
  • hybrid printing methods
  • sustainable manufacturing
  • biocompatible polymers
  • high-performance composites
  • multi-material printing
  • IoT integration AI in additive manufacturing
  • industry 4.0 integration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 3544 KiB  
Article
Mechanical Properties and Accuracy of Additively Manufactured Silicone Soft Tissue Materials
by Pei Xin Chen, John M. Aarts and Joanne Jung Eun Choi
J. Manuf. Mater. Process. 2025, 9(4), 113; https://doi.org/10.3390/jmmp9040113 - 28 Mar 2025
Viewed by 152
Abstract
The objective of this study was to measure and compare the mechanical properties of conventional and three additively manufactured soft tissue silicone materials, while evaluating the precision of additively manufactured (AMed) materials through different printing angles. Three additively manufactured soft tissue silicone materials [...] Read more.
The objective of this study was to measure and compare the mechanical properties of conventional and three additively manufactured soft tissue silicone materials, while evaluating the precision of additively manufactured (AMed) materials through different printing angles. Three additively manufactured soft tissue silicone materials were used, in addition to one conventional self-curing injectable silicone material as a control. AMed materials were divided into three groups with three build angles. Mechanical testing was conducted for tensile and compressive strength by a universal testing machine and Shore A hardness by a durometer. Accuracy analysis of additively manufactured materials (n = 20/group) was performed following superimposition and root mean square (RMS) calculation. Statistical differences between the groups were assessed with a one-way analysis of variance (ANOVA) and Tukey’s post hoc test at a significance level of p < 0.05. Scanning Electron Microscopy (SEM) analysis was performed for fracture surface analyses. The tensile strength of all additively manufactured silicone soft tissue materials was significantly lower (p < 0.0001) than that of the control material. All additively manufactured soft tissue material groups had significantly higher compressive strengths (p < 0.0001) and Shore A hardness values. Accuracy analysis showed no significant difference between the groups when compared at the same printing angle (0°, 45°, and 90°); however, within each material group, printing at 45° had higher RMS values than specimens printed at an angle of 0° and 90°. The conventional soft tissue material (control) had a significantly higher tensile strength than all the AMed soft tissue materials, whereas the opposite trend was found for flexural strength and shore hardness. When selecting an AMed material for soft tissue casts used during implant restoration fabrication, it is recommended to print the soft tissues at either 0° or 90°. Full article
Show Figures

Figure 1

13 pages, 36645 KiB  
Article
Melt Electrowritten Biodegradable Mesh Implants with Auxetic Designs for Pelvic Organ Prolapse Repair
by Nuno Miguel Ferreira, Evangelia Antoniadi, Ana Telma Silva, António Silva, Marco Parente, António Fernandes and Elisabete Silva
J. Manuf. Mater. Process. 2025, 9(4), 111; https://doi.org/10.3390/jmmp9040111 - 28 Mar 2025
Viewed by 218
Abstract
Pelvic organ prolapse (POP) is a common condition among women, characterized by the descent of pelvic organs through the vaginal canal. Although traditional synthetic meshes are widely utilized, they are associated with complications such as erosion, infection, and tissue rejection. This study explores [...] Read more.
Pelvic organ prolapse (POP) is a common condition among women, characterized by the descent of pelvic organs through the vaginal canal. Although traditional synthetic meshes are widely utilized, they are associated with complications such as erosion, infection, and tissue rejection. This study explores the design and fabrication of biodegradable auxetic implants using polycaprolactone and melt electrowriting technology, with the goal of developing implants that closely replicate the mechanical behavior of vaginal tissue while minimizing implant-related complications. Four distinct auxetic mesh geometries—re-entrant Evans, Lozenge grid, square grid, and three-star honeycomb—were fabricated with a 160 μm diameter and mechanically evaluated through uniaxial tensile testing. The results indicate that the square grid and three-star honeycomb geometries exhibit hyperelastic-like behavior, closely mimicking the stress–strain response of vaginal tissue. The re-entrant Evans geometry has been observed to exhibit excessive stiffness for applications related to POP, primarily due to material overlap. This geometry demonstrates stiffness that is approximately five times greater than that of the square grid or the three-star honeycomb configurations, which contributes to an increase in local rigidity. The unique auxetic properties of these structures prevent the bundling effect observed in synthetic meshes, promoting improved load distribution and minimizing the risk of tissue compression. Additionally, increasing the extrusion diameter has been identified as a promising strategy for further refining the biomechanical properties of these meshes. These findings lay a solid foundation for the development of next-generation biodegradable implants. Full article
Show Figures

Figure 1

26 pages, 13505 KiB  
Article
In Situ Active Contour-Based Segmentation and Dimensional Analysis of Part Features in Additive Manufacturing
by Tushar Saini and Panos S. Shiakolas
J. Manuf. Mater. Process. 2025, 9(3), 102; https://doi.org/10.3390/jmmp9030102 - 19 Mar 2025
Viewed by 303
Abstract
The evaluation of the geometric conformity of in-layer features in Additive Manufacturing (AM) remains a challenge due to low contrast between the features and the background, textural variations, imaging artifacts, and lighting conditions. This research presents a novel in situ vision-based framework for [...] Read more.
The evaluation of the geometric conformity of in-layer features in Additive Manufacturing (AM) remains a challenge due to low contrast between the features and the background, textural variations, imaging artifacts, and lighting conditions. This research presents a novel in situ vision-based framework for AM to identify in real-time in-layer features and estimate their shape and printed dimensions and then compare them with the as-processed layer features to evaluate geometrical differences. The framework employs a composite approach to segment features by combining simple thresholding for external features with the Chan–Vese (C–V) active contour model to identify low-contrast internal features. The effect of varying C–V parameters on the segmentation output is also evaluated. The framework was evaluated on a 20.000 mm × 20.000 mm multilayer part with internal features (two circles and a rectangle) printed using Fused Deposition Modeling (FDM). The segmentation performance of the composite method was compared with traditional methods with the results showing the composite method scoring higher in most metrics, including a maximum Jaccard index of 78.34%, effectively segmenting high- and low-contrast features. The improved segmentation enabled the identification of feature geometric differences ranging from 1 to 10 pixels (0.025 mm to 0.250 mm) after printing each layer in situ and in real time. This performance verifies the ability of the framework to detect differences at the pixel level on the evaluation platform. The results demonstrate the potential of the framework to segment features under different contrast and texture conditions, ensure geometric conformity and make decisions on any differences in feature geometry and shape. Full article
Show Figures

Figure 1

Review

Jump to: Research

38 pages, 4194 KiB  
Review
Recent Trends and Future Directions in 3D Printing of Biocompatible Polymers
by Maryam Aftab, Sania Ikram, Muneeb Ullah, Niyamat Khan, Muhammad Naeem, Muhammad Amir Khan, Rakhmonov Bakhrombek Bakhtiyor o’g’li, Kamalova Sayyorakhon Salokhiddin Qizi, Oribjonov Otabek Erkinjon Ugli, Bekkulova Mokhigul Abdurasulovna and Oribjonova Khadisakhon Abdumutallib Qizi
J. Manuf. Mater. Process. 2025, 9(4), 129; https://doi.org/10.3390/jmmp9040129 - 14 Apr 2025
Viewed by 393
Abstract
Three-dimensional (3D) bioprinting using biocompatible polymers has emerged as a revolutionary technique in tissue engineering and regenerative medicine. These biopolymers mimic the extracellular matrix (ECM) and enhance cellular behavior. The current review presents recent advancements in additive manufacturing processes including Stereolithography (SLA), Fused [...] Read more.
Three-dimensional (3D) bioprinting using biocompatible polymers has emerged as a revolutionary technique in tissue engineering and regenerative medicine. These biopolymers mimic the extracellular matrix (ECM) and enhance cellular behavior. The current review presents recent advancements in additive manufacturing processes including Stereolithography (SLA), Fused Filament Fabrication (FFF), Selective Laser Sintering (SLS), and inkjet printing. It also explores the fundamentals of 3D printing and the properties of biocompatible polymers for 3D bioprinting. By mixing biopolymers, enhancing rheological characteristics, and adding bioactive components, further advancements have been made for organ transplantation, drug development, and tissue engineering. As research progresses, the potential for 3D bioprinting to fundamentally transform the healthcare system is becoming obvious and clear. However, the therapeutic potential of printed structures is hindered by issues such as material anisotropy, poor mechanical properties, and the need for more biocompatible and biodegradable architectures. Future research should concentrate on optimizing the 3D bioprinting process using sophisticated computational techniques, systematically examining the characteristics of biopolymers, customizing bioinks for different cell types, and exploring sustainable materials. Full article
Show Figures

Figure 1

Back to TopTop